kernel/eka/include/nkernsmp/nkern.h
author William Roberts <williamr@symbian.org>
Mon, 21 Dec 2009 16:15:43 +0000
changeset 3 9947e075979d
parent 0 a41df078684a
child 43 c1f20ce4abcf
permissions -rw-r--r--
Merge improved comments

// Copyright (c) 2007-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32\include\nkernsmp\nkern.h
// 
// WARNING: This file contains some APIs which are internal and are subject
//          to change without notice. Such APIs should therefore not be used
//          outside the Kernel and Hardware Services package.
//

#ifndef __NKERN_H__
#define __NKERN_H__

#ifdef	__STANDALONE_NANOKERNEL__
#undef	__IN_KERNEL__
#define	__IN_KERNEL__
#endif

#include <e32const.h>
#include <nklib.h>
#include <nk_event.h>
#include <dfcs.h>
#include <nk_trace.h>
#include <e32atomics.h>

extern "C" {
/** @internalComponent */
IMPORT_C void NKFault(const char* file, TInt line);
/** @internalComponent */
void NKIdle(TInt aStage);
}

/**
@publishedPartner
@released
*/
#define FAULT()		NKFault(__FILE__,__LINE__)

#ifdef _DEBUG

/**
@publishedPartner
@released
*/
#define __NK_ASSERT_DEBUG(c)	((void) ((c)||(FAULT(),0)) )

#else

#define __NK_ASSERT_DEBUG(c)

#endif

/**
@publishedPartner
@released
*/
#define __NK_ASSERT_ALWAYS(c)	((void) ((c)||(FAULT(),0)) )

/**
	@publishedPartner
	@released
*/
const TInt KNumPriorities=64;

const TInt KMaxCpus=8;

class NSchedulable;
class NThread;
class NThreadGroup;


/** Spin lock

	Used for protecting a code fragment against both interrupts and concurrent
	execution on another processor.

	List of spin locks in the nanokernel, in deadlock-prevention order:
	A	NEventHandler::TiedLock (preemption)
	B	NFastMutex spin locks (preemption)
	C	Thread spin locks (preemption)
	D	Thread group spin locks (preemption)
	E	Per-CPU ready list lock (preemption)

	a	Idle DFC list lock (interrupts)
	b	Per-CPU exogenous IDFC queue lock (interrupts)
	c	NTimerQ spin lock (interrupts)
	d	Generic IPI list locks (interrupts)
	e	NIrq spin locks (interrupts)
	f	Per-CPU event handler list lock (interrupts)
	z	BTrace lock (interrupts)

	z must be minimum since BTrace can appear anywhere

	interrupt-disabling spinlocks must be lower than preemption-disabling ones

	Nestings which actually occur are:
		A > C
		B > C > D > E
		c > f
		Nothing (except possibly z) nested inside a, b, d, f
		e is held while calling HW-poking functions (which might use other spinlocks)

@publishedPartner
@prototype
*/
class TSpinLock
	{
public:
	enum TOrder
		{
		// Bit 7 of order clear for locks used with interrupts disabled
		EOrderGenericIrqLow0	=0x00u,		// Device driver spin locks, low range
		EOrderGenericIrqLow1	=0x01u,		// Device driver spin locks, low range
		EOrderGenericIrqLow2	=0x02u,		// Device driver spin locks, low range
		EOrderGenericIrqLow3	=0x03u,		// Device driver spin locks, low range
		EOrderBTrace			=0x04u,		// BTrace lock
		EOrderEventHandlerList	=0x07u,		// Per-CPU event handler list lock
		EOrderCacheMaintenance  =0x08u,		// CacheMaintenance (for PL310)
		EOrderNIrq				=0x0Au,		// NIrq lock
		EOrderGenericIPIList	=0x0Du,		// Generic IPI list lock
		EOrderNTimerQ			=0x10u,		// Nanokernel timer queue lock
		EOrderExIDfcQ			=0x13u,		// Per-CPU exogenous IDFC queue list lock
		EOrderIdleDFCList		=0x16u,		// Idle DFC list lock
		EOrderGenericIrqHigh0	=0x18u,		// Device driver spin locks, high range
		EOrderGenericIrqHigh1	=0x19u,		// Device driver spin locks, high range
		EOrderGenericIrqHigh2	=0x1Au,		// Device driver spin locks, high range
		EOrderGenericIrqHigh3	=0x1Bu,		// Device driver spin locks, high range

		// Bit 7 of order set for locks used with interrupts enabled, preemption disabled
		EOrderGenericPreLow0	=0x80u,		// Device driver spin locks, low range
		EOrderGenericPreLow1	=0x81u,		// Device driver spin locks, low range
		EOrderReadyList			=0x88u,		// Per-CPU ready list lock
		EOrderThreadGroup		=0x90u,		// Thread group locks
		EOrderThread			=0x91u,		// Thread locks
		EOrderFastMutex			=0x98u,		// Fast mutex locks
		EOrderEventHandlerTied	=0x9Cu,		// Event handler tied lock
		EOrderGenericPreHigh0	=0x9Eu,		// Device driver spin locks, high range
		EOrderGenericPreHigh1	=0x9Fu,		// Device driver spin locks, high range

