// Copyright (c) 2004-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// template\template_assp\pa_usbc.cpp
// Platform-dependent USB client controller layer (USB PSL).
//
//
#include <template_assp.h> // /assp/template_assp/
#include <template_assp_priv.h> // /assp/template_assp/
#include <drivers/usbc.h>
#include "pa_usbc.h" // .
// Debug support
#ifdef _DEBUG
static const char KUsbPanicCat[] = "USB PSL";
#endif
// Define USB_SUPPORTS_PREMATURE_STATUS_IN to enable proper handling of a premature STATUS_IN stage, i.e. a
// situation where the host sends less data than first announced and instead of more data (OUT) will send an
// IN token to start the status stage. What we do in order to implement this here is to prime the TX fifo with
// a ZLP immediately when we find out that we're dealing with a DATA_OUT request. This way, as soon as the
// premature IN token is received, we complete the transaction by sending off the ZLP. If we don't prime the
// TX fifo then there is no way for us to recognise a premature status because the IN token itself doesn't
// raise an interrupt. We would simply wait forever for more data, or rather we would time out and the host
// would move on and send the next Setup packet.
// The reason why we would not want to implement the proper behaviour is this: After having primed the TX fifo
// with a ZLP, it is impossible for a user to reject such a (class/vendor specific) Setup request, basically
// because the successful status stage happens automatically. At the time the user has received and decoded
// the Setup request there's for her no way to stall Ep0 in order to show to the host that this Setup packet
// is invalid or inappropriate or whatever, because she cannot prevent the status stage from happening.
// (All this is strictly true only if the amount of data in the data stage is less than or equal to Ep0's max
// packet size. However this is almost always the case.)
//#define USB_SUPPORTS_PREMATURE_STATUS_IN
static const TUsbcEndpointCaps DeviceEndpoints[KUsbTotalEndpoints] =
{
// Hardware # iEndpoints index
{KEp0MaxPktSzMask, (KUsbEpTypeControl | KUsbEpDirOut)}, // 0 - 0
{KEp0MaxPktSzMask, (KUsbEpTypeControl | KUsbEpDirIn )}, // 0 - 1
{KUsbEpNotAvailable, KUsbEpNotAvailable}, // --- Not present
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirIn )}, // 1 - 3
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirOut)}, // 2 - 4
{KUsbEpNotAvailable, KUsbEpNotAvailable}, // --- Not present
{KUsbEpNotAvailable, KUsbEpNotAvailable}, // --- Not present
{KIsoMaxPktSzMask, (KUsbEpTypeIsochronous | KUsbEpDirIn )}, // 3 - 7
{KIsoMaxPktSzMask, (KUsbEpTypeIsochronous | KUsbEpDirOut)}, // 4 - 8
{KUsbEpNotAvailable, KUsbEpNotAvailable}, // --- Not present
{KUsbEpNotAvailable, KUsbEpNotAvailable}, // --- Not present
{KIntMaxPktSzMask, (KUsbEpTypeInterrupt | KUsbEpDirIn )}, // 5 - 11
};
// --- TEndpoint --------------------------------------------------------------
TEndpoint::TEndpoint()
//
// Constructor
//
: iRxBuf(NULL), iReceived(0), iLength(0), iZlpReqd(EFalse), iNoBuffer(EFalse), iDisabled(EFalse),
iPackets(0), iLastError(KErrNone), iRequest(NULL), iRxTimer(RxTimerCallback, this),
iRxTimerSet(EFalse), iRxMoreDataRcvd(EFalse), iPacketIndex(NULL), iPacketSize(NULL)
{
__KTRACE_OPT(KUSB, Kern::Printf("TEndpoint::TEndpoint"));
}
void TEndpoint::RxTimerCallback(TAny* aPtr)
//
// (This function is static.)
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TEndpoint::RxTimerCallback"));
TEndpoint* const ep = static_cast<TEndpoint*>(aPtr);
if (!ep)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: !ep"));
}
else if (!ep->iRxTimerSet)
{
// Timer 'stop' substitute (instead of stopping it,
// we just let it expire after clearing iRxTimerSet)
__KTRACE_OPT(KUSB, Kern::Printf("!ep->iRxTimerSet - returning"));
}
else if (!ep->iRxBuf)
{
// Request already completed
__KTRACE_OPT(KUSB, Kern::Printf("!ep->iRxBuf - returning"));
}
else if (ep->iRxMoreDataRcvd)
{
__KTRACE_OPT(KUSB, Kern::Printf(" > rx timer cb: not yet completing..."));
ep->iRxMoreDataRcvd = EFalse;
ep->iRxTimer.Again(KRxTimerTimeout);
}
else
{
__KTRACE_OPT(KUSB, Kern::Printf(" > rx timer cb: completing now..."));
*ep->iPacketSize = ep->iReceived;
ep->iController->RxComplete(ep);
}
}
// --- TTemplateAsspUsbcc public ---------------------------------------------------
TTemplateAsspUsbcc::TTemplateAsspUsbcc()
//
// Constructor.
//
: iCableConnected(ETrue), iBusIsPowered(EFalse),
iInitialized(EFalse), iUsbClientConnectorCallback(UsbClientConnectorCallback),
iEp0Configured(EFalse)
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::TTemplateAsspUsbcc"));
iAssp = static_cast<TemplateAssp*>(Arch::TheAsic());
iSoftwareConnectable = iAssp->UsbSoftwareConnectable();
iCableDetectable = iAssp->UsbClientConnectorDetectable();
if (iCableDetectable)
{
// Register our callback for detecting USB cable insertion/removal.
// We ignore the error code: if the registration fails, we just won't get any events.
// (Which of course is bad enough...)
(void) iAssp->RegisterUsbClientConnectorCallback(iUsbClientConnectorCallback, this);
// Call the callback straight away so we get the proper PIL state from the beginning.
