/*
* Copyright (c) 2009 Nokia Corporation and/or its subsidiary(-ies).
* All rights reserved.
* This component and the accompanying materials are made available
* under the terms of the License "Eclipse Public License v1.0"
* which accompanies this distribution, and is available
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
*
* Initial Contributors:
* Nokia Corporation - initial contribution.
*
* Contributors:
*
* Description:
*
*/
#include <drivers/iic.h>
// #include <gpio.h> // Include if using GPIO functionality
#include "iic_psl.h"
#include "iic_master.h"
// Method called when transmission activity is ended. The method is used to indicate
// the success or failure reported in the first parameter
//
// All timers are cancelled, relevant interrupts are disabled and the transaction
// request is completed by calling the relevant PIL method.
//
void DIicBusChannelMasterPsl::ExitComplete(TInt aErr, TBool aComplete /*= ETrue*/)
{
__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::ExitComplete, aErr %d, aComplete %d", aErr, aComplete));
// Disable interrupts for the channel
// with something similar to the following lines:
// Interrupt::Disable(iRxInterruptId);
// Interrupt::Disable(iTxInterruptId);
// Cancel timers and DFCs..
CancelTimeOut();
iHwGuardTimer.Cancel();
iTransferEndDfc.Cancel();
// Change the channel state to EIdle so that subsequent transaction requests can be accepted
// once the current one has been completed
iState = EIdle;
// Call the PIL method to complete the request
if(aComplete)
{
CompleteRequest(aErr);
}
}
// Callback function for the iHwGuardTimer timer.
//
// Called in ISR context if the iHwGuardTimer expires. Sets iTransactionStatus to KErrTimedOut
//
void DIicBusChannelMasterPsl::TimeoutCallback(TAny* aPtr)
{
__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::TimeoutCallback"));
DIicBusChannelMasterPsl *a = (DIicBusChannelMasterPsl*) aPtr;
a->iTransactionStatus = KErrTimedOut;
}
// HandleSlaveTimeout
//
// This method is called by the PIL in the case of expiry of a timer started by the PSL. It is
// specificaly intended to guard against the Slave not responding within an expected time
//
// The PIL method StartSlaveTimeoutTimer is available for the PSL to start the timer (this is
// called from ProcessNextTransfers, below).
// The PIL method CancelTimeOut is available for the PSL to cancel the same timer (this is called
// from ExitComplete, above)
//
// The PIL will call CompleteRequest() after this function returns, so the PSL needs only to clean-up
//
TInt DIicBusChannelMasterPsl::HandleSlaveTimeout()
{
__KTRACE_OPT(KIIC, Kern::Printf("HandleSlaveTimeout"));
// Ensure that the hardware has ceased transfers, with something similar to the following line:
// AsspRegister::Write32(a->aRegisterSetBaseAddress + KBusConfigOffset, KIicPslBusDisableBit);
// GPIO::SetPinMode(aPinId, GPIO::EDisabled);
// Stop the PSL's operation, and inform the PIL of the timeout
ExitComplete(KErrTimedOut, EFalse);
// Perform any further hardware manipulation necessary
//
return KErrTimedOut;
}
// DFC
//
// For execution when a Rx buffer has been filled or a Tx buffer has been emptied
//
void DIicBusChannelMasterPsl::TransferEndDfc(TAny* aPtr)
{
__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::TransferEndDfc"));
DIicBusChannelMasterPsl *a = (DIicBusChannelMasterPsl*) aPtr;
// Start of optional processing - not necessary for all implementations
//
// When operating full-duplex transfers, one of the Rx and Tx operations may have caused an interrupt
// before the other has completed. For the example here, the Tx is assumed to have completed before the Rx
// and a timer is used to ensure that the outstanding Rx operation completes within an expected time.
//
// If there has been no error so far, may want to check if we are still receiving the data
if(a->iTransactionStatus == KErrNone)
{
// Use an active wait since this is likely to be a brief check.
// Start the guard timer (which will update iTransactionStatus with KErrTimedOut if it expires)
// while also polling the hardware to check if transmission has ceased.