		EOrderNone				=0xFFu		// No order check required (e.g. for dynamic ordering)
		};
public:
	IMPORT_C TSpinLock(TUint aOrder);
	IMPORT_C void LockIrq();				/**< @internalComponent disable interrupts and acquire the lock */
	IMPORT_C void UnlockIrq();				/**< @internalComponent release the lock and enable interrupts */
	IMPORT_C TBool FlashIrq();				/**< @internalComponent if someone else is waiting for the lock, UnlockIrq() then LockIrq() */
	IMPORT_C void LockOnly();				/**< @internalComponent acquire the lock, assuming interrupts/preemption already disabled */
	IMPORT_C void UnlockOnly();				/**< @internalComponent release the lock, don't change interrupt/preemption state */
	IMPORT_C TBool FlashOnly();				/**< @internalComponent if someone else is waiting for the lock, UnlockOnly() then LockOnly() */
	IMPORT_C TInt LockIrqSave();			/**< @internalComponent remember original interrupt state then disable interrupts and acquire the lock */
	IMPORT_C void UnlockIrqRestore(TInt);	/**< @internalComponent release the lock then restore original interrupt state */
	IMPORT_C TBool FlashIrqRestore(TInt);	/**< @internalComponent if someone else is waiting for the lock, UnlockIrqRestore() then LockIrq() */
	IMPORT_C TBool FlashPreempt();			/**< @internalComponent if someone else is waiting for the lock, UnlockOnly(); NKern::PreemptionPoint(); LockOnly(); */
private:
	volatile TUint64 iLock;
	};


/** Macro to disable interrupts and acquire the lock.

@publishedPartner
@prototype
*/
#define __SPIN_LOCK_IRQ(lock)				((lock).LockIrq())

/** Macro to release the lock and enable interrupts.

@publishedPartner
@prototype
*/
#define __SPIN_UNLOCK_IRQ(lock)				(lock).UnlockIrq()

/** Macro to see if someone else is waiting for the lock, enabling IRQs 
    then disabling IRQs again.

@publishedPartner
@prototype
*/
#define __SPIN_FLASH_IRQ(lock)				(lock).FlashIrq()

/** Macro to remember original interrupt state then disable interrupts 
    and acquire the lock.
    
@publishedPartner
@prototype
*/
#define __SPIN_LOCK_IRQSAVE(lock)			((lock).LockIrqSave())

/** Macro to release the lock then restore original interrupt state to that 
	supplied.
	
@publishedPartner
@prototype
*/
#define __SPIN_UNLOCK_IRQRESTORE(lock,irq)	(lock).UnlockIrqRestore(irq)

/** Macro to see if someone else is waiting for the lock, enabling IRQs to
	the original state supplied then disabling IRQs again.
    
@publishedPartner
@prototype
*/
#define __SPIN_FLASH_IRQRESTORE(lock,irq)	(lock).FlashIrqRestore(irq)

/** Macro to acquire the lock. This assumes the caller has already disabled 
    interrupts/preemption. 
	
	If interrupts/preemption is not disabled a run-time assert will occur
	This is to protect against unsafe code that might lead to same core 
	deadlock.
	
    In device driver code it is safer to use __SPIN_LOCK_IRQSAVE() instead, 
	although not as efficient should interrupts aleady be disabled for the 
	duration the lock is held.
    
@publishedPartner
@prototype
*/
#define __SPIN_LOCK(lock)					((lock).LockOnly())

/** Macro to release the lock, don't change interrupt/preemption state.

@publishedPartner
@prototype
*/
#define __SPIN_UNLOCK(lock)					(lock).UnlockOnly()

/**
@internalComponent
*/
#define __SPIN_FLASH(lock)					(lock).FlashOnly()

/** Macro to see if someone else is waiting for the lock, enabling preemption 
    then disabling it again.

@publishedPartner
@prototype
*/
#define __SPIN_FLASH_PREEMPT(lock)			(lock).FlashPreempt()


/** Read/Write Spin lock

@publishedPartner
@prototype
*/
class TRWSpinLock
	{
public:
	IMPORT_C TRWSpinLock(TUint aOrder);		// Uses same order space as TSpinLock

	IMPORT_C void LockIrqR();				/**< @internalComponent disable interrupts and acquire read lock */
	IMPORT_C void UnlockIrqR();				/**< @internalComponent release read lock and enable interrupts */
	IMPORT_C TBool FlashIrqR();				/**< @internalComponent if someone else is waiting for write lock, UnlockIrqR() then LockIrqR() */
	IMPORT_C void LockIrqW();				/**< @internalComponent disable interrupts and acquire write lock */
	IMPORT_C void UnlockIrqW();				/**< @internalComponent release write lock and enable interrupts */
	IMPORT_C TBool FlashIrqW();				/**< @internalComponent if someone else is waiting for the lock, UnlockIrqW() then LockIrqW() */
	IMPORT_C void LockOnlyR();				/**< @internalComponent acquire read lock, assuming interrupts/preemption already disabled */
	IMPORT_C void UnlockOnlyR();			/**< @internalComponent release read lock, don't change interrupt/preemption state */
	IMPORT_C TBool FlashOnlyR();			/**< @internalComponent if someone else is waiting for write lock, UnlockOnlyR() then LockOnlyR() */
	IMPORT_C void LockOnlyW();				/**< @internalComponent acquire write lock, assuming interrupts/preemption already disabled */
	IMPORT_C void UnlockOnlyW();			/**< @internalComponent release write lock, don't change interrupt/preemption state */
	IMPORT_C TBool FlashOnlyW();			/**< @internalComponent if someone else is waiting for the lock, UnlockOnlyW() then LockOnlyW() */
	IMPORT_C TInt LockIrqSaveR();			/**< @internalComponent disable interrupts and acquire read lock, return original interrupt state */
	IMPORT_C void UnlockIrqRestoreR(TInt);	/**< @internalComponent release read lock and reset original interrupt state */
	IMPORT_C TBool FlashIrqRestoreR(TInt);	/**< @internalComponent if someone else is waiting for write lock, UnlockIrqRestoreR() then LockIrqR() */
	IMPORT_C TInt LockIrqSaveW();			/**< @internalComponent disable interrupts and acquire write lock, return original interrupt state */
	IMPORT_C void UnlockIrqRestoreW(TInt);	/**< @internalComponent release write lock and reset original interrupt state */
	IMPORT_C TBool FlashIrqRestoreW(TInt);	/**< @internalComponent if someone else is waiting for the lock, UnlockIrqRestoreW() then LockIrqW() */
	IMPORT_C TBool FlashPreemptR();			/**< @internalComponent if someone else is waiting for write lock, UnlockOnlyR(); NKern::PreemptionPoint(); LockOnlyR(); */
	IMPORT_C TBool FlashPreemptW();			/**< @internalComponent if someone else is waiting for the lock, UnlockOnlyW(); NKern::PreemptionPoint(); LockOnlyW(); */
private:
	volatile TUint64 iLock;
	};


