kernel/eka/nkernsmp/x86/ncutils.cpp
author Tom Cosgrove <tom.cosgrove@nokia.com>
Fri, 28 May 2010 16:29:07 +0100
changeset 30 8aab599e3476
parent 0 a41df078684a
child 43 c1f20ce4abcf
permissions -rw-r--r--
Fix for bug 2283 (RVCT 4.0 support is missing from PDK 3.0.h) Have multiple extension sections in the bld.inf, one for each version of the compiler. The RVCT version building the tools will build the runtime libraries for its version, but make sure we extract all the other versions from zip archives. Also add the archive for RVCT4.

// Copyright (c) 2006-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32\nkernsmp\x86\ncutils.cpp
// 
//

#include <x86.h>

extern "C" {
extern SVariantInterfaceBlock* VIB;
}

//#define __DBG_MON_FAULT__
//#define __RAM_LOADED_CODE__
//#define __EARLY_DEBUG__
void InitFpu();


TUint32 NKern::IdleGenerationCount()
	{
	return TheScheduler.iIdleGenerationCount;
	}

void NKern::Idle()
	{
	TScheduler& s = TheScheduler;
	TSubScheduler& ss = SubScheduler();	// OK since idle thread is locked to CPU
	TUint32 m = ss.iCpuMask;

	s.iIdleSpinLock.LockIrq();	// don't allow any more idle DFCs for now
	TUint32 orig_cpus_not_idle = __e32_atomic_and_ord32(&s.iCpusNotIdle, ~m);
	if (orig_cpus_not_idle == m)
		{
		// all CPUs idle
		if (!s.iIdleDfcs.IsEmpty())
			{
			__e32_atomic_ior_ord32(&s.iCpusNotIdle, m);		// we aren't idle after all
			s.iIdleGeneration ^= 1;
			++s.iIdleGenerationCount;
			s.iIdleSpillCpu = (TUint8)ss.iCpuNum;
			ss.iDfcs.MoveFrom(&s.iIdleDfcs);
			ss.iDfcPendingFlag = 1;
			s.iIdleSpinLock.UnlockIrq();
			NKern::Lock();
			NKern::Unlock();	// process idle DFCs here
			return;
			}
		}
	s.iIdleSpinLock.UnlockOnly();	// leave interrupts disabled
	NKIdle(0);
	}

TUint32 ContextId()
	{
	switch(NKern::CurrentContext())
		{
	case NKern::EThread:
		return (TUint32)NKern::CurrentThread();
	case NKern::EIDFC:
		return 3;
	case NKern::EInterrupt:
		return 2;
	default:
		return 0;
		}
	}

EXPORT_C TBool BTrace::Out(TUint32 a0, TUint32 a1, TUint32 a2, TUint32 a3)
	{
	SBTraceData& traceData = BTraceData;
	if(!traceData.iFilter[(a0>>BTrace::ECategoryIndex*8)&0xff])
		return FALSE;

	TUint32 pc = (&a0)[-1]; // return address on X86
	__ACQUIRE_BTRACE_LOCK();
	TBool r = traceData.iHandler(a0,0,0,a1,a2,a3,0,pc);
	__RELEASE_BTRACE_LOCK();
	return r;
	}

EXPORT_C TBool BTrace::OutX(TUint32 a0, TUint32 a1, TUint32 a2, TUint32 a3)
	{
	SBTraceData& traceData = BTraceData;
	if(!traceData.iFilter[(a0>>BTrace::ECategoryIndex*8)&0xff])
		return FALSE;

	TUint32 context = ContextId();
	TUint32 pc = (&a0)[-1]; // return address on X86
	__ACQUIRE_BTRACE_LOCK();
	TBool r = traceData.iHandler(a0,0,context,a1,a2,a3,0,pc);
	__RELEASE_BTRACE_LOCK();
	return r;
	}