//
// Polling the hardware would be something like the line below
// (AsspRegister::Read32(a->aRegisterSetBaseAddress + KStatusRegisterOffset) & KTransmissionActive));
// but for the template port will use a dummy condition (value of 1)
//
a->iHwGuardTimer.OneShot(NKern::TimerTicks(KTimeoutValue));
while((a->iTransactionStatus == KErrNone) && 1); // Replace 1 with a register read
}
//
// Now the timer has expired, deactivate the slave select until the current state has been processed, but only
// if this is not an extended transaction, in which case we want to leave the bus alone so that the multiple
// transactions making up the extended transaction become one big transaction as far as the bus is concerned.
// Do this with something similar to the following line:
// if (!(a->iCurrTransaction->Flags() & KTransactionWithMultiTransc))
// {
// GPIO::SetPinMode(aPinId, GPIO::EDisabled);
// }
//
// Disable the hardware from further transmissions
// AsspRegister::Write32(a->aRegisterSetBaseAddress + KBusConfigOffset, KIicPslBusDisableBit);
//
// Check if the guard timer expired
if(a->iTransactionStatus != KErrNone)
{
__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::TransferEndDfc(): error %d",a->iTransactionStatus));
a->ExitComplete(a->iTransactionStatus); // report the error
return;
}
else
{
// Transfer completed successfully, so just cancel the guard timer
a->iHwGuardTimer.Cancel();
}
// End of optional processing - not necessary for all implementations
// At this point, prepare for subsequent transfers by performing any necessary clean-up.
// As stated above, for this example, it is assumed that any Rx or Tx transfer has completed -
// the following just checks if an Rx, Tx operation was started, and assumes that they completed.
if(a->iOperation.iOp.iIsReceiving)
{
// If the channel has been receiving data, may need to ensure that any FIFO used has been drained
// The example here checks if one extra data item remains in the FIFO
// To check if data remains in a FIFO, something similar to the following could be used:
// TInt8 dataRemains = AsspRegister::Read32(a->aRegisterSetBaseAddress + KRxFifoLevel);
// Reading data from the FIFO would be achieved with something like the line below
// value = AsspRegister::Read32(a->aRegisterSetBaseAddress + KRxData);
// but for the template port will just use a dummy values (data remains=1, value = 1)
//
TInt8 dataRemains = 1; // Would be a check of a Rx FIFO level
// If data remains in the Rx FIFO and the Rx buffer is not full, copy the data to the buffer
if(dataRemains && (a->iRxDataEnd - a->iRxData >= a->iWordSize) )
{
TUint8 value = 1; // Would be a read of the Rx FIFO data
*a->iRxData = value; // For this example, assumes one byte of data has been read from the FIFO
// but if operating in 16-bit mode, two "values" would be written the buffer
a->iRxData += a->iWordSize; // In this example, 8-bit mode is assumed (iWordSize=1)
// but if operating in 16-bit mode a->iRxData would be incremented by
// the number of bytes specified in a->iWordSize
}
}
if(a->iOperation.iOp.iIsTransmitting)
{
// If the channel has been transmitting data, may need to ensure that any FIFO used has been flushed
// To check if data remains in a FIFO, something similar to the following could be used:
// TInt8 dataRemains = AsspRegister::Read32(a->aRegisterSetBaseAddress + KTxFifoLevel);
// The means to flush the FIFO will be platform specific, and so no example is given here.
}
// Start the next transfer for this transaction, if any remain
if(a->iState == EBusy)
{
TInt err = a->ProcessNextTransfers();
if(err != KErrNone)
{
// If the next transfer could not be started, complete the transaction with
// the returned error code
a->ExitComplete(err);
}
}
}
// ISR Handler
//
// If the channel is to be event driven, it will use interrupts that indicate the
// hardware has received or transmitted. To support this an ISR is required.
//
void DIicBusChannelMasterPsl::IicIsr(TAny* aPtr)
{
DIicBusChannelMasterPsl *a = (DIicBusChannelMasterPsl*) aPtr;
// The processing for Rx and Tx will differ, so must determine the status of the interrupts.
// This will be PSL-specific, but is likely to achieved by reading a status register, in a
// way similar to this:
// TUint32 status = AsspRegister::Read32(aRegisterSetBaseAddress + KStatusRegisterOffset);
//
// For the purposes of compiling the template port, just initialise status to zero.