/**
@publishedPartner
@prototype
*/
#define __SPIN_LOCK_IRQ_R(lock)					(lock).LockIrqR()

/**
@publishedPartner
@prototype
*/
#define __SPIN_UNLOCK_IRQ_R(lock)				(lock).UnlockIrqR()

/**
@publishedPartner
@prototype
*/
#define __SPIN_FLASH_IRQ_R(lock)				((lock).FlashIrqR())

/**
@publishedPartner
@prototype
*/
#define __SPIN_LOCK_IRQ_W(lock)					(lock).LockIrqW()

/**
@publishedPartner
@prototype
*/
#define __SPIN_UNLOCK_IRQ_W(lock)				(lock).UnlockIrqW()

/**
@publishedPartner
@prototype
*/
#define __SPIN_FLASH_IRQ_W(lock)				((lock).FlashIrqW())


/**
@publishedPartner
@prototype
*/
#define __SPIN_LOCK_R(lock)						(lock).LockOnlyR()

/**
@publishedPartner
@prototype
*/
#define __SPIN_UNLOCK_R(lock)					(lock).UnlockOnlyR()

/**
@internalComponent
*/
#define __SPIN_FLASH_R(lock)					((lock).FlashOnlyR())

/**
@publishedPartner
@prototype
*/
#define __SPIN_LOCK_W(lock)						(lock).LockOnlyW()

/**
@publishedPartner
@prototype
*/
#define __SPIN_UNLOCK_W(lock)					(lock).UnlockOnlyW()

/**
@internalComponent
*/
#define __SPIN_FLASH_W(lock)					((lock).FlashOnlyW())


/**
@publishedPartner
@prototype
*/
#define __SPIN_LOCK_IRQSAVE_R(lock)				(lock).LockIrqSaveR()

/**
@publishedPartner
@prototype
*/
#define __SPIN_UNLOCK_IRQRESTORE_R(lock,irq)	(lock).UnlockIrqRestoreR(irq)

/**
@publishedPartner
@prototype
*/
#define __SPIN_FLASH_IRQRESTORE_R(lock,irq)		((lock).FlashIrqRestoreR(irq))

/**
@publishedPartner
@prototype
*/
#define __SPIN_LOCK_IRQSAVE_W(lock)				(lock).LockIrqSaveW()

/**
@publishedPartner
@prototype
*/
#define __SPIN_UNLOCK_IRQRESTORE_W(lock,irq)	(lock).UnlockIrqRestoreW(irq)

/**
@publishedPartner
@prototype
*/
#define __SPIN_FLASH_IRQRESTORE_W(lock,irq)		((lock).FlashIrqRestoreW(irq))


/**
@publishedPartner
@prototype
*/
#define __SPIN_FLASH_PREEMPT_R(lock)			((lock).FlashPreemptR())

/**
@publishedPartner
@prototype
*/
#define __SPIN_FLASH_PREEMPT_W(lock)			((lock).FlashPreemptW())


#ifdef _DEBUG
#define __INCLUDE_SPIN_LOCK_CHECKS__
#endif


/** Nanokernel fast semaphore

	A light-weight semaphore class that only supports a single waiting thread,
	suitable for the Symbian OS thread I/O semaphore.
	
	Initialising a NFastSemaphore involves two steps:
	
	- Constructing the semaphore
	- Setting the semaphore owning thread (the one allowed to wait on it)
	
	For example, creating one for the current thread to wait on:
	
	@code
	NFastSemaphore sem;
	sem.iOwningThread = NKern::CurrentThread();
	@endcode
	
	@publishedPartner
	@prototype
*/
class NFastSemaphore
	{
public:
	inline NFastSemaphore();
	inline NFastSemaphore(NThreadBase* aThread);
	IMPORT_C void SetOwner(NThreadBase* aThread);
	IMPORT_C void Wait();
	IMPORT_C void Signal();
	IMPORT_C void SignalN(TInt aCount);
	IMPORT_C void Reset();
	void WaitCancel();

	TInt Dec(NThreadBase* aThread);	// does mb() if >0
	NThreadBase* Inc(TInt aCount);	// does mb()
	NThreadBase* DoReset();	// does mb()
public:
	/** If >=0 the semaphore count
		If <0, (thread>>2)|0x80000000
		@internalComponent
	*/
	TInt iCount;

	/** The thread allowed to wait on the semaphore
		@internalComponent
	*/
	NThreadBase* iOwningThread;	
	};

/** Create a fast semaphore

	@publishedPartner
	@prototype
*/
inline NFastSemaphore::NFastSemaphore()
	: iCount(0), iOwningThread(NULL)
	{}

/** Nanokernel fast mutex

	A light-weight priority-inheritance mutex that can be used if the following
	conditions apply:
	
	- Threads that hold the mutex never block.
	- The mutex is never acquired in a nested fashion
	
	If either of these conditions is not met, a DMutex object is more appropriate.
	