(void) UsbClientConnectorCallback(this);
}
for (TInt i = 0; i < KUsbTotalEndpoints; i++)
{
iEndpoints[i].iController = this;
}
}
TInt TTemplateAsspUsbcc::Construct()
//
// Construct.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::Construct"));
TUsbcDeviceDescriptor* DeviceDesc = TUsbcDeviceDescriptor::New(
0x00, // aDeviceClass
0x00, // aDeviceSubClass
0x00, // aDeviceProtocol
KEp0MaxPktSz, // aMaxPacketSize0
KUsbVendorId, // aVendorId
KUsbProductId, // aProductId
KUsbDevRelease, // aDeviceRelease
1); // aNumConfigurations
if (!DeviceDesc)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Memory allocation for dev desc failed."));
return KErrGeneral;
}
TUsbcConfigDescriptor* ConfigDesc = TUsbcConfigDescriptor::New(
1, // aConfigurationValue
ETrue, // aSelfPowered (see 12.4.2 "Bus-Powered Devices")
ETrue, // aRemoteWakeup
0); // aMaxPower (mA)
if (!ConfigDesc)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Memory allocation for config desc failed."));
return KErrGeneral;
}
TUsbcLangIdDescriptor* StringDescLang = TUsbcLangIdDescriptor::New(KUsbLangId);
if (!StringDescLang)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Memory allocation for lang id $ desc failed."));
return KErrGeneral;
}
// ('sizeof(x) - 2' because 'wchar_t KStringXyz' created a wide string that ends in '\0\0'.)
TUsbcStringDescriptor* StringDescManu =
TUsbcStringDescriptor::New(TPtr8(
const_cast<TUint8*>(reinterpret_cast<const TUint8*>(KStringManufacturer)),
sizeof(KStringManufacturer) - 2, sizeof(KStringManufacturer) - 2));
if (!StringDescManu)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Memory allocation for manufacturer $ desc failed."));
return KErrGeneral;
}
TUsbcStringDescriptor* StringDescProd =
TUsbcStringDescriptor::New(TPtr8(
const_cast<TUint8*>(reinterpret_cast<const TUint8*>(KStringProduct)),
sizeof(KStringProduct) - 2, sizeof(KStringProduct) - 2));
if (!StringDescProd)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Memory allocation for product $ desc failed."));
return KErrGeneral;
}
TUsbcStringDescriptor* StringDescSer =
TUsbcStringDescriptor::New(TPtr8(
const_cast<TUint8*>(reinterpret_cast<const TUint8*>(KStringSerialNo)),
sizeof(KStringSerialNo) - 2, sizeof(KStringSerialNo) - 2));
if (!StringDescSer)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Memory allocation for serial no $ desc failed."));
return KErrGeneral;
}
TUsbcStringDescriptor* StringDescConf =
TUsbcStringDescriptor::New(TPtr8(
const_cast<TUint8*>(reinterpret_cast<const TUint8*>(KStringConfig)),
sizeof(KStringConfig) - 2, sizeof(KStringConfig) - 2));
if (!StringDescConf)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Memory allocation for config $ desc failed."));
return KErrGeneral;
}
const TBool r = InitialiseBaseClass(DeviceDesc,
ConfigDesc,
StringDescLang,
StringDescManu,
StringDescProd,
StringDescSer,
StringDescConf);
if (!r)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: UsbClientController::InitialiseBaseClass failed."));
return KErrGeneral;
}
return KErrNone;
}
TTemplateAsspUsbcc::~TTemplateAsspUsbcc()
//
// Destructor.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::~TTemplateAsspUsbcc"));
// Unregister our callback for detecting USB cable insertion/removal
if (iCableDetectable)
{
iAssp->UnregisterUsbClientConnectorCallback();
}
if (iInitialized)
{
// (The explicit scope operator is used against Lint warning #1506.)
TTemplateAsspUsbcc::StopUdc();
}
}
TBool TTemplateAsspUsbcc::DeviceStateChangeCaps() const
//
// Returns capability of hardware to accurately track the device state (Chapter 9 state).
//
{
// TO DO: Return EFalse or ETrue here, depending on whether the UDC supports exact device state tracking
// (most don't).
return EFalse;
}
TInt TTemplateAsspUsbcc::SignalRemoteWakeup()
//
// Forces the UDC into a non-idle state to perform a remote wakeup operation.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::SignalRemoteWakeup"));
// TO DO: Do here whatever is necessary for the UDC to signal remote wakeup.
return KErrNone;
}
void TTemplateAsspUsbcc::DumpRegisters()
//
// Dumps the contents of a number of UDC registers to the screen (using Kern::Printf()).
// Rarely used, but might prove helpful when needed.
//
{
Kern::Printf("TCotullaUsbcc::DumpRegisters:");
// TO DO: Print the contents of some (or all) UDC registers here.
}
TDfcQue* TTemplateAsspUsbcc::DfcQ(TInt /* aUnit */)
//
// Returns a pointer to the kernel DFC queue to be used buy the USB LDD.
//
{
return Kern::DfcQue0();
}
// --- TTemplateAsspUsbcc private virtual ------------------------------------------
TInt TTemplateAsspUsbcc::SetDeviceAddress(TInt aAddress)
//
// Sets the PIL-provided device address manually (if possible - otherwise do nothing).
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::SetDeviceAddress: %d", aAddress));
// TO DO (optional): Set device address here.
if (aAddress)
{
// Address can be zero.
MoveToAddressState();
}
return KErrNone;
}
TInt TTemplateAsspUsbcc::ConfigureEndpoint(TInt aRealEndpoint, const TUsbcEndpointInfo& aEndpointInfo)
//
// Prepares (enables) an endpoint (incl. Ep0) for data transmission or reception.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::ConfigureEndpoint(%d)", aRealEndpoint));
const TInt n = ArrayIdx2TemplateEp(aRealEndpoint);
if (n < 0)
return KErrArgument;
TEndpoint* const ep = &iEndpoints[aRealEndpoint];
if (ep->iDisabled == EFalse)
{
EnableEndpointInterrupt(n);
}
ep->iNoBuffer = EFalse;
if (n == 0)
iEp0Configured = ETrue;
return KErrNone;
}
TInt TTemplateAsspUsbcc::DeConfigureEndpoint(TInt aRealEndpoint)
//
// Disables an endpoint (incl. Ep0).
