// Copyright (c) 2005-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// its implementation.
//
//
/**
@file An example camera device driver which uses Shared Chunks in
@publishedPartner
@prototype 9.1
*/
#include <kernel/kern_priv.h>
#include <kernel/cache.h>
#include "camera1.h"
#include "camera1_dev.h"
#if 0 // Set true for tracing
#define TRACE(x) x
#else
#define TRACE(x)
#endif
//
// DCamera1Factory
//
/**
Standard export function for LDDs. This creates a DLogicalDevice derived object,
in this case, our DCamera1Factory
*/
DECLARE_STANDARD_LDD()
{
return new DCamera1Factory;
}
/**
Constructor
*/
DCamera1Factory::DCamera1Factory()
{
// Set version number for this device
iVersion=RCamera1::VersionRequired();
// Indicate that do support units or a PDD
iParseMask=0;
}
/**
Second stage constructor for DCamera1Factory.
This must at least set a name for the driver object.
@return KErrNone if successful, otherwise one of the other system wide error codes.
*/
TInt DCamera1Factory::Install()
{
return SetName(&RCamera1::Name());
}
/**
Destructor
*/
DCamera1Factory::~DCamera1Factory()
{
}
/**
Return the drivers capabilities.
Called in the response to an RDevice::GetCaps() request.
@param aDes User-side descriptor to write capabilities information into
*/
void DCamera1Factory::GetCaps(TDes8& aDes) const
{
// Create a capabilities object
RCamera1::TCaps caps;
caps.iVersion = iVersion;
// Write it back to user memory
Kern::InfoCopy(aDes,(TUint8*)&caps,sizeof(caps));
}
/**
Called by the kernel's device driver framework to create a Logical Channel.
This is called in the context of the user thread (client) which requested the creation of a Logical Channel
(E.g. through a call to RBusLogicalChannel::DoCreate)
The thread is in a critical section.
@param aChannel Set to point to the created Logical Channel
@return KErrNone if successful, otherwise one of the other system wide error codes.
*/
TInt DCamera1Factory::Create(DLogicalChannelBase*& aChannel)
{
aChannel=new DCamera1Channel;
if(!aChannel)
return KErrNoMemory;
return KErrNone;
}
//
// Logical Channel
//
/**
Default configuration for driver (640x480 pixels of 32bits captured at 15 frames/sec)
*/
static const RCamera1::TConfig DefaultConfig = {{640,480},4,15};
/**
Constructor
*/
DCamera1Channel::DCamera1Channel()
: iDfcQ(Kern::TimerDfcQ()), // This test uses the timer DFC queue for DFCs
iStateChangeDfc(StateChangeDfcTrampoline,this,1), // DFC is priority '1'
iConfig(DefaultConfig),
iCaptureTimer(CaptureDfcTrampoline,this)
{
}
/**
Second stage constructor called by the kernel's device driver framework.
This is called in the context of the user thread (client) which requested the creation of a Logical Channel
(E.g. through a call to RBusLogicalChannel::DoCreate)
The thread is in a critical section.
@param aUnit The unit argument supplied by the client to RBusLogicalChannel::DoCreate
@param aInfo The info argument supplied by the client to RBusLogicalChannel::DoCreate
@param aVer The version argument supplied by the client to RBusLogicalChannel::DoCreate
@return KErrNone if successful, otherwise one of the other system wide error codes.
*/
TInt DCamera1Channel::DoCreate(TInt /*aUnit*/, const TDesC8* /*aInfo*/, const TVersion& aVer)
{
// Check client has EMultimediaDD capability
if(!Kern::CurrentThreadHasCapability(ECapabilityMultimediaDD,__PLATSEC_DIAGNOSTIC_STRING("Checked by CAPTURE1")))
return KErrPermissionDenied;
// Check version
if (!Kern::QueryVersionSupported(RCamera1::VersionRequired(),aVer))
return KErrNotSupported;
// Setup DFCs
iStateChangeDfc.SetDfcQ(iDfcQ);
// Done
return Kern::MutexCreate(iStateChangeMutex,KNullDesC,KMutexOrdGeneral7);
}
/**
Destructor
*/
DCamera1Channel::~DCamera1Channel()
{
DoCancel(RCamera1::EAllRequests);
EndCapture();
iStateChangeDfc.Cancel();
if(iStateChangeMutex)
iStateChangeMutex->Close(0);
if(iCaptureBuffers)
iCaptureBuffers->Close();
}
/**
Process a request on this logical channel.