TUint32 status = 0;
if(status & KIicPslTxInterrupt)
{
// Tx interrupt processing
// Clear the interrupt source, with something similar to the following line:
// AsspRegister::Write32(a->aRegisterSetBaseAddress + KStatusRegisterOffset, KIicPslTxInterrupt);
// Then check whether all the required data has been transmitted.
if(a->iTxData == a->iTxDataEnd)
{
// All data sent, so disable the Tx interrupt and queue a DFC to handle the next steps.
// Interrupt::Disable(a->iTxInterruptId);
a->iTransferEndDfc.Add();
}
else
{
if(a->iOperation.iOp.iIsTransmitting)
{
// Data remaining - copy the next value to send to the Tx register
// TUint8 nextTxValue = *a->iTxData; // For this example, assumes one byte of data is to be transmitted
// but if operating in 16-bit mode, bytes may need arranging for
// endianness
// Write to the Tx register with something similar to the following:
// AsspRegister::Write32(a->aRegisterSetBaseAddress + KTxRegisterOffset, nextTxValue);
a->iTxData += a->iWordSize; // Then increment the pointer to the data. In this example, 8-bit mode is assumed
// (iWordSize=1), but if operating in 16-bit mode a->iTxData would be incremented
// by the number of bytes specified in a->iWordSize
}
}
}
if(status & KIicPslRxInterrupt)
{
// Rx interrupt processing
// Copy the received data to the Rx buffer.
// Do this in a loop in case there are more than one units of data to be handled. Data availability
// will be indicated by a PSL-specific register, and so may be handled by code similar to the following:
// while(AsspRegister::Read32(a->aRegisterSetBaseAddress + KRxData))
//
// But, to allow compilation of the template port, just use a dummy condition (while(1)):
while(1)
{
// While there is space in the buffer, copy received data to it
if((a->iRxDataEnd - a->iRxData) >= a->iWordSize)
{
TUint8 nextRxValue = 0;
// Read from the Rx register with something similar to the following:
// TUint8 nextRxValue = AsspRegister::Read32(aRegisterSetBaseAddress + KRxRegisterOffset);
*a->iRxData = nextRxValue;
}
else
{
// If there is no space left in the buffer an Overrun has occurred
a->iTransactionStatus = KErrOverflow;
break;
}
// Increment the pointer to the received data
a->iRxData += a->iWordSize;
}
// If the Rx buffer is now full, finish the transmission.
if(a->iRxDataEnd == a->iRxData)
{
// Disable the interrupt since it is no longer required
// Interrupt::Disable(a->iRxInterruptId);
// Then queue a DFC to perform the next steps
a->iTransferEndDfc.Add();
}
// After processing the data, clear the interrupt source (do it last to prevent the ISR being
// re-invoked before this ISR is finished), with something similar to the following line:
// AsspRegister::Write32(a->aRegisterSetBaseAddress + KStatusRegisterOffset, KIicPslRxInterrupt);
}
}
// Constructor, first stage
//
// The PSL is responsible for setting the channel number - this is passed as the first parameter to
// this overload of the base class constructor
//
DIicBusChannelMasterPsl::DIicBusChannelMasterPsl(TInt aChannelNumber, TBusType aBusType, TChannelDuplex aChanDuplex) :
DIicBusChannelMaster(aBusType, aChanDuplex), // Base class constructor
iTransferEndDfc(TransferEndDfc, this, KIicPslDfcPriority), // DFC to handle transfer completion
iHwGuardTimer(TimeoutCallback, this) // Timer to guard against hardware timeout
{
iChannelNumber = aChannelNumber; // Set the iChannelNumber of the Base Class
iState = EIdle; // Initialise channel state machine
__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::DIicBusChannelMasterPsl: iChannelNumber = %d", iChannelNumber));
}
// Second stage construction
//
// Allocate and initialise objects required by the PSL channel implementation
//
TInt DIicBusChannelMasterPsl::DoCreate()
{
__KTRACE_OPT(KIIC, Kern::Printf("\nDIicBusChannelMasterPsl::DoCreate() ch: %d \n", iChannelNumber));
TInt r = KErrNone;
// Interrupt IDs (such as iRxInterruptId, iTxInterruptId, used in this file)would be initialised here.