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::DeConfigureEndpoint(%d)", aRealEndpoint));
const TInt n = ArrayIdx2TemplateEp(aRealEndpoint);
if (n < 0)
return KErrArgument;
DisableEndpointInterrupt(n);
if (n == 0)
iEp0Configured = EFalse;
return KErrNone;
}
TInt TTemplateAsspUsbcc::AllocateEndpointResource(TInt aRealEndpoint, TUsbcEndpointResource aResource)
//
// Puts the requested endpoint resource to use, if possible.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::AllocateEndpointResource(%d): %d",
aRealEndpoint, aResource));
// TO DO: Allocate endpoint resource here.
return KErrNone;
}
TInt TTemplateAsspUsbcc::DeAllocateEndpointResource(TInt aRealEndpoint, TUsbcEndpointResource aResource)
//
// Stops the use of the indicated endpoint resource, if beneficial.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::DeAllocateEndpointResource(%d): %d",
aRealEndpoint, aResource));
// TO DO: Deallocate endpoint resource here.
return KErrNone;
}
TBool TTemplateAsspUsbcc::QueryEndpointResource(TInt aRealEndpoint, TUsbcEndpointResource aResource) const
//
// Returns the status of the indicated resource and endpoint.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::QueryEndpointResource(%d): %d",
aRealEndpoint, aResource));
// TO DO: Query endpoint resource here. The return value should reflect the actual state.
return ETrue;
}
TInt TTemplateAsspUsbcc::OpenDmaChannel(TInt aRealEndpoint)
//
// Opens a DMA channel for this endpoint. This function is always called during the creation of an endpoint
// in the PIL. If DMA channels are a scarce resource, it's possible to do nothing here and wait for an
// AllocateEndpointResource call instead.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::OpenDmaChannel(%d)", aRealEndpoint));
// TO DO (optional): Open DMA channel here.
// An error should only be returned in case of an actual DMA problem.
return KErrNone;
}
void TTemplateAsspUsbcc::CloseDmaChannel(TInt aRealEndpoint)
//
// Closes a DMA channel for this endpoint. This function is always called during the destruction of an
// endpoint in the PIL.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::CloseDmaChannel(%d)", aRealEndpoint));
// TO DO (optional): Close DMA channel here (only if it was opened via OpenDmaChannel).
}
TInt TTemplateAsspUsbcc::SetupEndpointRead(TInt aRealEndpoint, TUsbcRequestCallback& aCallback)
//
// Sets up a read request for an endpoint on behalf of the LDD.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::SetupEndpointRead(%d)", aRealEndpoint));
if (!IS_OUT_ENDPOINT(aRealEndpoint))
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: !IS_OUT_ENDPOINT(%d)", aRealEndpoint));
return KErrArgument;
}
TEndpoint* const ep = &iEndpoints[aRealEndpoint];
if (ep->iRxBuf != NULL)
{
__KTRACE_OPT(KUSB, Kern::Printf(" > WARNING: iEndpoints[%d].iRxBuf != NULL", aRealEndpoint));
return KErrGeneral;
}
ep->iRxBuf = aCallback.iBufferStart;
ep->iReceived = 0;
ep->iLength = aCallback.iLength;
// For Bulk reads we start out with the assumption of 1 packet (see BulkReceive for why):
ep->iPackets = IS_BULK_OUT_ENDPOINT(aRealEndpoint) ? 1 : 0;
ep->iRequest = &aCallback;
ep->iPacketIndex = aCallback.iPacketIndex;
if (IS_BULK_OUT_ENDPOINT(aRealEndpoint))
*ep->iPacketIndex = 0; // a one-off optimization
ep->iPacketSize = aCallback.iPacketSize;
const TInt n = ArrayIdx2TemplateEp(aRealEndpoint);
if (ep->iDisabled)
{
ep->iDisabled = EFalse;
EnableEndpointInterrupt(n);
}
else if (ep->iNoBuffer)
{
__KTRACE_OPT(KUSB, Kern::Printf(" > There had been no Rx buffer available: reading Rx FIFO now"));
ep->iNoBuffer = EFalse;
if (IS_BULK_OUT_ENDPOINT(aRealEndpoint))
{
BulkReadRxFifo(n);
}
else if (IS_ISO_OUT_ENDPOINT(aRealEndpoint))
{
IsoReadRxFifo(n);
}
else
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Endpoint not found"));
}
}
return KErrNone;
}
TInt TTemplateAsspUsbcc::SetupEndpointWrite(TInt aRealEndpoint, TUsbcRequestCallback& aCallback)
//
// Sets up a write request for an endpoint on behalf of the LDD.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::SetupEndpointWrite(%d)", aRealEndpoint));
if (!IS_IN_ENDPOINT(aRealEndpoint))
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: !IS_IN_ENDPOINT(%d)", aRealEndpoint));
return KErrArgument;
}
TEndpoint* const ep = &iEndpoints[aRealEndpoint];
if (ep->iTxBuf != NULL)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: iEndpoints[%d].iTxBuf != NULL", aRealEndpoint));
return KErrGeneral;
}
ep->iTxBuf = aCallback.iBufferStart;
ep->iTransmitted = 0;
ep->iLength = aCallback.iLength;
ep->iPackets = 0;
ep->iZlpReqd = aCallback.iZlpReqd;
ep->iRequest = &aCallback;
const TInt n = ArrayIdx2TemplateEp(aRealEndpoint);
if (IS_BULK_IN_ENDPOINT(aRealEndpoint))
{
if (ep->iDisabled)
{
ep->iDisabled = EFalse;
EnableEndpointInterrupt(n);
}
BulkTransmit(n);
}
else if (IS_ISO_IN_ENDPOINT(aRealEndpoint))
{
IsoTransmit(n);
}
else if (IS_INT_IN_ENDPOINT(aRealEndpoint))
{
IntTransmit(n);
}
else
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Endpoint not found"));
}
return KErrNone;
}
TInt TTemplateAsspUsbcc::CancelEndpointRead(TInt aRealEndpoint)
//
// Cancels a read request for an endpoint on behalf of the LDD.