	@publishedPartner
	@prototype
*/
class NFastMutex
	{
public:
	IMPORT_C NFastMutex();
	IMPORT_C void Wait();
	IMPORT_C void Signal();
	IMPORT_C TBool HeldByCurrentThread();
private:
	void DoWaitL();
	void DoSignalL();

	friend class NKern;
public:
	/** @internalComponent

	If mutex is free and no-one is waiting, iHoldingThread=0
	If mutex is held and no-one is waiting, iHoldingThread points to holding thread
	If mutex is free but threads are waiting, iHoldingThread=1
	If mutex is held and threads are waiting, iHoldingThread points to holding thread but with bit 0 set
	*/
	NThreadBase* iHoldingThread;

	TUint32 i_NFastMutex_Pad1;	/**< @internalComponent */

	/** @internalComponent

	Spin lock to protect mutex
	*/
	TSpinLock iMutexLock;

	/** @internalComponent

	List of NThreads which are waiting for the mutex. The threads are linked via
	their iWaitLink members.
	*/
	TPriList<NThreadBase, KNumPriorities> iWaitQ;
	};

__ASSERT_COMPILE(!(_FOFF(NFastMutex,iMutexLock)&7));


/**
@publishedPartner
@prototype

The type of the callback function used by the nanokernel timer. 

@see NTimer
*/
typedef NEventFn NTimerFn;




/**
@publishedPartner
@prototype

A basic relative timer provided by the nanokernel.

It can generate either a one-shot interrupt or periodic interrupts.

A timeout handler is called when the timer expires, either:
- from the timer ISR - if the timer is queued via OneShot(TInt aTime) or OneShot(TInt aTime, TBool EFalse), or
- from the nanokernel timer dfc1 thread - if the timer is queued via OneShot(TInt aTime, TBool ETrue) call, or
- from any other dfc thread that provided DFC belongs to - if the timer is queued via OneShot(TInt aTime, TDfc& aDfc) call.
Call-back mechanism cannot be changed in the life time of a timer.

These timer objects may be manipulated from any context.
The timers are driven from a periodic system tick interrupt,
usually a 1ms period.

@see NTimerFn
*/
class NTimerQ;
class NTimer : public NEventHandler
	{
public:
	/**
	Default constructor.
	*/
	inline NTimer()
		{
		iHType = EEventHandlerNTimer;
		i8888.iHState1 = EIdle;
		}
	/**
	Constructor taking a callback function and a pointer to be passed
	to the callback function.
	
	@param aFunction The callback function.
	@param aPtr      A pointer to be passed to the callback function 
	                 when called.
	*/
	inline NTimer(NTimerFn aFunction, TAny* aPtr)
		{
		iPtr = aPtr;
		iFn = aFunction;
		iHType = EEventHandlerNTimer;
		i8888.iHState1 = EIdle;
		}
	IMPORT_C NTimer(NSchedulable* aTied, NTimerFn aFunction, TAny* aPtr);
	IMPORT_C NTimer(TDfcFn aFunction, TAny* aPtr, TInt aPriority);					// create DFC, queue to be set later
	IMPORT_C NTimer(TDfcFn aFunction, TAny* aPtr, TDfcQue* aDfcQ, TInt aPriority);	// create DFC
	IMPORT_C void SetDfcQ(TDfcQue* aDfcQ);
	IMPORT_C ~NTimer();
	IMPORT_C TInt SetTied(NSchedulable* aTied);
	IMPORT_C TInt OneShot(TInt aTime);
	IMPORT_C TInt OneShot(TInt aTime, TBool aDfc);
	IMPORT_C TInt OneShot(TInt aTime, TDfc& aDfc);
	IMPORT_C TInt Again(TInt aTime);
	IMPORT_C TBool Cancel();
	IMPORT_C TBool IsPending();
private:
	enum { ECancelDestroy=1 };
private:
	inline TBool IsNormal()
		{ return iHType==EEventHandlerNTimer; }
	inline TBool IsMutating()
		{ return iHType<KNumDfcPriorities; }
	inline TBool IsValid()
		{ return iHType<KNumDfcPriorities || iHType==EEventHandlerNTimer; }
	void AddAsDFC();
	TUint DoCancel(TUint aFlags);
	void DoCancel0(TUint aState);
	TBool DoCancelMutating(TUint aFlags);
public:
/**
	@internalComponent
*/
	enum TState
		{
		EIdle=0,			// not queued
							// 1 skipped so as not to clash with DFC states
		ETransferring=2,	// being transferred from holding to ordered queue
		EHolding=3,			// on holding queue
		EOrdered=4,			// on ordered queue
		ECritical=5,		// on ordered queue and in use by queue walk routine
		EFinal=6,			// on final queue
		EEventQ=32,			// 32+n = on event queue of CPU n (for tied timers)
		};
public:
	TUint32 iTriggerTime;	/**< @internalComponent */
	TUint32	iNTimerSpare1;	/**< @internalComponent */

	/** This field is available for use by the timer client provided that
		the timer isn't a mutating-into-DFC timer.
		@internalTechnology */
//	TUint8 iUserFlags;									// i8888.iHState0
//	TUint8 iState;			/**< @internalComponent */	// i8888.iHState1
//	TUint8 iCompleteInDfc;	/**< @internalComponent */	// i8888.iHState2


	friend class NTimerQ;
	friend class NSchedulable;
	};

/**
@internalTechnology
*/
#define	i_NTimer_iUserFlags	i8888.iHState0

/**
@internalComponent
*/
#define	i_NTimer_iState		i8888.iHState1

/**
	@publishedPartner
	@released
*/
typedef void (*NThreadFunction)(TAny*);

/**
	@publishedPartner
	@released
*/
typedef TDfc* (*NThreadExitHandler)(NThread*);

/**
	@publishedPartner
	@prototype
*/
typedef void (*NThreadStateHandler)(NThread*,TInt,TInt);

/**
	@publishedPartner
	@prototype
*/
typedef void (*NThreadExceptionHandler)(TAny*,NThread*);

/**
	@publishedPartner
	@prototype
*/
typedef void (*NThreadTimeoutHandler)(NThread*,TInt);

/**
	@publishedPartner
	@prototype
*/
struct SNThreadHandlers
	{
	NThreadExitHandler iExitHandler;
	NThreadStateHandler iStateHandler;
	NThreadExceptionHandler iExceptionHandler;
	NThreadTimeoutHandler iTimeoutHandler;
	};

/** @internalComponent */
extern void NThread_Default_State_Handler(NThread*, TInt, TInt);