//
// Also, information relevant to the channel number (such as the base register address,
// aRegisterSetBaseAddress) would be initialised here.
// Create the DFCQ to be used by the channel
if(!iDfcQ)
{
TBuf8<KMaxName> threadName (KIicPslThreadName);
threadName.AppendNum(iChannelNumber); // Optional: append the channel number to the name
r = Kern::DfcQCreate(iDfcQ, KIicPslThreadPriority, &threadName);
if(r != KErrNone)
{
__KTRACE_OPT(KIIC, Kern::Printf("DFC Queue creation failed, channel number: %d, r = %d\n", iChannelNumber, r));
return r;
}
}
// PIL Base class initialization - this must be called prior to SetDfcQ(iDfcQ)
r = Init();
if(r == KErrNone)
{
// Call base class function to set DFCQ pointers in the required objects
// This also enables the channel to process transaction requests
SetDfcQ(iDfcQ);
// PSL DFCQ initialisation for local DFC
iTransferEndDfc.SetDfcQ(iDfcQ);
#ifdef CPU_AFFINITY_ANY
NKern::ThreadSetCpuAffinity((NThread*)(iDfcQ->iThread), KCpuAffinityAny);
#endif
// Bind interrupts.
// This would be with something similar to the following lines:
// iMasterIntId = Interrupt::Bind(interruptIdToUse, IicPslIsr, this);
//
// Interrupt::Bind returns interruptId or an error code (negative value)
if(iMasterIntId < KErrNone)
{
__KTRACE_OPT(KIIC, Kern::Printf("ERROR: InterruptBind error.. %d", r));
r = iMasterIntId;
}
}
return r;
}
// New
//
// A static method used to construct the DIicBusChannelMasterPsl object.
DIicBusChannelMasterPsl* DIicBusChannelMasterPsl::New(TInt aChannelNumber, const TBusType aBusType, const TChannelDuplex aChanDuplex)
{
__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::NewL(): ChannelNumber = %d, BusType =%d", aChannelNumber, aBusType));
DIicBusChannelMasterPsl *pChan = new DIicBusChannelMasterPsl(aChannelNumber, aBusType, aChanDuplex);
TInt r = KErrNoMemory;
if(pChan)
{
r = pChan->DoCreate();
}
if(r != KErrNone)
{
delete pChan;
pChan = NULL;
}
return pChan;
}
// Optional method - that determines if the previous transaction header is different to the current one.
// If configuration is the same, the hardware may not need to be re-initialized.
TBool DIicBusChannelMasterPsl::TransConfigDiffersFromPrev()
{
//
// The header will be specific to a particular bus type. Using a fictional
// bus type Abc, code similar to the following could be used to compare each
// member of the previous header with the current one
//
// TConfigAbcBufV01* oldHdrBuf = (TConfigAbcBufV01*) iPrevHeader;
// TConfigAbcV01 &oldHeader = (*oldHdrBuf)();
// TConfigAbcBufV01* newHdrBuf = (TConfigAbcBufV01*) iCurrHeader;
// TConfigAbcV01 &newHeader = (*newHdrBuf)();
// if( (newHeader.iHeaderMember != oldHeader.iHeaderMember) ||
// ... )
// {
// return EFalse;
// }
return ETrue;
}
// CheckHdr is called by the PIL when a transaction is queued, in function
// QueueTransaction. This is done in the context of the Client's thread.
//
// The PSL is required to check that the transaction header is valid for
// this channel.
//
// If the pointer to the header is NULL, return KErrArgument.
// If the content of the header is not valid for this channel, return KErrNotSupported.