// No completion to the PIL occurs.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::CancelEndpointRead(%d)", aRealEndpoint));
if (!IS_OUT_ENDPOINT(aRealEndpoint))
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: !IS_OUT_ENDPOINT(%d)", aRealEndpoint));
return KErrArgument;
}
TEndpoint* const ep = &iEndpoints[aRealEndpoint];
if (ep->iRxBuf == NULL)
{
__KTRACE_OPT(KUSB, Kern::Printf(" > WARNING: iEndpoints[%d].iRxBuf == NULL", aRealEndpoint));
return KErrNone;
}
ep->iRxBuf = NULL;
ep->iReceived = 0;
ep->iNoBuffer = EFalse;
return KErrNone;
}
TInt TTemplateAsspUsbcc::CancelEndpointWrite(TInt aRealEndpoint)
//
// Cancels a write request for an endpoint on behalf of the LDD.
// No completion to the PIL occurs.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::CancelEndpointWrite(%d)", aRealEndpoint));
if (!IS_IN_ENDPOINT(aRealEndpoint))
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: !IS_IN_ENDPOINT(%d)", aRealEndpoint));
return KErrArgument;
}
TEndpoint* const ep = &iEndpoints[aRealEndpoint];
if (ep->iTxBuf == NULL)
{
__KTRACE_OPT(KUSB, Kern::Printf(" > WARNING: iEndpoints[%d].iTxBuf == NULL", aRealEndpoint));
return KErrNone;
}
// TO DO (optional): Flush the Ep's Tx FIFO here, if possible.
ep->iTxBuf = NULL;
ep->iTransmitted = 0;
ep->iNoBuffer = EFalse;
return KErrNone;
}
TInt TTemplateAsspUsbcc::SetupEndpointZeroRead()
//
// Sets up an Ep0 read request (own function due to Ep0's special status).
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::SetupEndpointZeroRead"));
TEndpoint* const ep = &iEndpoints[KEp0_Out];
if (ep->iRxBuf != NULL)
{
__KTRACE_OPT(KUSB, Kern::Printf(" > WARNING: iEndpoints[%d].iRxBuf != NULL", KEp0_Out));
return KErrGeneral;
}
ep->iRxBuf = iEp0_RxBuf;
ep->iReceived = 0;
return KErrNone;
}
TInt TTemplateAsspUsbcc::SetupEndpointZeroWrite(const TUint8* aBuffer, TInt aLength, TBool aZlpReqd)
//
// Sets up an Ep0 write request (own function due to Ep0's special status).
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::SetupEndpointZeroWrite"));
TEndpoint* const ep = &iEndpoints[KEp0_In];
if (ep->iTxBuf != NULL)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: iEndpoints[%d].iTxBuf != NULL", KEp0_In));
return KErrGeneral;
}
ep->iTxBuf = aBuffer;
ep->iTransmitted = 0;
ep->iLength = aLength;
ep->iZlpReqd = aZlpReqd;
ep->iRequest = NULL;
Ep0Transmit();
return KErrNone;
}
TInt TTemplateAsspUsbcc::SendEp0ZeroByteStatusPacket()
//
// Sets up an Ep0 write request for zero bytes.
// This is a separate function because no data transfer is involved here.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::SendEp0ZeroByteStatusPacket"));
// This is possibly a bit tricky. When this function is called it just means that the higher layer wants a
// ZLP to be sent. Whether we actually send one manually here depends on a number of factors, as the
// current Ep0 state (i.e. the stage of the Ep0 Control transfer), and, in case the hardware handles some
// ZLPs itself, whether it might already handle this one.
// Here is an example of what the checking of the conditions might look like:
#ifndef USB_SUPPORTS_SET_DESCRIPTOR_REQUEST
if ((!iEp0ReceivedNonStdRequest && iEp0State == EP0_IN_DATA_PHASE) ||
#else
if ((!iEp0ReceivedNonStdRequest && iEp0State != EP0_IDLE) ||
#endif
#ifdef USB_SUPPORTS_PREMATURE_STATUS_IN
(iEp0ReceivedNonStdRequest && iEp0State != EP0_OUT_DATA_PHASE))
#else
(iEp0ReceivedNonStdRequest))
#endif
{
// TO DO: Arrange for the sending of a ZLP here.
}
return KErrNone;
}
TInt TTemplateAsspUsbcc::StallEndpoint(TInt aRealEndpoint)
//
// Stalls an endpoint.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::StallEndpoint(%d)", aRealEndpoint));
if (IS_ISO_ENDPOINT(aRealEndpoint))
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Iso endpoint cannot be stalled"));
return KErrArgument;
}
// TO DO: Stall the endpoint here.
return KErrNone;
}
TInt TTemplateAsspUsbcc::ClearStallEndpoint(TInt aRealEndpoint)
//
// Clears the stall condition of an endpoint.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::ClearStallEndpoint(%d)", aRealEndpoint));
if (IS_ISO_ENDPOINT(aRealEndpoint))
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Iso endpoint cannot be unstalled"));
return KErrArgument;
}
// TO DO: De-stall the endpoint here.
return KErrNone;
}
TInt TTemplateAsspUsbcc::EndpointStallStatus(TInt aRealEndpoint) const
//
// Reports the stall status of an endpoint.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::EndpointStallStatus(%d)", aRealEndpoint));
if (IS_ISO_ENDPOINT(aRealEndpoint))
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Iso endpoint has no stall status"));
return KErrArgument;
}
// TO DO: Query endpoint stall status here. The return value should reflect the actual state.
return ETrue;
}
TInt TTemplateAsspUsbcc::EndpointErrorStatus(TInt aRealEndpoint) const
//
// Reports the error status of an endpoint.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::EndpointErrorStatus(%d)", aRealEndpoint));
if (!IS_VALID_ENDPOINT(aRealEndpoint))
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: !IS_VALID_ENDPOINT(%d)", aRealEndpoint));
return KErrArgument;
}
// TO DO: Query endpoint error status here. The return value should reflect the actual state.
// With some UDCs there is no way of inquiring the endpoint error status; say 'ETrue' in that case.
return KErrNone;
}
TInt TTemplateAsspUsbcc::ResetDataToggle(TInt aRealEndpoint)
//
// Resets to zero the data toggle bit of an endpoint.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::ResetDataToggle(%d)", aRealEndpoint));
// TO DO: Reset the endpoint's data toggle bit here.