/** @internalComponent */
extern void NThread_Default_Exception_Handler(TAny*, NThread*);

/** @internalComponent */
#define NTHREAD_DEFAULT_EXIT_HANDLER		((NThreadExitHandler)0)

/** @internalComponent */
#define	NTHREAD_DEFAULT_STATE_HANDLER		(&NThread_Default_State_Handler)

/** @internalComponent */
#define	NTHREAD_DEFAULT_EXCEPTION_HANDLER	(&NThread_Default_Exception_Handler)

/** @internalComponent */
#define	NTHREAD_DEFAULT_TIMEOUT_HANDLER		((NThreadTimeoutHandler)0)


/**
	@publishedPartner
	@prototype
*/
struct SFastExecTable
	{
	TInt iFastExecCount;			// includes implicit function#0
	TLinAddr iFunction[1];			// first entry is for call number 1
	};

/**
	@publishedPartner
	@prototype
*/
const TUint32 KExecFlagClaim=0x80000000;		// claim system lock

/**
	@publishedPartner
	@prototype
*/
const TUint32 KExecFlagRelease=0x40000000;		// release system lock

/**
	@publishedPartner
	@prototype
*/
const TUint32 KExecFlagPreprocess=0x20000000;	// preprocess

/**
	@publishedPartner
	@prototype
*/
const TUint32 KExecFlagExtraArgMask=0x1C000000;	// 3 bits indicating additional arguments

/**
	@publishedPartner
	@prototype
*/
const TUint32 KExecFlagExtraArgs2=0x04000000;	// 2 additional arguments

/**
	@publishedPartner
	@prototype
*/
const TUint32 KExecFlagExtraArgs3=0x08000000;	// 3 additional arguments

/**
	@publishedPartner
	@prototype
*/
const TUint32 KExecFlagExtraArgs4=0x0C000000;	// 4 additional arguments

/**
	@publishedPartner
	@prototype
*/
const TUint32 KExecFlagExtraArgs5=0x10000000;	// 5 additional arguments

/**
	@publishedPartner
	@prototype
*/
const TUint32 KExecFlagExtraArgs6=0x14000000;	// 6 additional arguments

/**
	@publishedPartner
	@prototype
*/
const TUint32 KExecFlagExtraArgs7=0x18000000;	// 7 additional arguments

/**
	@publishedPartner
	@prototype
*/
const TUint32 KExecFlagExtraArgs8=0x1C000000;	// 8 additional arguments


/**
	@publishedPartner
	@prototype
*/
struct SSlowExecEntry
	{
	TUint32 iFlags;					// information about call
	TLinAddr iFunction;				// address of function to be called
	};


/**
	@publishedPartner
	@prototype
*/
struct SSlowExecTable
	{
	TInt iSlowExecCount;
	TLinAddr iInvalidExecHandler;	// used if call number invalid
	TLinAddr iPreprocessHandler;	// used for handle lookups
	SSlowExecEntry iEntries[1];		// first entry is for call number 0
	};

// Thread iAttributes Constants
const TUint8 KThreadAttImplicitSystemLock=1;	/**< @internalComponent */
const TUint8 KThreadAttAddressSpace=2;			/**< @internalComponent */
const TUint8 KThreadAttLoggable=4;				/**< @internalComponent */


// Thread CPU
const TUint32 KCpuAffinityAny=0xffffffffu;		/**< @internalComponent */

/** Information needed for creating a nanothread.

	@publishedPartner
	@prototype
*/
struct SNThreadCreateInfo
	{
	NThreadFunction iFunction;
	TAny* iStackBase;
	TInt iStackSize;
	TInt iPriority;
	TInt iTimeslice;
	TUint8 iAttributes;
	TUint32 iCpuAffinity;
	const SNThreadHandlers* iHandlers;
	const SFastExecTable* iFastExecTable;
	const SSlowExecTable* iSlowExecTable;
	const TUint32* iParameterBlock;
	TInt iParameterBlockSize;		// if zero, iParameterBlock _is_ the initial data
									// otherwise it points to n bytes of initial data
	NThreadGroup* iGroup;			// NULL for lone thread
	};

/** Information needed for creating a nanothread group.

	@publishedPartner
	@prototype
*/
struct SNThreadGroupCreateInfo
	{
	TUint32 iCpuAffinity;
	};

/**	Constant for use with NKern:: functions which release a fast mutex as well
	as performing some other operations.

	@publishedPartner
	@released
*/
#define	SYSTEM_LOCK		(NFastMutex*)0


/** Idle handler function
	Pointer to a function which is called whenever a CPU goes idle

	@param	aPtr	The iPtr stored in the SCpuIdleHandler structure
	@param	aStage	If positive, the number of processors still active
					If zero, indicates all processors are now idle
					-1 indicates that postamble processing is required after waking up

	@publishedPartner
	@prototype
*/
typedef void (*TCpuIdleHandlerFn)(TAny* aPtr, TInt aStage);

/** Idle handler structure

	@publishedPartner
	@prototype
*/
struct SCpuIdleHandler
	{
	TCpuIdleHandlerFn	iHandler;
	TAny*				iPtr;
	volatile TBool		iPostambleRequired;
	};


/**
@internalComponent
*/
enum TUserModeCallbackReason
	{
	EUserModeCallbackRun,
	EUserModeCallbackCancel,
	};


/**
A callback function executed when a thread returns to user mode.

@internalComponent
*/
typedef void (*TUserModeCallbackFunc)(TAny* aThisPtr, TUserModeCallbackReason aReasonCode);


/**
An object representing a queued callback to be executed when a thread returns to user mode.