//
TInt DIicBusChannelMasterPsl::CheckHdr(TDes8* aHdrBuff)
{
TInt r = KErrNone;
if(!aHdrBuff)
{
r = KErrArgument;
}
else
{
// Check that the contents of the header are valid
//
// The header will be specific to a particular bus type. Using a fictional
// bus type Abc,code similar to the following could be used to validate each
// member of the header:
//
// TConfigAbcBufV01* headerBuf = (TConfigAbcBufV01*) aHdrBuff;
// TConfigAbcV01 &abcHeader = (*headerBuf)();
// if( (abcHeader.iHeaderMember < ESomeMinValue) ||
// (abcHeader.iHeaderMember > ESomeMaxValue))
// {
// __KTRACE_OPT(KIIC, Kern::Printf("iHeaderMember %d not supported",abcHeader.iHeaderMember));
// r = KErrNotSupported;
// }
}
__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::CheckHdr() r %d", r));
return r;
}
// Initialise the hardware with the data provided in the transaction and slave-address field
//
// If a specified configuration is not supported, return KErrNotSupported
// If a configuration is supported, but the implementing configuration fails, return KErrGeneral
//
TInt DIicBusChannelMasterPsl::ConfigureInterface()
{
__KTRACE_OPT(KIIC, Kern::Printf("ConfigureInterface()"));
// This method will be platform-specific and will configure the hardware as required to support
// the current transacation. This will be supported with something similar to the following:
// AsspRegister::Write32(a->aRegisterSetBaseAddress + KBusConfigOffset, KIicPslBusEnableBit);
// GPIO::SetPinMode(aPinId, GPIO::EEnabled);
// Depending on the platform, timers (such as iHwGuardTimer) may be used to check that the hardware
// responds in the required way within an allowed timeout. Since this is configuring the channel for
// an operation, it is acceptable to perform an active wait, with something similar to the following:
// iTransactionStatus = KErrNone;
// iHwGuardTimer.OneShot(NKern::TimerTicks(KTimeoutValue));
// while((iTransactionStatus == KErrNone) &&
// AsspRegister::Read32(a->aRegisterSetBaseAddress + KBusConfigOffset, KIicPslBusEnableBit);
// if(iTransactionStatus != KErrNone)
// {
// return KErrGeneral;
// }
// else
// {
// iHwGuardTimer.Cancel();
// }
return KErrNone;
}
// Method called by StartTransfer to actually initiate the transfers. It manipulates the hardware to
// perform the required tasks.
//
TInt DIicBusChannelMasterPsl::DoTransfer(TInt8 *aBuff, TUint aNumOfBytes, TUint8 aType)
{
__KTRACE_OPT(KIIC, Kern::Printf("\nDIicBusChannelMasterPsl::DoTransfer() - aBuff=0x%x, aNumOfBytes=0x%x\n",aBuff,aNumOfBytes));
TInt r = KErrNone;
// Validate the input arguments
if((aBuff == NULL) || (aNumOfBytes == 0))
{
r = KErrArgument;
}
else
{
// This method will be platform-specific and will configure the hardware as required
// This will likely be supported with calls similar to the following:
// AsspRegister::Write32(a->aRegisterSetBaseAddress + KBusConfigOffset, KIicPslBusEnableBit);
// GPIO::SetPinMode(aPinId, GPIO::EEnabled);
// Interrupt::Enable(aInterruptId);
//
// Steps that may be typically required are described below
switch(aType)
{
case TIicBusTransfer::EMasterWrite:
{
// If using a Tx FIFO, may wish to disable transmission until the FIFO has been filled to certain level
// If using a Tx FIFO, may wish to flush it and re-initialise any counters or pointers used
// If using a FIFO, copy data to it until either the FIFO is full or all data has been copied
// Checking the FIFO is full will be reading a flag in a status register, by use of code similar the following
// TUint32 status = AsspRegister::Read32(aRegisterSetBaseAddress + KStatusRegisterOffset);
// if(status & KTxFifoFullBitMask)
// ... FIFO is full
//
// For this example base port, represent the FIFO full status by a dummy value (zero).
TUint8 txFifoFull = 0;
while(!txFifoFull && (iTxData != iTxDataEnd))
{
// TUint8 nextTxValue = *iTxData; // For this example, assumes one byte of data is to be transmitted
// but if operating in 16-bit mode, bytes may need arranging for
// endianness
// Write to the Tx FIFO register with something similar to the following:
// AsspRegister::Write32(a->aRegisterSetBaseAddress + KTxRegisterOffset, nextTxValue);
iTxData += iWordSize; // Then increment the pointer to the data. In this example, 8-bit mode is assumed
// (iWordSize=1), but if operating in 16-bit mode a->iTxData would be incremented
// by the number of bytes specified in a->iWordSize
}
// May wish to enable transmission now - or wait until after the Read transfer has been initialised
break;
}
case TIicBusTransfer::EMasterRead:
{
// If using an Rx FIFO, it will already have been drained at the end of the last transfer by TransferEndDfc
// so no need to do it again here.
