Fix for bug 2283 (RVCT 4.0 support is missing from PDK 3.0.h)
Have multiple extension sections in the bld.inf, one for each version
of the compiler. The RVCT version building the tools will build the
runtime libraries for its version, but make sure we extract all the other
versions from zip archives. Also add the archive for RVCT4.
// Copyright (c) 1998-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// f32\sfat\sl_check.cpp
//
//
//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
//!!
//!! WARNING!! DO NOT edit this file !! '\sfat' component is obsolete and is not being used. '\sfat32'replaces it
//!!
//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
#include "sl_std.h"
#include "sl_scandrv.h"
const TInt KMaxBufferSize=8192;
TBool CCheckFatTable::IsEof16Bit(TInt aCluster) const
{
return(aCluster>=0xFFF8 && aCluster<=0xFFFF);
}
TBool CCheckFatTable::IsEof12Bit(TInt aCluster) const
{
return(aCluster>=0xFF8 && aCluster<=0xFFF);
}
TInt CCheckFatTable::MaxFatIndex() const
{
__ASSERT_DEBUG((TUint)iMaxFatIndex>=KFatFirstSearchCluster, Fault(ECheckFatIndexZero));
return(iMaxFatIndex);
}
CCheckFatTable* CCheckFatTable::NewL(CFatMountCB* aOwner)
//
// Create a CCheckFatTable
//
{
CCheckFatTable* fatTable;
fatTable=new(ELeave) CCheckFatTable(aOwner);
return(fatTable);
}
CCheckFatTable::CCheckFatTable(CFatMountCB* aOwner)
//
// Constructor
//
{
iOwner=aOwner;
}
CCheckFatTable::~CCheckFatTable()
//
// Destructor
//
{
User::Free(iCheckFat);
}
void CCheckFatTable::InitializeL()
//
// Initialize the check fat table
//
{
__PRINT(_L("CCheckFatTable::InitializeL"));
TInt fatSize=iOwner->FatSizeInBytes();
if(iCheckFat==NULL)
iCheckFat=(TUint8*)User::AllocL(fatSize);
else
iCheckFat=(TUint8*)User::ReAllocL(iCheckFat,fatSize);
Mem::FillZ(iCheckFat,fatSize);
iMaxFatIndex=iOwner->UsableClusters()+1;
if(iOwner->Is16BitFat())
{
__ASSERT_ALWAYS(iMaxFatIndex>0 && iMaxFatIndex<EOF_16Bit && !IsEof16Bit(iMaxFatIndex),User::Leave(KErrCorrupt));
}
else
{
__ASSERT_ALWAYS(iMaxFatIndex>0 && iMaxFatIndex<EOF_12Bit && !IsEof12Bit(iMaxFatIndex),User::Leave(KErrCorrupt));
}
WriteMediaDescriptor();
__PRINT2(_L("fatSize=%d,iCheckFat=0x%x"),fatSize,iCheckFat);
}
/**
@return ETrue if found errors in FAT
*/
TBool CCheckFatTable::FlushL()
//
// Flush iCheckFat to the media, comparing each sector to corresponding
// sector in all fats (cf.CFixedCache::FlushL)
//
{
TBool bErrFound = EFalse;
__PRINT(_L("CCheckFatTable::FlushL()"));
HBufC8* hBuf=HBufC8::New(KMaxBufferSize);
if (hBuf==NULL)
hBuf=HBufC8::NewL(KMaxBufferSize/4);
CleanupStack::PushL(hBuf);
TUint8* ptr=(TUint8*)hBuf->Ptr();
TInt maxSize=hBuf->Des().MaxSize();
TPtr8 fatBuffer(ptr,maxSize);
TInt fatSize=iOwner->FatSizeInBytes();
TInt remainder=fatSize;
TInt offset=iOwner->StartOfFatInBytes();
TUint8* dataPtr=iCheckFat;
TFatDriveInterface& drive = iOwner->DriveInterface();
TInt fatNumber=iOwner->NumberOfFats();
while(remainder)
{
TInt s=Min(fatBuffer.MaxSize(),remainder);
TInt fatCount=fatNumber;
TInt fatPos=0;
while(fatCount)
{
TInt fatOffset=offset+fatPos;
User::LeaveIfError(drive.ReadCritical(fatOffset,s,fatBuffer));
TInt rem2=s;
TInt offset2=fatOffset;
TUint8* dataPtr2=dataPtr;