@param aReqNo Request number:
==KMaxTInt, a 'DoCancel' message
>=0, a 'DoControl' message with function number equal to iValue
<0, a 'DoRequest' message with function number equal to ~iValue
@param a1 First argument. For DoRequest requests this is a pointer to the TRequestStatus.
@param a2 Second argument. For DoRequest this is a pointer to the 2 actual TAny* arguments.
@return Result. Ignored by device driver framework for DoRequest requests.
*/
TInt DCamera1Channel::Request(TInt aReqNo, TAny* a1, TAny* a2)
{
// Decode the message type and dispatch it to the relevent handler function...
if ((TUint)aReqNo<(TUint)KMaxTInt)
return DoControl(aReqNo,a1,a2);
if(aReqNo==KMaxTInt)
return DoCancel((TInt)a1);
return DoRequest(aReqNo,a1,a2);
}
/**
Process synchronous 'control' requests
*/
TInt DCamera1Channel::DoControl(TInt aFunction, TAny* a1, TAny* a2)
{
TRACE(Kern::Printf(">DCamera1Channel::DoControl fn=%d\n",aFunction);)
(void)a2; // a2 not used in this example
TInt r = KErrNotSupported;
switch (aFunction)
{
case RCamera1::EGetConfig:
r = GetConfig((TDes8*)a1);
break;
case RCamera1::ESetConfig:
r = SetConfig((const TDesC8*)a1);
break;
case RCamera1::EStartCapture:
r = StartCapture();
break;
case RCamera1::EEndCapture:
r = EndCapture();
break;
case RCamera1::EReleaseImage:
r = ImageRelease((TInt)a1);
break;
case RCamera1::ECaptureImage:
CaptureImage((TRequestStatus*)a1,(TInt)a2);
break;
}
TRACE(Kern::Printf("<DCamera1Channel::DoControl result=%d\n",r);)
return r;
}
/**
Process asynchronous requests.
This driver doesn't have any 'DoRequest' requests because we handle asyncronous
requests using 'DoControl' for performance reasons. I.e. to avoid having to read
the arguments with kumemget()
*/
TInt DCamera1Channel::DoRequest(TInt aNotReqNo, TAny* a1, TAny* a2)
{
TRACE(Kern::Printf(">DCamera1Channel::DoRequest req=%d\n",aNotReqNo);)
// Get arguments
TAny* a[2];
kumemget32(a,a2,sizeof(a));
TRequestStatus* status=(TRequestStatus*)a1;
TInt reqNo = ~aNotReqNo;
// Do the request
TInt r;
switch(reqNo)
{
case RCamera1::ECaptureImage:
// Not used because we do 'ECaptureImage' as a DoControl rather than
// a DoRequest for performance reasons
default:
r = KErrNotSupported;
break;
}
// Complete request if there was an error
if (r!=KErrNone)
Kern::RequestComplete(&Kern::CurrentThread(),status,r);
TRACE(Kern::Printf("<DCamera1Channel::DoRequest result=%d\n",r);)
return KErrNone; // Result is ignored by device driver framework for DoRequest requests
}
/**
Process cancelling of asynchronous requests.
*/
TInt DCamera1Channel::DoCancel(TUint aMask)
{
TRACE(Kern::Printf(">DCamera1Channel::DoCancel mask=%08x\n",aMask);)
if(aMask&(1<<RCamera1::ECaptureImage))
CaptureImageCancel();
TRACE(Kern::Printf("<DCamera1Channel::DoCancel\n");)
return KErrNone;
}
//
// Methods for processing configuration control messages
//
/**
Process a GetConfig control message. This writes the current driver configuration to a
RCamera1::TConfigBuf supplied by the client.