// With some UDCs there is no way to individually reset the endpoint's toggle bits; just return KErrNone
// in that case.
return KErrNone;
}
TInt TTemplateAsspUsbcc::SynchFrameNumber() const
//
// For use with isochronous endpoints only. Causes the SOF frame number to be returned.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::SynchFrameNumber"));
// TO DO: Query and return the SOF frame number here.
return 0;
}
void TTemplateAsspUsbcc::SetSynchFrameNumber(TInt aFrameNumber)
//
// For use with isochronous endpoints only. Causes the SOF frame number to be stored.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::SetSynchFrameNumber(%d)", aFrameNumber));
// We should actually store this number somewhere. But the PIL always sends '0x00'
// in response to a SYNCH_FRAME request...
// TO DO: Store the frame number. Alternatively (until SYNCH_FRAME request specification changes): Do
// nothing.
}
TInt TTemplateAsspUsbcc::StartUdc()
//
// Called to initialize the device controller hardware before any operation can be performed.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::StartUdc"));
if (iInitialized)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: UDC already initialised"));
return KErrNone;
}
// Disable UDC (might also reset the entire design):
UdcDisable();
// Enable UDC's clock:
// TO DO: Enable UDC's clock here.
// Even if only one USB feature has been enabled, we later need to undo it:
iInitialized = ETrue;
// Bind & enable the UDC interrupt
if (SetupUdcInterrupt() != KErrNone)
{
return KErrGeneral;
}
// Write meaningful values to some registers:
InitialiseUdcRegisters();
// Finally, turn on the UDC:
UdcEnable();
return KErrNone;
}
TInt TTemplateAsspUsbcc::StopUdc()
//
// Basically, makes undone what happened in StartUdc.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::StopUdc"));
if (!iInitialized)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: UDC not initialized"));
return KErrNone;
}
// Disable UDC:
UdcDisable();
// Mask (disable) Reset interrupt:
// TO DO: Mask (disable) the USB Reset interrupt here.
// Disable & unbind the UDC interrupt:
ReleaseUdcInterrupt();
// Finally turn off UDC's clock:
// TO DO: Disable UDC's clock here.
// Only when all USB features have been disabled we'll call it a day:
iInitialized = EFalse;
return KErrNone;
}
TInt TTemplateAsspUsbcc::UdcConnect()
//
// Connects the UDC to the bus under software control. How this is achieved depends on the UDC; the
// functionality might also be part of the Variant component (instead of the ASSP).
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::UdcConnect"));
// Here: A call into the Variant-provided function.
return iAssp->UsbConnect();
}
TInt TTemplateAsspUsbcc::UdcDisconnect()
//
// Disconnects the UDC from the bus under software control. How this is achieved depends on the UDC; the
// functionality might also be part of the Variant component (instead of the ASSP).
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::UdcDisconnect"));
// Here: A call into the Variant-provided function.
return iAssp->UsbDisconnect();
}
TBool TTemplateAsspUsbcc::UsbConnectionStatus() const
//
// Returns a value showing the USB cable connection status of the device.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::UsbConnectionStatus"));
return iCableConnected;
}
TBool TTemplateAsspUsbcc::UsbPowerStatus() const
//
// Returns a truth value showing whether VBUS is currently powered or not.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::UsbPowerStatus"));
return iBusIsPowered;
}
TBool TTemplateAsspUsbcc::DeviceSelfPowered() const
//
// Returns a truth value showing whether the device is currently self-powered or not.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::DeviceSelfPowered"));
// TO DO: Query and return self powered status here. The return value should reflect the actual state.
// (This can be always 'ETrue' if the UDC does not support bus-powered devices.)
return ETrue;
}
const TUsbcEndpointCaps* TTemplateAsspUsbcc::DeviceEndpointCaps() const
//
// Returns a pointer to an array of elements, each of which describes the capabilities of one endpoint.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::DeviceEndpointCaps"));
__KTRACE_OPT(KUSB, Kern::Printf(" > Ep: Sizes Mask, Types Mask"));
__KTRACE_OPT(KUSB, Kern::Printf(" > --------------------------"));
for (TInt i = 0; i < KUsbTotalEndpoints; ++i)
{
__KTRACE_OPT(KUSB, Kern::Printf(" > %02d: 0x%08x, 0x%08x",
i, DeviceEndpoints[i].iSizes, DeviceEndpoints[i].iTypesAndDir));
}
return DeviceEndpoints;
}
TInt TTemplateAsspUsbcc::DeviceTotalEndpoints() const
//
// Returns the element number of the endpoints array a pointer to which is returned by DeviceEndpointCaps.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::DeviceTotalEndpoints"));
return KUsbTotalEndpoints;
}
TBool TTemplateAsspUsbcc::SoftConnectCaps() const
//
// Returns a truth value showing whether or not there is the capability to disconnect and re-connect the D+
// line under software control.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::SoftConnectCaps"));
return iSoftwareConnectable;
}
void TTemplateAsspUsbcc::Suspend()
//
// Called by the PIL after a Suspend event has been reported (by us).
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::Suspend"));
// TO DO (optional): Implement here anything the device might require after bus SUSPEND signalling.
}
void TTemplateAsspUsbcc::Resume()
//
// Called by the PIL after a Resume event has been reported (by us).
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::Resume"));
// TO DO (optional): Implement here anything the device might require after bus RESUME signalling.
}
void TTemplateAsspUsbcc::Reset()
//
// Called by the PIL after a Reset event has been reported (by us).
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::Reset"));
// This does not really belong here, but has to do with the way the PIL sets
// up Ep0 reads and writes.
TEndpoint* ep = &iEndpoints[0];
ep->iRxBuf = NULL;
++ep;
ep->iTxBuf = NULL;
// Idle
Ep0NextState(EP0_IDLE);
// TO DO (optional): Implement here anything the device might require after bus RESET signalling.
// Write meaningful values to some registers
InitialiseUdcRegisters();
UdcEnable();
if (iEp0Configured)
EnableEndpointInterrupt(0);
}
// --- TTemplateAsspUsbcc private --------------------------------------------------
void TTemplateAsspUsbcc::InitialiseUdcRegisters()
//
// Called after every USB Reset etc.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::InitialiseUdcRegisters"));
// Unmask Suspend interrupt
// TO DO: Unmask Suspend interrupt here.
// Unmask Resume interrupt
// TO DO: Unmask Resume interrupt here.