EXPORT_C TBool BTrace::OutN(TUint32 a0, TUint32 a1, TUint32 a2, const TAny* aData, TInt aDataSize)
	{
	SBTraceData& traceData = BTraceData;
	if(!traceData.iFilter[(a0>>BTrace::ECategoryIndex*8)&0xff])
		return FALSE;

	if(TUint(aDataSize)>KMaxBTraceDataArray)
		{
		aDataSize = KMaxBTraceDataArray;
		a0 |= BTrace::ERecordTruncated<<(BTrace::EFlagsIndex*8);
		}
	a0 += aDataSize<<(BTrace::ESizeIndex*8);

	TUint32 pc = (&a0)[-1]; // return address on X86
	TBool r;
	__ACQUIRE_BTRACE_LOCK();
	if (!aDataSize)
		r = traceData.iHandler(a0,0,0,a1,a2,0,0,pc);
	else if (aDataSize<=4)
		r = traceData.iHandler(a0,0,0,a1,a2,*(TUint32*)aData,0,pc);
	else
		r = traceData.iHandler(a0,0,0,a1,a2,(TUint32)aData,0,pc);
	__RELEASE_BTRACE_LOCK();
	return r;
	}

EXPORT_C TBool BTrace::OutNX(TUint32 a0, TUint32 a1, TUint32 a2, const TAny* aData, TInt aDataSize)
	{
	SBTraceData& traceData = BTraceData;
	if(!traceData.iFilter[(a0>>BTrace::ECategoryIndex*8)&0xff])
		return FALSE;

	if(TUint(aDataSize)>KMaxBTraceDataArray)
		{
		aDataSize = KMaxBTraceDataArray;
		a0 |= BTrace::ERecordTruncated<<(BTrace::EFlagsIndex*8);
		}
	a0 += aDataSize<<(BTrace::ESizeIndex*8);

	TUint32 context = ContextId();
	TUint32 pc = (&a0)[-1]; // return address on X86
	TBool r;
	__ACQUIRE_BTRACE_LOCK();
	if(!aDataSize)
		r = traceData.iHandler(a0,0,context,a1,a2,0,0,pc);
	else if(aDataSize<=4)
		r = traceData.iHandler(a0,0,context,a1,a2,*(TUint32*)aData,0,pc);
	else
		r = traceData.iHandler(a0,0,context,a1,a2,(TUint32)aData,0,pc);
	__RELEASE_BTRACE_LOCK();
	return r;
	}

EXPORT_C TBool BTrace::OutBig(TUint32 a0, TUint32 a1, const TAny* aData, TInt aDataSize)
	{
	TUint32 context = ContextId();
	TUint32 pc = (&a0)[-1]; // return address on X86
	SBTraceData& traceData = BTraceData;
	if(!traceData.iFilter[(a0>>BTrace::ECategoryIndex*8)&0xff])
		return FALSE;
	TBool r = DoOutBig(a0,a1,aData,aDataSize,context,pc);
	return r;
	}

EXPORT_C TBool BTrace::OutFiltered(TUint32 a0, TUint32 a1, TUint32 a2, TUint32 a3)
	{
	SBTraceData& traceData = BTraceData;
	if(!traceData.iFilter[(a0>>BTrace::ECategoryIndex*8)&0xff])
		return FALSE;
	if(!traceData.CheckFilter2(a1))
		return FALSE;

	TUint32 pc = (&a0)[-1]; // return address on X86
	__ACQUIRE_BTRACE_LOCK();
	TBool r = traceData.iHandler(a0,0,0,a1,a2,a3,0,pc);
	__RELEASE_BTRACE_LOCK();
	return r;
	}

EXPORT_C TBool BTrace::OutFilteredX(TUint32 a0, TUint32 a1, TUint32 a2, TUint32 a3)
	{
	SBTraceData& traceData = BTraceData;
	if(!traceData.iFilter[(a0>>BTrace::ECategoryIndex*8)&0xff])
		return FALSE;
	if(!traceData.CheckFilter2(a1))
		return FALSE;