*/
TInt DCamera1Channel::GetConfig(TDes8* aConfigBuf)
{
// Write the config to the client
Kern::InfoCopy(*aConfigBuf,(const TUint8*)&iConfig,sizeof(iConfig));
return KErrNone;
}
/**
Process a SetConfig control message. This sets the driver configuration using a
RCamera1::TConfigBuf supplied by the client.
*/
TInt DCamera1Channel::SetConfig(const TDesC8* aConfigBuf)
{
// Create a config structure.
RCamera1::TConfig config(DefaultConfig);
// Note: We have constructed a config using DefaultConfig, this is to allow
// backwards compatibility when a client gives us an old (and shorter) version
// of the config structure.
// Read the config structure from client
TPtr8 ptr((TUint8*)&config,sizeof(config));
Kern::KUDesGet(ptr,*aConfigBuf);
// For some settings we allow zero to mean default...
if(!config.iImageSize.iWidth)
config.iImageSize.iWidth = DefaultConfig.iImageSize.iWidth;
if(!config.iImageSize.iHeight)
config.iImageSize.iHeight = DefaultConfig.iImageSize.iHeight;
if(!config.iImageBytesPerPixel)
config.iImageBytesPerPixel = DefaultConfig.iImageBytesPerPixel;
// Validate configuration
TInt scale = DefaultConfig.iImageSize.iWidth/config.iImageSize.iWidth;
if(scale*config.iImageSize.iWidth != DefaultConfig.iImageSize.iWidth)
return KErrArgument;
if(scale*config.iImageSize.iHeight != DefaultConfig.iImageSize.iHeight)
return KErrArgument;
if(config.iImageBytesPerPixel<=0 || config.iImageBytesPerPixel>4)
return KErrArgument;
if(config.iFrameRate<0)
return KErrArgument;
if(config.iNumImageBuffers<1)
return KErrArgument;
TInt imageSize;
DCaptureBuffers* buffers;
TInt r;
// Need to be in critical section whilst holding a DMutex
NKern::ThreadEnterCS();
// Claim state change mutex. Note, the return value is ignored because a Wait
// can only fail if the mutex is destroyed whilst waiting for it, this can't
// happen in our driver.
Kern::MutexWait(*iStateChangeMutex);
// Check we aren't in the middle of capturing images
if(iCapturing)
{
r = KErrInUse;
goto done;
}
// Change the config
iConfig = config;
iCaptureRateTicks = config.iFrameRate ? 1000000/config.iFrameRate/NKern::TickPeriod() : KMaxTInt;
if(iCaptureRateTicks<1)
iCaptureRateTicks = 1;
// Claim ownership of old buffers
NKern::FMWait(&iCaptureMutex);
buffers = iCaptureBuffers;
iCaptureBuffers = NULL;
NKern::FMSignal(&iCaptureMutex);
// Delete old buffers
if(buffers)
buffers->Close();
// Contruct new buffer object
imageSize = iConfig.iImageSize.iWidth*iConfig.iImageSize.iHeight*iConfig.iImageBytesPerPixel;
buffers = DCaptureBuffers::New(2+iConfig.iNumImageBuffers,imageSize);
if(!buffers)
{
r = KErrNoMemory;
goto done;
}
// Use the new buffers if another thread didn't create them first
NKern::FMWait(&iCaptureMutex);
iCaptureBuffers = buffers;
NKern::FMSignal(&iCaptureMutex);
// Create handle for chunk
r = Kern::MakeHandleAndOpen(NULL, iCaptureBuffers->iChunk);
done:
// Release state change mutex
Kern::MutexSignal(*iStateChangeMutex);
NKern::ThreadLeaveCS();
return r;
}
//
// Methods for processing start/end capture
//
/**
Start image capturing
*/
TInt DCamera1Channel::StartCapture()
{
// Need to be in critical section whilst holding a DMutex
NKern::ThreadEnterCS();
// Claim state change mutex. Note, the return value is ignored because a Wait
// can only fail if the mutex is destroyed whilst waiting for it, this can't
// happen in our driver.