// May wish to enable reception now - or group with the code, below
break;
}
default:
{
__KTRACE_OPT(KIIC, Kern::Printf("Unsupported TransactionType %x", aType));
r = KErrArgument;
break;
}
}
// Final stages of hardware preparation
//
// Enable hardware interrupts
// Finally, enable (start) transmission and reception
}
return r;
}
// This method performs the initialisation required for either a read or write transfer
// and then invokes the next stage of the processing (DoTransfer)
//
TInt DIicBusChannelMasterPsl::StartTransfer(TIicBusTransfer* aTransferPtr, TUint8 aType)
{
__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::StartTransfer() - aTransferPtr=0x%x, aType=%d",aTransferPtr,aType));
if(aTransferPtr == NULL)
{
__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::StartTransfer - NULL pointer\n"));
return KErrArgument;
}
TInt r = KErrNone;
switch(aType)
{
case TIicBusTransfer::EMasterWrite:
{
__KTRACE_OPT(KIIC, Kern::Printf("Starting EMasterWrite, duplex=%d", iFullDTransfer));
// Get a pointer to the transfer object's buffer, to facilitate passing arguments to DoTransfer
const TDes8* aBufPtr = GetTferBuffer(aTransferPtr);
__KTRACE_OPT(KIIC, Kern::Printf("Length %d, iWordSize %d", aBufPtr->Length(), iWordSize));
// Store the current address and ending address for Transmission - they are required by the ISR and DFC
iTxData = (TInt8*) aBufPtr->Ptr();
iTxDataEnd = (TInt8*) (iTxData + aBufPtr->Length());
__KTRACE_OPT(KIIC, Kern::Printf("Tx: Start: %x, End %x, bytes %d\n\n", iTxData, iTxDataEnd, aBufPtr->Length()));
// Set the flag to indicate that we'll be transmitting data
iOperation.iOp.iIsTransmitting = ETrue;
// initiate the transmission..
r = DoTransfer((TInt8 *) aBufPtr->Ptr(), aBufPtr->Length(), aType);
if(r != KErrNone)
{
__KTRACE_OPT(KIIC, Kern::Printf("Starting Write failed, r = %d", r));
}
break;
}
case TIicBusTransfer::EMasterRead:
{
__KTRACE_OPT(KIIC, Kern::Printf("Starting EMasterRead, duplex=%x", iFullDTransfer));
// Get a pointer to the transfer object's buffer, to facilitate passing arguments to DoTransfer
const TDes8* aBufPtr = GetTferBuffer(aTransferPtr);
// Store the current address and ending address for Reception - they are required by the ISR and DFC
iRxData = (TInt8*) aBufPtr->Ptr();
iRxDataEnd = (TInt8*) (iRxData + aBufPtr->Length());
__KTRACE_OPT(KIIC, Kern::Printf("Rx: Start: %x, End %x, bytes %d", iRxData, iRxDataEnd, aBufPtr->Length()));
// Set the flag to indicate that we'll be receiving data
iOperation.iOp.iIsReceiving = ETrue;
// initiate the reception
r = DoTransfer((TInt8 *) aBufPtr->Ptr(), aBufPtr->Length(), aType);
if(r != KErrNone)
{
__KTRACE_OPT(KIIC, Kern::Printf("Starting Read failed, r = %d", r));
}
break;
}
default:
{
__KTRACE_OPT(KIIC, Kern::Printf("Unsupported TransactionType %x", aType));
r = KErrArgument;
break;
}
}
return r;
}
// This method determines the next transfers to be processed, and passes them to the next stage
// in the processing (StartTransfer).