// Unmask Start-of-Frame (SOF) interrupt
// TO DO (optional): Unmask SOF interrupt here.
// Disable interrupt requests for all endpoints
// TO DO: Disable interrupt requests for all endpoints here.
}
void TTemplateAsspUsbcc::UdcEnable()
//
// Enables the UDC for USB transmission or reception.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::UdcEnable"));
// TO DO: Do whatever is necessary to enable the UDC here. This might include enabling (unmasking)
// the USB Reset interrupt, setting a UDC enable bit, etc.
}
void TTemplateAsspUsbcc::UdcDisable()
//
// Disables the UDC.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::UdcDisable"));
// TO DO: Do whatever is necessary to disable the UDC here. This might include disabling (masking)
// the USB Reset interrupt, clearing a UDC enable bit, etc.
}
void TTemplateAsspUsbcc::EnableEndpointInterrupt(TInt aEndpoint)
//
// Enables interrupt requests for an endpoint.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::EnableEndpointInterrupt(%d)", aEndpoint));
// Enable (unmask) interrupt requests for this endpoint:
// TO DO: Enable interrupt requests for aEndpoint here.
}
void TTemplateAsspUsbcc::DisableEndpointInterrupt(TInt aEndpoint)
//
// Disables interrupt requests for an endpoint.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::DisableEndpointInterrupt(%d)", aEndpoint));
// Disable (mask) interrupt requests for this endpoint:
// TO DO: Disable interrupt requests for aEndpoint here.
}
void TTemplateAsspUsbcc::ClearEndpointInterrupt(TInt aEndpoint)
//
// Clears a pending interrupt request for an endpoint.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::ClearEndpointInterrupt(%d)", aEndpoint));
// Clear (reset) pending interrupt request for this endpoint:
// TO DO: Clear interrupt request for aEndpoint here.
}
void TTemplateAsspUsbcc::Ep0IntService()
//
// ISR for endpoint zero interrupt.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::Ep0IntService"));
// TO DO: Enquire about Ep0 status & the interrupt cause here. Depending on the event and the Ep0 state,
// one or more of the following functions might then be called:
Ep0Cancel();
Ep0ReadSetupPkt();
Ep0EndXfer();
Ep0PrematureStatusOut();
Ep0Transmit();
Ep0StatusIn();
Ep0Receive();
ClearStallEndpoint(0);
ClearEndpointInterrupt(0);
return;
}
void TTemplateAsspUsbcc::Ep0ReadSetupPkt()
//
// Called from the Ep0 ISR when a new Setup packet has been received.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::Ep0ReadSetupPkt"));
TEndpoint* const ep = &iEndpoints[KEp0_Out];
TUint8* buf = ep->iRxBuf;
if (!buf)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: No Ep0 Rx buffer available (1)"));
StallEndpoint(KEp0_Out);
return;
}
// TO DO: Read Setup packet data from Rx FIFO into 'buf' here.
// (In this function we don't need to use "ep->iReceived" since Setup packets
// are always 8 bytes long.)
// Upcall into PIL to determine next Ep0 state:
TUsbcEp0State state = EnquireEp0NextState(ep->iRxBuf);
if (state == EEp0StateStatusIn)
{
Ep0NextState(EP0_IDLE); // Ep0 No Data
}
else if (state == EEp0StateDataIn)
{
Ep0NextState(EP0_IN_DATA_PHASE); // Ep0 Control Read
}
else
{
Ep0NextState(EP0_OUT_DATA_PHASE); // Ep0 Control Write
}
ep->iRxBuf = NULL;
const TInt r = Ep0RequestComplete(KEp0_Out, 8, KErrNone);
// Don't finish (proceed) if request completion returned 'KErrNotFound'!
if (!(r == KErrNone || r == KErrGeneral))
{
DisableEndpointInterrupt(0);
}
// TO DO (optional): Clear Ep0 Setup condition flags here.
#ifdef USB_SUPPORTS_PREMATURE_STATUS_IN
if (iEp0State == EP0_OUT_DATA_PHASE)
{
// Allow for a premature STATUS IN
// TO DO: Arrange for the sending of a ZLP here.
}
#endif
}
void TTemplateAsspUsbcc::Ep0ReadSetupPktProceed()
//
// Called by the PIL to signal that it has finished processing a received Setup packet and that the PSL can
// now prepare itself for the next Ep0 reception (for instance by re-enabling the Ep0 interrupt).
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::Ep0ReadSetupPktProceed"));
EnableEndpointInterrupt(0);
}
void TTemplateAsspUsbcc::Ep0Receive()
//
// Called from the Ep0 ISR when a data packet has been received.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::Ep0Receive"));
TEndpoint* const ep = &iEndpoints[KEp0_Out];
TUint8* buf = ep->iRxBuf;
if (!buf)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: No Ep0 Rx buffer available (2)"));
StallEndpoint(KEp0_Out);
return;
}
TInt n = 0;
// TO DO: Read packet data from Rx FIFO into 'buf' and update 'n' (# of received bytes) here.
ep->iReceived = n;
ep->iRxBuf = NULL;
const TInt r = Ep0RequestComplete(KEp0_Out, n, KErrNone);
// Don't finish (proceed) if request was 'KErrNotFound'!
if (!(r == KErrNone || r == KErrGeneral))
{
DisableEndpointInterrupt(0);
}
// TO DO (optional): Clear Ep0 Rx condition flags here.
#ifdef USB_SUPPORTS_PREMATURE_STATUS_IN
// Allow for a premature STATUS IN
// TO DO: Arrange for the sending of a ZLP here.
#endif
}
void TTemplateAsspUsbcc::Ep0ReceiveProceed()
//
// Called by the PIL to signal that it has finished processing a received Ep0 data packet and that the PSL can
// now prepare itself for the next Ep0 reception (for instance by re-enabling the Ep0 interrupt).
//
{
Ep0ReadSetupPktProceed();
}
void TTemplateAsspUsbcc::Ep0Transmit()
//
// Called from either the Ep0 ISR or the PIL when a data packet has been or is to be transmitted.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::Ep0Transmit"));
if (iEp0State != EP0_IN_DATA_PHASE)
{
__KTRACE_OPT(KUSB, Kern::Printf(" > WARNING: Invalid Ep0 state when trying to handle EP0 IN"));
// TO DO (optional): Do something about this warning.