Kern::MutexWait(*iStateChangeMutex);
NKern::FMWait(&iCaptureMutex);
TInt r;
if(!iCaptureBuffers)
r = KErrNotReady; // SetConfig not yet been called
else if(iCapturing)
r = KErrInUse; // StartCapture has already been called
else
{
// Initialise image buffer state for capturing images
iCaptureBuffers->Reset();
// Flag capturing started
iCapturing = ETrue;
r = KErrNone;
}
NKern::FMSignal(&iCaptureMutex);
// Get state change DFC to initialise camera hardware for capture
if(r==KErrNone)
StateChange(ETrue);
// Release state change mutex
Kern::MutexSignal(*iStateChangeMutex);
NKern::ThreadLeaveCS();
return r;
}
/**
End image capturing
*/
TInt DCamera1Channel::EndCapture()
{
// Need to be in critical section whilst holding a DMutex
NKern::ThreadEnterCS();
// Claim state change mutex. Note, the return value is ignored because a Wait
// can only fail if the mutex is destroyed whilst waiting for it, this can't
// happen in our driver.
Kern::MutexWait(*iStateChangeMutex);
if(iCapturing)
{
// Get state change DFC to reset camera hardware
StateChange(EFalse);
// Flag capture ended
NKern::FMWait(&iCaptureMutex);
iCapturing = EFalse;
NKern::FMSignal(&iCaptureMutex);
// Cancel any pending caoture request
CaptureImageCancel();
}
// Release state change mutex
Kern::MutexSignal(*iStateChangeMutex);
NKern::ThreadLeaveCS();
return KErrNone;
}
/**
Performs state change on Start/EndCapture by calling state change DFC
Call with iStateChangeMutex held.
@param aNewState True to start image capture, false to stop image capture.
*/
void DCamera1Channel::StateChange(TBool aNewState)
{
iNewState = aNewState;
NKern::FSSetOwner(&iStateChangeSemaphore,NULL);
iStateChangeDfc.Enque();
NKern::FSWait(&iStateChangeSemaphore);
}
/**
DFC callback called when Start/EndCapture requests are made.
*/
void DCamera1Channel::StateChangeDfcTrampoline(TAny* aSelf)
{
// Just call non-static method
((DCamera1Channel*)aSelf)->StateChangeDfc();
}
/**
DFC callback called when Start/EndCapture requests are made.
*/
void DCamera1Channel::StateChangeDfc()
{
TRACE(Kern::Printf(">DCamera1Channel::StateChangeDfc\n");)
// Call relevent state change function
if(iNewState)
DoStartCapture();
else
DoEndCapture();
// Signal completion
NKern::FSSignal(&iStateChangeSemaphore);
TRACE(Kern::Printf("<DCamera1Channel::StateChangeDfc\n");)
}
//
// Methods for processing CaptureImage
//
/**
Process Capture Image request
*/
void DCamera1Channel::CaptureImage(TRequestStatus* aRequestStatus,TInt aReleaseImage)
{
TInt r=KErrNone;
// Get the thread making the request
DThread* requestThread = &Kern::CurrentThread();
// Release image (if one was specified)
if(aReleaseImage!=-1)
{
r = ImageRelease(aReleaseImage);
if(r!=KErrNone)
goto done;
}
NKern::FMWait(&iCaptureMutex);
if(!iCapturing)
r = KErrNotReady; // StartCapture hasn't yet been called
else if(iCaptureRequestStatus)
r = KErrInUse; // There is already a pending CaptureImage request
else
{
// See if an image is already available...
DImageBuffer* buffer=iCaptureBuffers->ImageForClient();
if(buffer)
{
// Return offset of buffer to client
r = buffer->iChunkOffset;
}
else
{
// Image not found...