	TUint32 context = ContextId();
	TUint32 pc = (&a0)[-1]; // return address on X86
	__ACQUIRE_BTRACE_LOCK();
	TBool r = traceData.iHandler(a0,0,context,a1,a2,a3,0,pc);
	__RELEASE_BTRACE_LOCK();
	return r;
	}

EXPORT_C TBool BTrace::OutFilteredN(TUint32 a0, TUint32 a1, TUint32 a2, const TAny* aData, TInt aDataSize)
	{
	SBTraceData& traceData = BTraceData;
	if(!traceData.iFilter[(a0>>BTrace::ECategoryIndex*8)&0xff])
		return FALSE;
	if(!traceData.CheckFilter2(a1))
		return FALSE;

	if(TUint(aDataSize)>KMaxBTraceDataArray)
		{
		aDataSize = KMaxBTraceDataArray;
		a0 |= BTrace::ERecordTruncated<<(BTrace::EFlagsIndex*8);
		}
	a0 += aDataSize<<(BTrace::ESizeIndex*8);

	TUint32 pc = (&a0)[-1]; // return address on X86
	TBool r;
	__ACQUIRE_BTRACE_LOCK();
	if(!aDataSize)
		r = traceData.iHandler(a0,0,0,a1,a2,0,0,pc);
	else if(aDataSize<=4)
		r = traceData.iHandler(a0,0,0,a1,a2,*(TUint32*)aData,0,pc);
	else
		r = traceData.iHandler(a0,0,0,a1,a2,(TUint32)aData,0,pc);
	__RELEASE_BTRACE_LOCK();
	return r;
	}

EXPORT_C TBool BTrace::OutFilteredNX(TUint32 a0, TUint32 a1, TUint32 a2, const TAny* aData, TInt aDataSize)
	{
	SBTraceData& traceData = BTraceData;
	if(!traceData.iFilter[(a0>>BTrace::ECategoryIndex*8)&0xff])
		return FALSE;
	if(!traceData.CheckFilter2(a1))
		return FALSE;

	if(TUint(aDataSize)>KMaxBTraceDataArray)
		{
		aDataSize = KMaxBTraceDataArray;
		a0 |= BTrace::ERecordTruncated<<(BTrace::EFlagsIndex*8);
		}
	a0 += aDataSize<<(BTrace::ESizeIndex*8);

	TUint32 context = ContextId();
	TUint32 pc = (&a0)[-1]; // return address on X86
	TBool r;
	__ACQUIRE_BTRACE_LOCK();
	if(!aDataSize)
		r = traceData.iHandler(a0,0,context,a1,a2,0,0,pc);
	else if(aDataSize<=4)
		r = traceData.iHandler(a0,0,context,a1,a2,*(TUint32*)aData,0,pc);
	else
		r = traceData.iHandler(a0,0,context,a1,a2,(TUint32)aData,0,pc);
	__RELEASE_BTRACE_LOCK();
	return r;
	}

EXPORT_C TBool BTrace::OutFilteredBig(TUint32 a0, TUint32 a1, const TAny* aData, TInt aDataSize)
	{
	TUint32 context = ContextId();
	TUint32 pc = (&a0)[-1]; // return address on X86
	SBTraceData& traceData = BTraceData;
	if(!traceData.iFilter[(a0>>BTrace::ECategoryIndex*8)&0xff])
		return FALSE;
	if(!traceData.CheckFilter2(a1))
		return FALSE;
	TBool r = DoOutBig(a0,a1,aData,aDataSize,context,pc);
	return r;
	}

EXPORT_C TBool BTrace::OutFilteredPcFormatBig(TUint32 aHeader, TUint32 aModuleUid, TUint32 aPc, TUint16 aFormatId, const TAny* aData, TInt aDataSize)
	{
	return EFalse; //kernel side not implemented yet
	}

TInt BTraceDefaultControl(BTrace::TControl /*aFunction*/, TAny* /*aArg1*/, TAny* /*aArg2*/)
	{
	return KErrNotSupported;
	}