}
TEndpoint* const ep = &iEndpoints[KEp0_In];
const TUint8* buf = ep->iTxBuf;
if (!buf)
{
__KTRACE_OPT(KUSB, Kern::Printf(" > No Tx buffer available: returning"));
return;
}
const TInt t = ep->iTransmitted; // already transmitted
buf += t;
TInt n = 0; // now transmitted
// TO DO: Write packet data (if any) into Tx FIFO from 'buf' and update 'n' (# of tx'ed bytes) here.
ep->iTransmitted += n;
// coverity[dead_error_condition]
// The next line should be reachable when this template file is edited for use
if (n == KEp0MaxPktSz)
{
if (ep->iTransmitted == ep->iLength && !(ep->iZlpReqd))
Ep0NextState(EP0_END_XFER);
}
else if (n && n != KEp0MaxPktSz)
{
// Send off the data
__ASSERT_DEBUG((ep->iTransmitted == ep->iLength),
Kern::Printf(" > ERROR: Short packet in mid-transfer"));
Ep0NextState(EP0_END_XFER);
// TO DO: Send off the data here.
}
else // if (n == 0)
{
__ASSERT_DEBUG((ep->iTransmitted == ep->iLength),
Kern::Printf(" > ERROR: Nothing transmitted but still not finished"));
if (ep->iZlpReqd)
{
// Send a zero length packet
ep->iZlpReqd = EFalse;
Ep0NextState(EP0_END_XFER);
// TO DO: Arrange for the sending of a ZLP here.
}
else
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: nothing transmitted & no ZLP req'd"));
}
}
}
void TTemplateAsspUsbcc::Ep0EndXfer()
//
// Called at the end of a Ep0 Control transfer.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::Ep0EndXfer"));
// TO DO (optional): Clear Ep0 Rx condition flags here.
Ep0NextState(EP0_IDLE);
TEndpoint* const ep = &iEndpoints[KEp0_In];
ep->iTxBuf = NULL;
(void) Ep0RequestComplete(KEp0_In, ep->iTransmitted, KErrNone);
}
void TTemplateAsspUsbcc::Ep0Cancel()
//
// Called when an ongoing Ep0 Control transfer has to be aborted prematurely (for instance when receiving a
// new Setup packet before the processing of the old one has completed).
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::Ep0Cancel"));
Ep0NextState(EP0_IDLE);
TEndpoint* const ep = &iEndpoints[KEp0_In];
if (ep->iTxBuf)
{
ep->iTxBuf = NULL;
const TInt err = (ep->iTransmitted == ep->iLength) ? KErrNone : KErrCancel;
(void) Ep0RequestComplete(KEp0_In, ep->iTransmitted, err);
}
}
void TTemplateAsspUsbcc::Ep0PrematureStatusOut()
//
// Called when an ongoing Ep0 Control transfer encounters a premature Status OUT condition.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::Ep0PrematureStatusOut"));
// TO DO (optional): Clear Ep0 Rx condition flags here.
Ep0NextState(EP0_IDLE);
// TO DO (optional): Flush the Ep0 Tx FIFO here, if possible.
TEndpoint* const ep = &iEndpoints[KEp0_In];
if (ep->iTxBuf)
{
ep->iTxBuf = NULL;
(void) Ep0RequestComplete(KEp0_In, ep->iTransmitted, KErrPrematureEnd);
}
}
void TTemplateAsspUsbcc::Ep0StatusIn()
//
// Called when an ongoing Ep0 Control transfer moves to a Status IN stage.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::Ep0StatusIn"));
Ep0NextState(EP0_IDLE);
}
void TTemplateAsspUsbcc::BulkTransmit(TInt aEndpoint)
//
// Endpoint 1 (BULK IN).
// Called from either the Ep ISR or the PIL when a data packet has been or is to be transmitted.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::BulkTransmit(%d)", aEndpoint));
// TO DO: Enquire about Ep status here.
const TInt idx = 3; // only in our special case of course!
TEndpoint* const ep = &iEndpoints[idx];
const TUint8* buf = ep->iTxBuf;
if (!buf)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: No Tx buffer has been set up"));
DisableEndpointInterrupt(aEndpoint);
ep->iDisabled = ETrue;
ClearEndpointInterrupt(aEndpoint);
return;
}
const TInt t = ep->iTransmitted; // already transmitted
const TInt len = ep->iLength; // to be sent in total
// (len || ep->iPackets): Don't complete for a zero bytes request straight away.
if (t >= len && (len || ep->iPackets))
{
if (ep->iZlpReqd)
{
__KTRACE_OPT(KUSB, Kern::Printf(" > 'Transmit Short Packet' explicitly"));
// TO DO: Arrange for the sending of a ZLP here.
ep->iZlpReqd = EFalse;
}
else
{
__KTRACE_OPT(KUSB, Kern::Printf(" > All data sent: %d --> completing", len));
ep->iTxBuf = NULL;
ep->iRequest->iTxBytes = ep->iTransmitted;
ep->iRequest->iError = KErrNone;
EndpointRequestComplete(ep->iRequest);
ep->iRequest = NULL;
}
}
else
{
buf += t;
TInt left = len - t; // left in total
TInt n = (left >= KBlkMaxPktSz) ? KBlkMaxPktSz : left; // now to be transmitted
__KTRACE_OPT(KUSB, Kern::Printf(" > About to send %d bytes (%d bytes left in total)", n, left));
// TO DO: Write data into Tx FIFO from 'buf' here.
ep->iTransmitted += n;
ep->iPackets++; // only used for (len == 0) case
left -= n; // (still) left in total
if (n < KBlkMaxPktSz)
{
__KTRACE_OPT(KUSB, Kern::Printf(" > 'Transmit Short Packet' implicitly"));
// TO DO: Arrange for the sending of a ZLP here.
ep->iZlpReqd = EFalse;
}
// If double-buffering is available, it might be possible to stick a second packet
// into the FIFO here.
// TO DO (optional): Send another packet if possible (& available) here.