if(!iCaptureBuffers->iFreeBuffers[0])
r = KErrOverflow; // Out of buffers
else
{
// Wait for new image to become available
iCaptureRequestStatus = aRequestStatus;
requestThread->Open(); // can't fail because this is the current thread
iCaptureRequestThread = requestThread;
r = KErrNone;
}
}
}
NKern::FMSignal(&iCaptureMutex);
done:
// Complete request if there was an error
if (r!=KErrNone)
Kern::RequestComplete(requestThread,aRequestStatus,r);
}
/**
Signal Capture Image request completed
*/
void DCamera1Channel::CaptureImageCancel()
{
// Need to be in critical section so we don't die whilst owning the capture image request
NKern::ThreadEnterCS();
// Claim the capture image request
NKern::FMWait(&iCaptureMutex);
DThread* thread = iCaptureRequestThread;;
TRequestStatus* status = iCaptureRequestStatus;
iCaptureRequestStatus = NULL;
NKern::FMSignal(&iCaptureMutex);
// Signal completion
if(status)
{
Kern::RequestComplete(thread,status,KErrCancel);
thread->Close(0);
}
NKern::ThreadLeaveCS();
}
/**
DFC callback called when after a new image has been captured
In this example code this is called by
*/
void DCamera1Channel::CaptureDfcTrampoline(TAny* aSelf)
{
// Just call non-static method
((DCamera1Channel*)aSelf)->CaptureDfc();
}
/**
DFC callback called when a new image has been captured
*/
void DCamera1Channel::CaptureDfc()
{
TRACE(Kern::Printf(">DCamera1Channel::CaptureDfc\n");)
NKern::FMWait(&iCaptureMutex);
// Update image buffers state
iCaptureBuffers->ImageCaptured();
// Did client request an image and is one available?
DImageBuffer* clientBuffer;
if(iCaptureRequestStatus && (clientBuffer=iCaptureBuffers->ImageForClient())!=NULL )
{
// Claim the client request
DThread* thread = iCaptureRequestThread;
TRequestStatus* status = iCaptureRequestStatus;
iCaptureRequestStatus = NULL;
NKern::FMSignal(&iCaptureMutex);
// We now own the client request but we don't have to worry about
// being in a critical section because we are running in a DFC thread
// which can't be killed
// Complete client request with the chunk offset for a captured image
// (We use AsyncClose() here because we are running in a high priority DFC and
// don't want to take the penalty for possibly deleting a thread in this context.)
Kern::RequestComplete(thread,status,clientBuffer->iChunkOffset);
thread->AsyncClose();
}
else
NKern::FMSignal(&iCaptureMutex);
// Get camera hardware to capture next image
DoNextCapture();
TRACE(Kern::Printf("<DCamera1Channel::CaptureDfc\n");)
}
/**
Release a buffer which was being used by client
@param aChunkOffset The chunk offset corresponding to the buffer to be freed
@return KErrNone if successful.
KErrNotFound if no 'in use' buffer had the specified chunk offset.
*/
TInt DCamera1Channel::ImageRelease(TInt aChunkOffset)
{
// Need to be in critical section so we don't die whilst holding reference on buffers
NKern::ThreadEnterCS();
// Get reference to buffers object and find the buffer we want
NKern::FMWait(&iCaptureMutex);
DCaptureBuffers* buffers = iCaptureBuffers;
DImageBuffer* buffer = NULL;
if(buffers)
{
buffers->Open();
buffer = buffers->InUseImage(aChunkOffset);
}
NKern::FMSignal(&iCaptureMutex);
TInt r;
if(!buffer)
r = KErrNotFound; // Buffer not found
else
{
// Purge the CPU cache for the buffer.
// Note, we don't do this whilst holding iCaptureMutex because it can
// take a long time.