@internalComponent
*/
class TUserModeCallback
	{
public:
	TUserModeCallback(TUserModeCallbackFunc);
	~TUserModeCallback();

public:
	TUserModeCallback* volatile iNext;
	TUserModeCallbackFunc iFunc;
	};

TUserModeCallback* const KUserModeCallbackUnqueued = ((TUserModeCallback*)1);


/** Main function for AP

@internalTechnology
*/
struct SAPBootInfo;
typedef void (*TAPBootFunc)(volatile SAPBootInfo*);


/** Information needed to boot an AP

@internalTechnology
*/
struct SAPBootInfo
	{
	TUint32				iCpu;				// Hardware CPU ID
	TUint32				iInitStackSize;		// Size of initial stack
	TLinAddr			iInitStackBase;		// Base of initial stack
	TAPBootFunc			iMain;				// Address of initial function to call
	TAny*				iArgs[4];
	};

typedef void (*NIsr)(TAny*);

/** Nanokernel functions

	@publishedPartner
	@prototype
*/
class NKern
	{
public:
	/** Bitmask values used when blocking a nanothread.
		@see NKern::Block()
	 */
	enum TBlockMode 
		{
		EEnterCS=1,		/**< Enter thread critical section before blocking */
		ERelease=2,		/**< Release specified fast mutex before blocking */
		EClaim=4,		/**< Re-acquire specified fast mutex when unblocked */
		EObstruct=8,	/**< Signifies obstruction of thread rather than lack of work to do */
		};

	/** Values that specify the context of the processor.
		@see NKern::CurrentContext()
	*/
	enum TContext
		{
		EThread=0,			/**< The processor is in a thread context*/
		EIDFC=1,			/**< The processor is in an IDFC context*/
		EInterrupt=2,		/**< The processor is in an interrupt context*/
		EEscaped=KMaxTInt	/**< Not valid a process context on target hardware*/
		};

public:
	// Threads
	IMPORT_C static TInt ThreadCreate(NThread* aThread, SNThreadCreateInfo& aInfo);
	IMPORT_C static TBool ThreadSuspend(NThread* aThread, TInt aCount);
	IMPORT_C static TBool ThreadResume(NThread* aThread);
	IMPORT_C static TBool ThreadResume(NThread* aThread, NFastMutex* aMutex);
	IMPORT_C static TBool ThreadForceResume(NThread* aThread);
	IMPORT_C static TBool ThreadForceResume(NThread* aThread, NFastMutex* aMutex);
	IMPORT_C static void ThreadRelease(NThread* aThread, TInt aReturnValue);
	IMPORT_C static void ThreadRelease(NThread* aThread, TInt aReturnValue, NFastMutex* aMutex);
	IMPORT_C static void ThreadSetPriority(NThread* aThread, TInt aPriority);
	IMPORT_C static void ThreadSetPriority(NThread* aThread, TInt aPriority, NFastMutex* aMutex);
	IMPORT_C static void ThreadRequestSignal(NThread* aThread);
	IMPORT_C static void ThreadRequestSignal(NThread* aThread, NFastMutex* aMutex);
	IMPORT_C static void ThreadRequestSignal(NThread* aThread, TInt aCount);
	IMPORT_C static void ThreadKill(NThread* aThread);
	IMPORT_C static void ThreadKill(NThread* aThread, NFastMutex* aMutex);
	IMPORT_C static void ThreadEnterCS();
	IMPORT_C static void ThreadLeaveCS();
	static NThread* _ThreadEnterCS();		/**< @internalComponent */
	static void _ThreadLeaveCS();			/**< @internalComponent */
	IMPORT_C static TInt Block(TUint32 aTimeout, TUint aMode, NFastMutex* aMutex);
	IMPORT_C static TInt Block(TUint32 aTimeout, TUint aMode);
	IMPORT_C static void NanoBlock(TUint32 aTimeout, TUint aState, TAny* aWaitObj);
	IMPORT_C static void ThreadGetUserContext(NThread* aThread, TAny* aContext, TUint32& aAvailRegistersMask);
	IMPORT_C static void ThreadSetUserContext(NThread* aThread, TAny* aContext);
	IMPORT_C static void ThreadGetSystemContext(NThread* aThread, TAny* aContext, TUint32& aAvailRegistersMask);
	static void ThreadModifyUsp(NThread* aThread, TLinAddr aUsp);
	IMPORT_C static TInt FreezeCpu();													/**< @internalComponent */
	IMPORT_C static void EndFreezeCpu(TInt aCookie);									/**< @internalComponent */
	IMPORT_C static TUint32 ThreadSetCpuAffinity(NThread* aThread, TUint32 aAffinity);	/**< @internalComponent */
	IMPORT_C static void ThreadSetTimeslice(NThread* aThread, TInt aTimeslice);			/**< @internalComponent */
	IMPORT_C static TUint64 ThreadCpuTime(NThread* aThread);							/**< @internalComponent */
	IMPORT_C static TUint32 CpuTimeMeasFreq();											/**< @internalComponent */
	static TInt QueueUserModeCallback(NThreadBase* aThread, TUserModeCallback* aCallback);	/**< @internalComponent */
	static void MoveUserModeCallbacks(NThreadBase* aSrcThread, NThreadBase* aDestThread);	/**< @internalComponent */
	static void CancelUserModeCallbacks();												/**< @internalComponent */

	// Thread Groups
	IMPORT_C static TInt GroupCreate(NThreadGroup* aGroup, SNThreadGroupCreateInfo& aInfo);
	IMPORT_C static void GroupDestroy(NThreadGroup* aGroup);
	IMPORT_C static NThreadGroup* CurrentGroup();
	IMPORT_C static NThreadGroup* LeaveGroup();
	IMPORT_C static void JoinGroup(NThreadGroup* aGroup);
	IMPORT_C static TUint32 GroupSetCpuAffinity(NThreadGroup* aGroup, TUint32 aAffinity);