TInt bufOffset=0;
while(rem2)
{
TInt s2=Min(rem2,512);
TInt r=Mem::Compare(dataPtr2,s2,fatBuffer.Ptr()+bufOffset,s2);
if (r!=0)
{
bErrFound = ETrue;
TPtrC8 dataBuf(dataPtr2,s2);
User::LeaveIfError(drive.WriteCritical(offset2,dataBuf));
}
rem2-=s2;
offset2+=s2;
dataPtr2+=s2;
bufOffset+=s2;
}
--fatCount;
fatPos+=fatSize;
}
offset+=s;
dataPtr+=s;
remainder-=s;
}
CleanupStack::PopAndDestroy();
return bErrFound;
}
void CCheckFatTable::WriteMediaDescriptor()
//
// Write media descriptor to first byte and 0xFF to
// remaining bytes of first two entries
//
{
__PRINT(_L("CCheckFatTable::WriteMediaDescriptor"));
iCheckFat[0]=KBootSectorMediaDescriptor;
iCheckFat[1]=0xFF;
iCheckFat[2]=0xFF;
if (iOwner->Is16BitFat())
iCheckFat[3]=0xFF;
}
TInt CCheckFatTable::PosInBytes(TInt aFatIndex) const
//
// Return number of bytes into the fat
//
{
TInt fatPosInBytes;
if (iOwner->Is16BitFat())
fatPosInBytes=aFatIndex<<1;
else
// this is used since 8-bit access will be used for reading/writing
fatPosInBytes=(aFatIndex*3>>1);
return(fatPosInBytes);
}
TInt CCheckFatTable::PosInIndex(TInt aBytePos) const
//
// Return index given byte position in fat
//
{
if(iOwner->Is16BitFat())
return(aBytePos>>1);
else
return((aBytePos<<1)/3);
}
TInt CCheckFatTable::ReadL(TInt aFatIndex) const
//
// Read a value from the check fat
//
{
__ASSERT_ALWAYS((TUint32)aFatIndex >=KFatFirstSearchCluster && aFatIndex<=MaxFatIndex(),User::Leave(KErrCorrupt));
TUint clusterVal;
if(iOwner->Is16BitFat())
clusterVal=*(TUint16*)(iCheckFat+PosInBytes(aFatIndex));
else
{
TUint8* pCluster=iCheckFat+PosInBytes(aFatIndex);
clusterVal=pCluster[0]|(pCluster[1]<<8);
TBool oddCluster=(aFatIndex)&1;
if(oddCluster)
clusterVal>>=4;
clusterVal&=0xFFF;
}
return(clusterVal);
}
void CCheckFatTable::WriteL(TInt aFatIndex,TInt aValue)
//
// Write a value to the check fat
//
{
if(iOwner->Is16BitFat())
__ASSERT_ALWAYS((TUint32)aFatIndex>=KFatFirstSearchCluster && aFatIndex<=MaxFatIndex() && aValue>=0 && aValue<=0xFFFF,User::Leave(KErrCorrupt));
else
__ASSERT_ALWAYS((TUint32)aFatIndex>=KFatFirstSearchCluster && aFatIndex<=MaxFatIndex() && aValue>=0 && aValue<=0xFFF,User::Leave(KErrCorrupt));
TUint8* p=(TUint8*)(iCheckFat+PosInBytes(aFatIndex));
if (iOwner->Is16BitFat())
{
*(TUint16*)p=(TUint16)aValue;
return;
}
TUint8 mask=0x0F;
TBool odd=(aFatIndex)&1;
TUint8 fatVal;
if(odd)
{
mask<<=4;
aValue<<=4;
fatVal=p[0];
fatVal&=~mask;
fatVal|=(TUint8)(aValue&0xFF);
p[0]=fatVal;
p[1]=(TUint8)(aValue>>8);
}
else
{
p[0]=(TUint8)(aValue&0xFF);
fatVal=p[1];
fatVal&=~mask;
fatVal|=(TUint8)(aValue>>8);
p[1]=fatVal;
}
return;
}
TBool CCheckFatTable::GetNextClusterL(TInt& aCluster) const
//
// Get the next cluster in the chain from the check fat.
//
{
__PRINT(_L("CCheckFatTable::GetNextClusterL"));
TBool ret;
TInt nextCluster=ReadL(aCluster);
if (iOwner->Is16BitFat())
ret=!IsEof16Bit(nextCluster);
else
ret=!IsEof12Bit(nextCluster);
if (ret)
aCluster=nextCluster;
return(ret);
}
void CCheckFatTable::WriteFatEntryEofFL(TInt aCluster)
//
// Write EOF to aCluster
//
{
__PRINT(_L("CCheckFatTable::WriteFatEntryEofF"));
if (iOwner->Is16BitFat())
WriteL(aCluster,EOF_16Bit);
else
WriteL(aCluster,EOF_12Bit);
}