// Also, it doesn't mater that e aren't holding the mutex because:
// 1. The buffer can't be delete because we have a reference count on iCaptureBuffers
// 2. Reentrancy of the Purge method is safe
buffers->Purge(buffer);
// Release buffer (move it to the free list)
NKern::FMWait(&iCaptureMutex);
r = buffers->ImageRelease(aChunkOffset) ? KErrNone : KErrArgument;
NKern::FMSignal(&iCaptureMutex);
}
// Close reference on buffers
if(buffers)
buffers->Close();
NKern::ThreadLeaveCS();
return r;
}
//
// DCaptureBuffers
//
/**
Construct a new set of buffers
@param aNumBuffers Number of buffers
@param aBufferSize Size of each buffer in bytes
@return Pointer to the created DCaptureBuffers or NULL if the system ran out of memory
*/
DCaptureBuffers* DCaptureBuffers::New(TInt aNumBuffers,TInt aBufferSize)
{
DCaptureBuffers* buffers = new DCaptureBuffers;
if(buffers)
{
TInt r = buffers->Create(aNumBuffers,aBufferSize);
if(r==KErrNone)
return buffers;
delete buffers;
// An error other than 'no memory' must be a programming error in the driver
__NK_ASSERT_ALWAYS(r==KErrNoMemory);
}
return NULL;
}
/**
Construct with access count of one
*/
DCaptureBuffers::DCaptureBuffers()
: iAccessCount(1)
{
}
/**
Create all buffers and lists
*/
TInt DCaptureBuffers::Create(TInt aNumBuffers,TInt aBufferSize)
{
// Allocate buffer lists
DImageBuffer** lists = (DImageBuffer**)Kern::AllocZ(3*aNumBuffers*sizeof(DImageBuffer*));
if(!lists)
return KErrNoMemory;
iBufferLists = lists;
iFreeBuffers = lists;
iCompletedBuffers = lists+aNumBuffers;
iInUseBuffers = lists+2*aNumBuffers;
// Calculate sizes
aBufferSize = Kern::RoundToPageSize(aBufferSize);
TInt pageSize = Kern::RoundToPageSize(1);
TUint64 chunkSize = TUint64(aBufferSize+pageSize)*aNumBuffers+pageSize;
if(chunkSize>(TUint64)KMaxTInt)
return KErrNoMemory; // Need more than 2GB of memory!
// Create chunk
TChunkCreateInfo info;
info.iType = TChunkCreateInfo::ESharedKernelMultiple;
info.iMaxSize = (TInt)chunkSize;
#ifndef __WINS__
info.iMapAttr = EMapAttrCachedMax;
#else
info.iMapAttr = 0;
#endif
info.iOwnsMemory = ETrue;
TInt r = Kern::ChunkCreate(info,iChunk,iChunkBase,iChunkMapAttr);
if(r!=KErrNone)
return r;
// Construct array of buffers
iNumBuffers = aNumBuffers;
iImageBuffer = new DImageBuffer[aNumBuffers];
if(!iImageBuffer)
return KErrNoMemory;
// Create each buffer
TInt offset = pageSize;
while(aNumBuffers)
{
r = iImageBuffer[--aNumBuffers].Create(iChunk,offset,aBufferSize);
if(r!=KErrNone)
return r;
offset += aBufferSize+pageSize;
}
return KErrNone;
}
/**
Destructor
*/
DCaptureBuffers::~DCaptureBuffers()
{
if(iChunk)
Kern::ChunkClose(iChunk);
delete [] iImageBuffer;
Kern::Free(iBufferLists);
}
/**
Increment access count of buffers
*/
void DCaptureBuffers::Open()
{
__e32_atomic_tas_ord32(&iAccessCount, 1, 1, 0);
}
/**
Decrement access count of buffers.
Deleting them if the count is decremented to zero.
*/
void DCaptureBuffers::Close()
{
__ASSERT_NO_FAST_MUTEX;
__ASSERT_CRITICAL;
if(__e32_atomic_tas_ord32(&iAccessCount, 1, -1, 0) == 1)
AsyncDelete();
}
/**
Reset all image buffer lists to reflect the state at the start of image capture process
*/
void DCaptureBuffers::Reset()
{
// Purge cache for all buffers in use by client.
DImageBuffer** list = iInUseBuffers;
DImageBuffer* buffer;
while((buffer=*list++)!=NULL)
Purge(buffer);
// Get pointers to first buffer
buffer = iImageBuffer;
// Set buffers for current and next images
iCurrentBuffer = buffer++;
iNextBuffer = buffer++;
// Add all other buffers to the free list
DImageBuffer** free = iFreeBuffers;
DImageBuffer* bufferLimit = iImageBuffer+iNumBuffers;
while(buffer<bufferLimit)
*free++ = buffer++;
*free = 0;
// Start with no completed or used buffers
iCompletedBuffers[0] = 0;
iInUseBuffers[0] = 0;
}
/**
Purge cache for an image buffer.
@param aBuffer The buffer.