	// Fast semaphores
	IMPORT_C static void FSSetOwner(NFastSemaphore* aSem,NThreadBase* aThread);
	IMPORT_C static void FSWait(NFastSemaphore* aSem);
	IMPORT_C static void FSSignal(NFastSemaphore* aSem);
	IMPORT_C static void FSSignal(NFastSemaphore* aSem, NFastMutex* aMutex);
	IMPORT_C static void FSSignalN(NFastSemaphore* aSem, TInt aCount);
	IMPORT_C static void FSSignalN(NFastSemaphore* aSem, TInt aCount, NFastMutex* aMutex);

	// Fast mutexes
	IMPORT_C static void FMWait(NFastMutex* aMutex);
	IMPORT_C static void FMSignal(NFastMutex* aMutex);
	IMPORT_C static TBool FMFlash(NFastMutex* aMutex);

	// Scheduler
	IMPORT_C static void Lock();
	IMPORT_C static NThread* LockC();
	IMPORT_C static void Unlock();
	IMPORT_C static TInt PreemptionPoint();

	// Interrupts
	IMPORT_C static TInt DisableAllInterrupts();
	IMPORT_C static TInt DisableInterrupts(TInt aLevel);
	IMPORT_C static void RestoreInterrupts(TInt aRestoreData);
	IMPORT_C static void EnableAllInterrupts();

	// Read-modify-write
	inline static TInt LockedInc(TInt& aCount)
		{ return __e32_atomic_add_ord32(&aCount,1); }
	inline static TInt LockedDec(TInt& aCount)
		{ return __e32_atomic_add_ord32(&aCount,0xffffffff); }
	inline static TInt LockedAdd(TInt& aDest, TInt aSrc)
		{ return __e32_atomic_add_ord32(&aDest,aSrc); }
	inline static TInt64 LockedInc(TInt64& aCount)
		{ return __e32_atomic_add_ord64(&aCount,1); }
	inline static TInt64 LockedDec(TInt64& aCount)
		{ return __e32_atomic_add_ord64(&aCount,TUint64(TInt64(-1))); }
	inline static TInt64 LockedAdd(TInt64& aDest, TInt64 aSrc)		/**< @internalComponent */
		{ return __e32_atomic_add_ord64(&aDest,aSrc); }
	inline static TUint32 LockedSetClear(TUint32& aDest, TUint32 aClearMask, TUint32 aSetMask)
		{ return __e32_atomic_axo_ord32(&aDest,~(aClearMask|aSetMask),aSetMask); }
	inline static TUint16 LockedSetClear16(TUint16& aDest, TUint16 aClearMask, TUint16 aSetMask)	/**< @internalComponent */
		{ return __e32_atomic_axo_ord16(&aDest,TUint16(~(aClearMask|aSetMask)),aSetMask); }
	inline static TUint8 LockedSetClear8(TUint8& aDest, TUint8 aClearMask, TUint8 aSetMask)
		{ return __e32_atomic_axo_ord8(&aDest,TUint8(~(aClearMask|aSetMask)),aSetMask); }
	inline static TInt SafeInc(TInt& aCount)
		{ return __e32_atomic_tas_ord32(&aCount,1,1,0); }
	inline static TInt SafeDec(TInt& aCount)
		{ return __e32_atomic_tas_ord32(&aCount,1,-1,0); }
	inline static TInt AddIfGe(TInt& aCount, TInt aLimit, TInt aInc)	/**< @internalComponent */
		{ return __e32_atomic_tas_ord32(&aCount,aLimit,aInc,0); }
	inline static TInt AddIfLt(TInt& aCount, TInt aLimit, TInt aInc)	/**< @internalComponent */
		{ return __e32_atomic_tas_ord32(&aCount,aLimit,0,aInc); }
	inline static TAny* SafeSwap(TAny* aNewValue, TAny*& aPtr)
		{ return __e32_atomic_swp_ord_ptr(&aPtr, aNewValue); }
	inline static TUint8 SafeSwap8(TUint8 aNewValue, TUint8& aPtr)
		{ return __e32_atomic_swp_ord8(&aPtr, aNewValue); }
	inline static TUint16 SafeSwap16(TUint16 aNewValue, TUint16& aPtr)						/**< @internalComponent */
		{ return __e32_atomic_swp_ord16(&aPtr, aNewValue); }
	inline static TBool CompareAndSwap(TAny*& aPtr, TAny* aExpected, TAny* aNew)			/**< @internalComponent */
		{ return __e32_atomic_cas_ord_ptr(&aPtr, &aExpected, aNew); }
	inline static TBool CompareAndSwap8(TUint8& aPtr, TUint8 aExpected, TUint8 aNew)		/**< @internalComponent */
		{ return __e32_atomic_cas_ord8(&aPtr, (TUint8*)&aExpected, (TUint8)aNew); }
	inline static TBool CompareAndSwap16(TUint16& aPtr, TUint16 aExpected, TUint16 aNew)	/**< @internalComponent */
		{ return __e32_atomic_cas_ord16(&aPtr, (TUint16*)&aExpected, (TUint16)aNew); }
	inline static TUint32 SafeSwap(TUint32 aNewValue, TUint32& aPtr)						/**< @internalComponent */
		{ return __e32_atomic_swp_ord32(&aPtr, aNewValue); }
	inline static TUint SafeSwap(TUint aNewValue, TUint& aPtr)								/**< @internalComponent */
		{ return __e32_atomic_swp_ord32(&aPtr, aNewValue); }
	inline static TInt SafeSwap(TInt aNewValue, TInt& aPtr)									/**< @internalComponent */
		{ return __e32_atomic_swp_ord32(&aPtr, aNewValue); }
	inline static TBool CompareAndSwap(TUint32& aPtr, TUint32 aExpected, TUint32 aNew)		/**< @internalComponent */
		{ return __e32_atomic_cas_ord32(&aPtr, &aExpected, aNew); }
	inline static TBool CompareAndSwap(TUint& aPtr, TUint aExpected, TUint aNew)			/**< @internalComponent */
		{ return __e32_atomic_cas_ord32(&aPtr, (TUint32*)&aExpected, (TUint32)aNew); }
	inline static TBool CompareAndSwap(TInt& aPtr, TInt aExpected, TInt aNew)				/**< @internalComponent */
		{ return __e32_atomic_cas_ord32(&aPtr, (TUint32*)&aExpected, (TUint32)aNew); }