//
// This is called from DoRequest (for the first transfer) and TransferEndDfc (after a transfer
// has completed)
//
TInt DIicBusChannelMasterPsl::ProcessNextTransfers()
{
__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::ProcessNextTransfers(),BUSY=%d", iState));
// Since new transfers are strating, clear exisiting flags
iOperation.iValue = TIicOperationType::ENop;
// Some hardware preparation may be required before starting the transfer using something similar
// to the following line:
// AsspRegister::Write32(a->aRegisterSetBaseAddress + KBusConfigOffset, KIicPslBusEnableBit);
// If this is the first transfer in the transaction the channel will be in state EIdle
if(iState == EIdle)
{
// Get the pointer to half-duplex transfer object..
iHalfDTransfer = GetTransHalfDuplexTferPtr(iCurrTransaction);
// Get the pointer to full-duplex transfer object..
iFullDTransfer = GetTransFullDuplexTferPtr(iCurrTransaction);
// Update the channel state to EBusy and initialise the transaction status
iState = EBusy;
iTransactionStatus = KErrNone;
// Use the PIL funcitonality to start a timer that will timeout if the transaction
// is not completed within a specified time period (the client may have specified a period
// to use in the transaction header - some something similar tot he following could be used)
// StartSlaveTimeOutTimer(iCurrHeader->iTimeoutPeriod);
//
// If the timer expires, callback function HandleSlaveTimeout (implemented by the PSL, above)
// will be called. This will ensure that the hardware ceases transfer activity, and calls ExitComplete
// with KErrTImedOut, which will return the channel state to EIdle.
}
else
// If not in state EIdle, process the next transfer in the linked-list held by the transaction
{
// Get the pointer the next half-duplex transfer object..
iHalfDTransfer = GetTferNextTfer(iHalfDTransfer);
// Get the pointer to the next half-duplex transfer object..
if(iFullDTransfer)
{
iFullDTransfer = GetTferNextTfer(iFullDTransfer);
}
}
TInt r = KErrNone;
if(!iFullDTransfer && !iHalfDTransfer)
{
// If all of the transfers were completed, just notify the PIL and return.
// (if either Rx or Tx has not finished properly ExitComplete() would have been called
// from TransferEndDfc if there was an error during the transfer)
__KTRACE_OPT(KIIC, Kern::Printf("All transfers completed successfully"));
ExitComplete(KErrNone);
}
else
{
// Transfers remain to be processed
//
// For full-duplex transfers, the order in which read and write transfers are started may be significant.
// Below is an example where the read transfer is explicitly started before the write transfer.
TInt8 hDTrType = (TInt8) GetTferType(iHalfDTransfer);
if(iFullDTransfer)
{
if(hDTrType == TIicBusTransfer::EMasterRead)
{
r = StartTransfer(iHalfDTransfer, TIicBusTransfer::EMasterRead);
if(r != KErrNone)
{
return r;
}
r = StartTransfer(iFullDTransfer, TIicBusTransfer::EMasterWrite);
}
else // hDTrType == TIicBusTransfer::EMasterWrite)
{
r = StartTransfer(iFullDTransfer, TIicBusTransfer::EMasterRead);
if(r != KErrNone)
{
return r;
}
r = StartTransfer(iHalfDTransfer, TIicBusTransfer::EMasterWrite);
}
}
else
// This is a HalfDuplex transfer - so just start it
{
r = StartTransfer(iHalfDTransfer, hDTrType);
}
}
return r;
}
// The gateway function for PSL implementation
//
// This method is called by the PIL to initiate the transaction. After finishing it's processing,
// the PSL calls the PIL function CompleteRequest to indicate the success (or otherwise) of the request
//
TInt DIicBusChannelMasterPsl::DoRequest(TIicBusTransaction* aTransaction)
{
__KTRACE_OPT(KIIC, Kern::Printf("DIicBusChannelMasterPsl::DoRequest (aTransaction=0x%x)\n", aTransaction));
// If the pointer to the transaction passed in as a parameter, or its associated pointer to the
// header information is NULL, return KErrArgument
if(!aTransaction || !GetTransactionHeader(aTransaction))
{
return KErrArgument;
}
// The PSL operates a simple state machine to ensure that only one transaction is processed
// at a time - if the channel is currently busy, reject the request with KErrInUse.
if(iState != EIdle)
{
return KErrInUse;
}
// Make a copy of the pointer to the transaction
iCurrTransaction = aTransaction;
// Configure the hardware to support the transaction
TInt r = KErrNone;
if(TransConfigDiffersFromPrev()) // Optional: check if hardware needs reconfiguration
{
r = ConfigureInterface();
if(r != KErrNone)
{
return r;
}
}
// start processing transfers of this transaction.
r = ProcessNextTransfers();
return r;
}