*/
void DCaptureBuffers::Purge(DImageBuffer* aBuffer)
{
Cache::SyncMemoryBeforeDmaRead(iChunkBase+aBuffer->iChunkOffset,aBuffer->iSize,iChunkMapAttr);
}
/**
Remove an image buffer to the start of the given image list.
@return A pointer to the image buffer or NULL if the list was empty
*/
DImageBuffer* DCaptureBuffers::Remove(DImageBuffer** aList)
{
DImageBuffer* buffer=aList[0];
if(buffer)
{
DImageBuffer* b;
do
{
b=aList[1];
*aList++ = b;
}
while(b);
}
return buffer;
}
/**
Add an image buffer to the end of the given image list.
*/
DImageBuffer* DCaptureBuffers::Add(DImageBuffer** aList, DImageBuffer* aBuffer)
{
while(*aList) aList++;
*aList = aBuffer;
return aBuffer;
}
/**
Update buffer lists after an image has been captured.
@return A pointer to the catptured image buffer
*/
DImageBuffer* DCaptureBuffers::ImageCaptured()
{
// Add captured image to completed list
DImageBuffer* buffer = iCurrentBuffer;
DCaptureBuffers::Add(iCompletedBuffers,buffer);
// Make queued buffer the current one
iCurrentBuffer = iNextBuffer;
// Queue a new buffer
iNextBuffer = DCaptureBuffers::Remove(iFreeBuffers);
if(!iNextBuffer)
iNextBuffer = DCaptureBuffers::Remove(iCompletedBuffers);
TRACE(Kern::Printf("DCaptureBuffers::ImageCaptured buf=%08x\n",buffer->iChunkOffset);)
return buffer;
}
/**
Get the next image from the completed capture list and make it 'in use' by the client
@return A pointer to the next completed image buffer
*/
DImageBuffer* DCaptureBuffers::ImageForClient()
{
DImageBuffer* buffer=Remove(iCompletedBuffers);
if(buffer)
DCaptureBuffers::Add(iInUseBuffers,buffer);
TRACE(Kern::Printf("DCaptureBuffers::ImageForClient buf=%08x\n",buffer ? buffer->iChunkOffset : -1);)
return buffer;
}
/**
Release (move to free list) the 'in use' image specified by the given chunk offset.
@param aChunkOffset The chunk offset corresponding to the buffer to be freed
@return The freed image buffer, or NULL if no 'in use' buffer had the specified chunk offset.
*/
DImageBuffer* DCaptureBuffers::ImageRelease(TInt aChunkOffset)
{
// Scan 'in use' list for the image buffer
DImageBuffer** list = iInUseBuffers;
DImageBuffer* buffer;
while((buffer=*list++)!=NULL && buffer->iChunkOffset!=aChunkOffset)
{};
// Move buffer to the free list (if found)
if(buffer)
buffer = Add(iFreeBuffers,Remove(list-1));
TRACE(Kern::Printf("DCaptureBuffers::ImageRelease buf=%08x\n",buffer ? buffer->iChunkOffset : -1);)
return buffer;
}
/**
Find the 'in use' image specified by the given chunk offset
@param aChunkOffset The chunk offset corresponding to the buffer to be freed
@return The image buffer, or NULL if no 'in use' buffer had the specified chunk offset
*/
DImageBuffer* DCaptureBuffers::InUseImage(TInt aChunkOffset)
{
// Scan 'in use' list for the image buffer
DImageBuffer** list = iInUseBuffers;
DImageBuffer* buffer;
while((buffer=*list++)!=NULL && buffer->iChunkOffset!=aChunkOffset)
{};
return buffer;
}
//
// DImageBuffer
//
/**
Constructor clears all member data
*/
DImageBuffer::DImageBuffer()
{
memclr(this,sizeof(*this));
}
/**
Commit memory for this buffer.
@param aChunk The chunk into which the memory is to be commited
@param aOffset The offset within aChunk for the start of the comitted memory.
Must be a multiple of the MMU page size.
@param aSize The number of bytes of memory to commit.
Must be a multiple of the MMU page size.
@return KErrNone if successful, otherwise one of the other system wide error codes.