	// Miscellaneous
	IMPORT_C static NThread* CurrentThread();
	IMPORT_C static TInt CurrentCpu();										/**< @internalComponent */
	IMPORT_C static TInt NumberOfCpus();									/**< @internalComponent */
	IMPORT_C static void LockSystem();
	IMPORT_C static void UnlockSystem();
	IMPORT_C static TBool FlashSystem();
	IMPORT_C static void WaitForAnyRequest();
	IMPORT_C static void Sleep(TUint32 aTime);
	IMPORT_C static void Exit();
	IMPORT_C static void DeferredExit();
	IMPORT_C static void YieldTimeslice();									/**< @internalComponent */
	IMPORT_C static void RotateReadyList(TInt aPriority);					
	IMPORT_C static void RotateReadyList(TInt aPriority, TInt aCpu);		/**< @internalTechnology */
	IMPORT_C static void RecordIntLatency(TInt aLatency, TInt aIntMask);	/**< @internalTechnology */
	IMPORT_C static void RecordThreadLatency(TInt aLatency);				/**< @internalTechnology */
	IMPORT_C static TUint32 TickCount();
	IMPORT_C static TInt TickPeriod();
	IMPORT_C static TInt TimerTicks(TInt aMilliseconds);
	IMPORT_C static TInt TimesliceTicks(TUint32 aMicroseconds);				/**< @internalTechnology */
	IMPORT_C static TInt CurrentContext();
	IMPORT_C static TUint32 FastCounter();
	IMPORT_C static TInt FastCounterFrequency();
	IMPORT_C static TUint64 Timestamp();
	IMPORT_C static TUint32 TimestampFrequency();
	static void Init0(TAny* aVariantData);
	static void Init(NThread* aThread, SNThreadCreateInfo& aInfo);
	static TInt BootAP(volatile SAPBootInfo* aInfo);
	IMPORT_C static TBool KernelLocked(TInt aCount=0);						/**< @internalTechnology */
	IMPORT_C static NFastMutex* HeldFastMutex();							/**< @internalTechnology */
	static void Idle();	
	IMPORT_C static SCpuIdleHandler* CpuIdleHandler();						/**< @internalTechnology */
	static void NotifyCrash(const TAny* a0, TInt a1);						/**< @internalTechnology */
	IMPORT_C static TBool Crashed();
	static TUint32 IdleGenerationCount();

	// Debugger support
	typedef void (*TRescheduleCallback)(NThread*);
	IMPORT_C static void SchedulerHooks(TLinAddr& aStart, TLinAddr& aEnd);
	IMPORT_C static void InsertSchedulerHooks();
	IMPORT_C static void RemoveSchedulerHooks();
	IMPORT_C static void SetRescheduleCallback(TRescheduleCallback aCallback);

	// Interrupts
	enum TIrqInitFlags
		{
		EIrqInit_FallingEdge=0,
		EIrqInit_RisingEdge=2,
		EIrqInit_LevelLow=1,
		EIrqInit_LevelHigh=3,
		EIrqInit_Shared=0x10,
		EIrqInit_Count=0x20,
		};

	enum TIrqBindFlags
		{
		EIrqBind_Raw=1,
		EIrqBind_Count=2,
		EIrqBind_Exclusive=4,
		EIrqBind_Tied=8
		};

	enum TIrqIdBits
		{
		EIrqIndexMask = 0x0000ffff,	// bottom 16 bits is IRQ number if top 16 bits all zero
									// otherwise is IRQ handler index
		EIrqCookieMask = 0x7fff0000,
		EIrqCookieShift = 16
		};

	static void InterruptInit0();
	IMPORT_C static TInt InterruptInit(TInt aId, TUint32 aFlags, TInt aVector, TUint32 aHwId, TAny* aExt=0);
	IMPORT_C static TInt InterruptBind(TInt aId, NIsr aIsr, TAny* aPtr, TUint32 aFlags, NSchedulable* aTied);
	IMPORT_C static TInt InterruptUnbind(TInt aId);
	IMPORT_C static TInt InterruptEnable(TInt aId);
	IMPORT_C static TInt InterruptDisable(TInt aId);
	IMPORT_C static TInt InterruptClear(TInt aId);
	IMPORT_C static TInt InterruptSetPriority(TInt aId, TInt aPri);
	IMPORT_C static TInt InterruptSetCpuMask(TInt aId, TUint32 aMask);
	IMPORT_C static void Interrupt(TInt aIrqNo);
	};


/** Create a fast semaphore

	@publishedPartner
	@prototype
*/
inline NFastSemaphore::NFastSemaphore(NThreadBase* aThread)
	:	iCount(0),
		iOwningThread(aThread ? aThread : (NThreadBase*)NKern::CurrentThread())
	{
	}


class TGenericIPI;

/**
@internalComponent
*/
typedef void (*TGenericIPIFn)(TGenericIPI*);

/**
@internalComponent
*/
class TGenericIPI : public SDblQueLink
	{
public:
	void Queue(TGenericIPIFn aFunc, TUint32 aCpuMask);
	void QueueAll(TGenericIPIFn aFunc);
	void QueueAllOther(TGenericIPIFn aFunc);
	void WaitEntry();
	void WaitCompletion();
public:
	TGenericIPIFn			iFunc;
	volatile TUint32		iCpusIn;
	volatile TUint32		iCpusOut;
	};

/**
@internalComponent
*/
class TStopIPI : public TGenericIPI
	{
public:
	void StopCPUs();
	void ReleaseCPUs();
	static void Isr(TGenericIPI*);
public:
	volatile TInt iFlag;
	};

#include <ncern.h>
#endif