kernel/eka/euser/maths/um_sin.cpp
author Tom Cosgrove <tom.cosgrove@nokia.com>
Fri, 28 May 2010 16:29:07 +0100
changeset 30 8aab599e3476
parent 0 a41df078684a
permissions -rw-r--r--
Fix for bug 2283 (RVCT 4.0 support is missing from PDK 3.0.h) Have multiple extension sections in the bld.inf, one for each version of the compiler. The RVCT version building the tools will build the runtime libraries for its version, but make sure we extract all the other versions from zip archives. Also add the archive for RVCT4.

// Copyright (c) 1995-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32\euser\maths\um_sin.cpp
// Floating point sine and cosine functions
// 
//

#include "um_std.h"

#if defined(__USE_VFP_MATH) && !defined(__CPU_HAS_VFP)
#error	__USE_VFP_MATH was defined but not __CPU_HAS_VFP - impossible combination, check variant.mmh 
#endif


#ifndef __USE_VFP_MATH

LOCAL_D const TUint32 SinCoeffs[] =
	{
	0x2168C235,0xC90FDAA2,0x80000000,	// polynomial approximation to sin(pi*x)
	0x2DF200BF,0xA55DE731,0x80010001,	// for |x| <= 0.25
	0xAC273AA1,0xA335E33B,0x80000000,
	0x5AB23F44,0x99696671,0x7FFE0001,
	0xD585EAFE,0xA83C17D9,0x7FFB0000,
	0xA30DE7AD,0xF1802BAC,0x7FF70001,
	0xF57FD821,0xF1F6A1C9,0x7FF30000
	};

LOCAL_D const TUint32 CosCoeffs[] =
	{
	0x00000000,0x80000000,0x7FFF0000,	// polynomial approximation to cos(pi*x)
	0xF22EF286,0x9DE9E64D,0x80010001,	// for |x| <= 0.25
	0xDAD59F90,0x81E0F840,0x80010000,
	0xE4E45144,0xAAE9E3F1,0x7FFF0001,
	0x3232D733,0xF0FA8342,0x7FFC0000,
	0x03E16BB8,0xD368F6A3,0x7FF90001,
	0x712FD084,0xFCE66DE2,0x7FF50000,
	0x9E5353EE,0xD94951B0,0x7FF10001
	};

LOCAL_D const TUint32 PiInvdata[] = {0x4E44152A,0xA2F9836E,0x7FFD0000};			// 1/pi
LOCAL_D const TUint32 Halfdata[] = {0x00000000,0x80000000,0x7FFE0000};			// 0.5
LOCAL_D const TUint32 Onedata[] = {0x00000000,0x80000000,0x7FFF0000};			// 1.0

LOCAL_C TInt CalcSinCos(TReal& aTrg, TRealX& aSrc, TBool aCos)
	{
	// Calculate sin(aSrc) if aCos=false or cos(aSrc) if aCos=true
	// and write result to aTrg.
	// Algorithm:
	//		Divide aSrc by pi and throw away integer part, but change sign
	//			of result if integer part odd. Replace aSrc with remainder.
	//			( use identities	sin(x+n*pi)=(-1)^n*sin(x)
	//								cos(x+n*pi)=(-1)^n*cos(x) )
	//		If aSrc>=0.5 replace aSrc with 1-aSrc, and change sign of result
	//			if cos required.
	//			( use identities sin(pi-x)=sin(x), cos(pi-x)=-cos(x) )
	//		If aSrc>=0.25 replace aSrc with 0.5-aSrc and swap sin and cos
	//			( use identities sin(pi/2-x)=cos(x), cos(pi/2-x)=sin(x) )
	//		Use polynomial approximation to evaluate sin(pi*x) or cos(pi*x)
	//		for |x|<=0.25

	const TRealX& One = *(const TRealX*)Onedata;
	const TRealX& Half = *(const TRealX*)Halfdata;
	const TRealX& PiInv = *(const TRealX*)PiInvdata;

	TRealX y;
	aSrc*=PiInv;
	TInt n=(TInt)aSrc;
	if (n<KMaxTInt && n>KMinTInt)
		{
		aSrc-=TRealX(n);
		TInt sign=0;
		if (!aCos)
			sign=aSrc.iSign & 1;
		sign^=n;
		aSrc.iSign=0;
		if (aSrc.iExp>=0x7FFE)			// if remainder>=pi/2
			{
			aSrc=One-aSrc;
			if (aCos)
				sign^=1;
			}
		if (aSrc.iExp>=0x7FFD)			// if remainder>=pi/4
			{
			aSrc=Half-aSrc;				// take complementary angle
			aCos=!aCos;					// and swap sin and cos
			}
		if (aCos)
			Math::PolyX(y,aSrc*aSrc,7,(const TRealX*)CosCoeffs);
		else
			{
			Math::PolyX(y,aSrc*aSrc,6,(const TRealX*)SinCoeffs);
			y*=aSrc;
			}
		if (sign & 1)
			y=-y;
		return y.GetTReal(aTrg);
		}
	return KErrArgument;
	}




EXPORT_C TInt Math::Sin(TReal& aTrg, const TReal& aSrc)
/**
Calculates the sine of a number.

@param aTrg A reference containing the result. 
@param aSrc The argument of the sin function in radians.

@return KErrNone if successful, otherwise another of
        the system-wide error codes.
*/
	{
	TRealX x;
	TInt r=x.Set(aSrc);
	if (r==KErrNone)
		r=CalcSinCos(aTrg,x,EFalse);
	if (r==KErrNone)
		return r;
	SetNaN(aTrg);
	return KErrArgument;
	}




EXPORT_C TInt Math::Cos(TReal& aTrg, const TReal& aSrc)
/**
Calculates the cosine of a number.

@param aTrg A reference containing the result. 
@param aSrc The argument of the cos function in radians

@return KErrNone if successful, otherwise another of
        the system-wide error codes.
*/
	{
	TRealX x;
	TInt r=x.Set(aSrc);
	if (r==KErrNone)
		r=CalcSinCos(aTrg,x,ETrue);
	if (r==KErrNone)
		return r;
	SetNaN(aTrg);
	return KErrArgument;
	}

#else // __USE_VFP_MATH

// definitions come from RVCT math library
extern "C" TReal sin(TReal);
extern "C" TReal cos(TReal);

EXPORT_C TInt Math::Sin(TReal& aTrg, const TReal& aSrc)
	{
	if (aSrc<KMaxTInt && aSrc>KMinTInt)
		{
		aTrg = sin(aSrc);
		if (Math::IsFinite(aTrg))
			return KErrNone;
		}
	SetNaN(aTrg);
	return KErrArgument;
	}

EXPORT_C TInt Math::Cos(TReal& aTrg, const TReal& aSrc)
	{
	if (aSrc<KMaxTInt && aSrc>KMinTInt)
		{
		aTrg = cos(aSrc);
		if (Math::IsFinite(aTrg))
			return KErrNone;
		}
	SetNaN(aTrg);
	return KErrArgument;
	}

#endif