*/
TInt DImageBuffer::Create(DChunk* aChunk, TInt aOffset, TInt aSize)
{
TInt r;
// Initialise data
iChunkOffset = aOffset;
iSize = aSize;
// Try for physically contiguous memory first
r = Kern::ChunkCommitContiguous(aChunk,aOffset,aSize,iPhysicalAddress);
if(r==KErrNone)
return r;
// failed to get contiguous memory...
// Mark physical address invalid
iPhysicalAddress = KPhysAddrInvalid;
// Commit discontiguous memory
r = Kern::ChunkCommit(aChunk,aOffset,aSize);
if(r!=KErrNone)
return r;
// Allocate array for list of physical pages
iPhysicalPages = new TPhysAddr[aSize/Kern::RoundToPageSize(1)];
if(!iPhysicalPages)
return KErrNoMemory;
// Get physical addresses of pages in buffer
TUint32 kernAddr;
TUint32 mapAttr;
TPhysAddr physAddr;
r = Kern::ChunkPhysicalAddress(aChunk,aOffset,aSize,kernAddr,mapAttr,physAddr,iPhysicalPages);
// r = 0 or 1 on success. (1 meaning the physical pages are not-contiguous)
if(r>=0)
r = KErrNone;
return r;
}
/**
Destructor
*/
DImageBuffer::~DImageBuffer()
{
delete [] iPhysicalPages;
}
//
// Program camera hardware
//
/**
Initialise camera hardware to start capturing images
First buffer to fill is iCaptureBuffers->iCurrentBuffer.
Next buffer to fill will be iCaptureBuffers->iNextBuffer.
*/
void DCamera1Channel::DoStartCapture()
{
// For this example test...
TRACE(Kern::Printf("DCamera1Channel::DoStartCapture buf=%08x cnt=%04d\n",iCaptureBuffers->iCurrentBuffer->iChunkOffset,iCaptureCounter);)
// Initialise frame counter
iCaptureCounter = 0;
// Put frame counter into current image buffer. (This is the 'image' data we capture).
*(TInt*)(iCaptureBuffers->iChunkBase+iCaptureBuffers->iCurrentBuffer->iChunkOffset) = iCaptureCounter++;
// Start the timer
TInt r=iCaptureTimer.OneShot(iCaptureRateTicks,ETrue);
__NK_ASSERT_ALWAYS(r==KErrNone);
}
/**
Reset camera hardware to stop capturing images
*/
void DCamera1Channel::DoEndCapture()
{
// For this example test...
TRACE(Kern::Printf("DCamera1Channel::DoEndCapture\n");)
// Cancel the timer
iCaptureTimer.Cancel();
}
/**
Setup camera hardware to capture next image
Next buffer to fill will be iCaptureBuffers->iNextBuffer;
@param aLastImage The last image just captured. I.e. the completed capture which caused
this method to be called
*/
void DCamera1Channel::DoNextCapture()
{
// For this example test...
TRACE(Kern::Printf("DCamera1Channel::DoNextCapture cur=%08x cnt=%04d nxt=%08x\n",iCaptureBuffers->iCurrentBuffer->iChunkOffset,iCaptureCounter,iCaptureBuffers->iNextBuffer->iChunkOffset);)
// Put frame counter into current image buffer. (This is the 'image' data we capture).
*(TInt*)(iCaptureBuffers->iChunkBase+iCaptureBuffers->iCurrentBuffer->iChunkOffset) = iCaptureCounter++;
// Restart the timer
TInt r = iCaptureTimer.Again(iCaptureRateTicks);
if(r==KErrArgument)
{
// Timer would have already expired.
//
// In a real device driver this is analogous to iCurrentBuffer already being filled
// and the DMA queue being emptied. I.e. we have missed some frames.
//
// For this test...
TRACE(Kern::Printf("DCamera1Channel::DoNextCapture frame dropped cnt=%04d\n",iCaptureCounter);)
// Skip a frame count
++iCaptureCounter;
// Restart timer
r = iCaptureTimer.OneShot(iCaptureRateTicks,ETrue);
}
__NK_ASSERT_ALWAYS(r==KErrNone);
}