EXPORT_C void BTrace::SetHandlers(BTrace::THandler aNewHandler, BTrace::TControlFunction aNewControl, BTrace::THandler& aOldHandler, BTrace::TControlFunction& aOldControl)
	{
	BTrace::TControlFunction nc = aNewControl ? aNewControl : &BTraceDefaultControl;
	__ACQUIRE_BTRACE_LOCK();
	BTrace::THandler oldh = (BTrace::THandler)__e32_atomic_swp_ord_ptr(&BTraceData.iHandler, aNewHandler);
	BTrace::TControlFunction oldc = (BTrace::TControlFunction)__e32_atomic_swp_ord_ptr(&BTraceData.iControl, nc);
	__RELEASE_BTRACE_LOCK();
	aOldHandler = oldh;
	aOldControl = oldc;
	}


EXPORT_C TInt BTrace::SetFilter(TUint aCategory, TInt aValue)
	{
	if(!IsSupported(aCategory))
		return KErrNotSupported;
	TUint8* filter = BTraceData.iFilter+aCategory;
	TUint oldValue = *filter;
	if(TUint(aValue)<=1u)
		{
		oldValue = __e32_atomic_swp_ord8(filter, (TUint8)aValue);
		BTraceContext4(BTrace::EMetaTrace, BTrace::EMetaTraceFilterChange, (TUint8)aCategory | (aValue<<8));
		}
	return oldValue;
	}

EXPORT_C SCpuIdleHandler* NKern::CpuIdleHandler()
	{
	return &::CpuIdleHandler;
	}


void NKern::Init0(TAny* a)
	{
	__KTRACE_OPT(KBOOT,DEBUGPRINT("VIB=%08x", a));
	VIB = (SVariantInterfaceBlock*)a;
	__NK_ASSERT_ALWAYS(VIB && VIB->iVer==0 && VIB->iSize==sizeof(SVariantInterfaceBlock));
	__KTRACE_OPT(KBOOT,DEBUGPRINT("iVer=%d iSize=%d", VIB->iVer, VIB->iSize));
	__KTRACE_OPT(KBOOT,DEBUGPRINT("iMaxCpuClock=%08x %08x", I64HIGH(VIB->iMaxCpuClock), I64LOW(VIB->iMaxCpuClock)));
	__KTRACE_OPT(KBOOT,DEBUGPRINT("iTimestampFreq=%u", VIB->iTimestampFreq));
	__KTRACE_OPT(KBOOT,DEBUGPRINT("iMaxTimerClock=%u", VIB->iMaxTimerClock));
	TInt i;
	for (i=0; i<KMaxCpus; ++i)
		{
		TSubScheduler& ss = TheSubSchedulers[i];
		ss.i_TimerMultF = (TAny*)KMaxTUint32;
		ss.i_TimerMultI = (TAny*)0x01000000u;
		ss.i_CpuMult = (TAny*)KMaxTUint32;
		VIB->iTimerMult[i] = (volatile STimerMult*)&ss.i_TimerMultF;
		VIB->iCpuMult[i] = (volatile TUint32*)&ss.i_CpuMult;
		}
	TheScheduler.i_TimerMax = (TAny*)(VIB->iMaxTimerClock / 128);
	InitFpu();
	InterruptInit0();
	}

EXPORT_C TUint32 NKern::CpuTimeMeasFreq()
	{
	return NKern::TimestampFrequency();
	}


/**	Converts a time interval in microseconds to thread timeslice ticks

	@param aMicroseconds time interval in microseconds.
	@return Number of thread timeslice ticks.  Non-integral results are rounded up.

 	@pre aMicroseconds should be nonnegative
	@pre any context
 */
EXPORT_C TInt NKern::TimesliceTicks(TUint32 aMicroseconds)
	{
	TUint32 mf32 = (TUint32)TheScheduler.i_TimerMax;
	TUint64 mf(mf32);
	TUint64 ticks = mf*TUint64(aMicroseconds) + UI64LIT(999999);
	ticks /= UI64LIT(1000000);
	if (ticks > TUint64(TInt(KMaxTInt)))
		return KMaxTInt;
	else
		return (TInt)ticks;
	}