}
ClearEndpointInterrupt(aEndpoint);
}
void TTemplateAsspUsbcc::BulkReceive(TInt aEndpoint)
//
// Endpoint 2 (BULK OUT) (This one is called in an ISR.)
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::BulkReceive(%d)", aEndpoint));
// TO DO: Enquire about Ep status here.
const TUint32 status = *(TUint32*)0xdefaced; // bogus
const TInt idx = 4; // only in our special case of course!
TEndpoint* const ep = &iEndpoints[idx];
TUint8* buf = ep->iRxBuf;
if (!buf)
{
__KTRACE_OPT(KUSB, Kern::Printf(" > No Rx buffer available: setting iNoBuffer"));
ep->iNoBuffer = ETrue;
DisableEndpointInterrupt(aEndpoint);
ep->iDisabled = ETrue;
ClearEndpointInterrupt(aEndpoint);
return;
}
TInt bytes = 0;
const TInt r = ep->iReceived; // already received
// TO DO: Check whether a ZLP was received here:
if (status & 1) // some condition
{
__KTRACE_OPT(KUSB, Kern::Printf(" > received zero-length packet"));
}
else if (status & 2) // some other condition
{
// TO DO: Get number of bytes received here.
bytes = *(TUint32*)0xdadadada; // bogus
__KTRACE_OPT(KUSB, Kern::Printf(" > Bulk received: %d bytes", bytes));
if (r + bytes > ep->iLength)
{
__KTRACE_OPT(KUSB, Kern::Printf(" > not enough space in rx buffer: setting iNoBuffer"));
ep->iNoBuffer = ETrue;
StopRxTimer(ep);
*ep->iPacketSize = ep->iReceived;
RxComplete(ep);
// TO DO (optional): Clear Ep Rx condition flags here.
ClearEndpointInterrupt(aEndpoint);
return;
}
buf += r; // set buffer pointer
// TO DO: Read 'bytes' bytes from Rx FIFO into 'buf' here.
ep->iReceived += bytes;
}
else
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Inconsistent Ep%d state", aEndpoint));
// TO DO (optional): Clear Ep Rx condition flags here.
ClearEndpointInterrupt(aEndpoint);
return;
}
if (bytes == 0)
{
// ZLPs must be recorded separately
const TInt i = ep->iReceived ? 1 : 0;
ep->iPacketIndex[i] = r;
ep->iPacketSize[i] = 0;
// If there were data packets before: total packets reported 1 -> 2
ep->iPackets += i;
}
if ((bytes < KBlkMaxPktSz) ||
(ep->iReceived == ep->iLength))
{
StopRxTimer(ep);
*ep->iPacketSize = ep->iReceived;
RxComplete(ep);
// since we have no buffer any longer we disable interrupts:
DisableEndpointInterrupt(aEndpoint);
ep->iDisabled = ETrue;
}
else
{
if (!ep->iRxTimerSet)
{
__KTRACE_OPT(KUSB, Kern::Printf(" > setting rx timer"));
ep->iRxTimerSet = ETrue;
ep->iRxTimer.OneShot(KRxTimerTimeout);
}
else
{
ep->iRxMoreDataRcvd = ETrue;
}
}
// TO DO (optional): Clear Ep Rx condition flags here.
ClearEndpointInterrupt(aEndpoint);
}
void TTemplateAsspUsbcc::BulkReadRxFifo(TInt aEndpoint)
//
// Endpoint 2 (BULK OUT) (This one is called w/o interrupt to be served.)
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::BulkReadRxFifo(%d)", aEndpoint));
// TO DO: Enquire about Ep status here.
const TUint32 status = *(TUint32*)0xdefaced; // bogus
const TInt idx = 4; // only in our special case of course!
TEndpoint* const ep = &iEndpoints[idx];
TUint8* buf = ep->iRxBuf;
if (!buf)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: No Rx buffer has been set up"));
return;
}
TInt bytes = 0;
const TInt r = ep->iReceived; // already received
// TO DO: Check whether a ZLP was received here:
if (status & 1) // some condition
{
__KTRACE_OPT(KUSB, Kern::Printf(" > received zero-length packet"));
}
else if (status & 2) // some other condition
{
// TO DO: Get number of bytes received here.
bytes = *(TUint32*)0xdadadada; // bogus
__KTRACE_OPT(KUSB, Kern::Printf(" > Bulk received: %d bytes", bytes));
if (r + bytes > ep->iLength)
{
__KTRACE_OPT(KUSB, Kern::Printf(" > not enough space in rx buffer: setting iNoBuffer"));
ep->iNoBuffer = ETrue;
*ep->iPacketSize = ep->iReceived;
RxComplete(ep);
return;
}
buf += r; // set buffer pointer
// TO DO: Read 'bytes' bytes from Rx FIFO into 'buf' here.
ep->iReceived += bytes;
}
else
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Inconsistent Ep%d state", aEndpoint));
return;
}
if (bytes == 0)
{
// ZLPs must be recorded separately
const TInt i = ep->iReceived ? 1 : 0;
ep->iPacketIndex[i] = r;
ep->iPacketSize[i] = 0;
// If there were data packets before: total packets reported 1 -> 2
ep->iPackets += i;
}
if ((bytes < KBlkMaxPktSz) ||
(ep->iReceived == ep->iLength))
{
*ep->iPacketSize = ep->iReceived;
RxComplete(ep);
}
else
{
if (!ep->iRxTimerSet)
{
__KTRACE_OPT(KUSB, Kern::Printf(" > setting rx timer"));
ep->iRxTimerSet = ETrue;
ep->iRxTimer.OneShot(KRxTimerTimeout);
}
else
{
ep->iRxMoreDataRcvd = ETrue;
}
}
// TO DO (optional): Clear Ep Rx condition flags here.
}
void TTemplateAsspUsbcc::IsoTransmit(TInt aEndpoint)
//
// Endpoint 3 (ISOCHRONOUS IN).
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::IsoTransmit(%d)", aEndpoint));
// TO DO: Write data to endpoint FIFO. Might be similar to BulkTransmit.
}
void TTemplateAsspUsbcc::IsoReceive(TInt aEndpoint)
//
// Endpoint 4 (ISOCHRONOUS OUT) (This one is called in an ISR.)
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::IsoReceive(%d)", aEndpoint));
// TO DO: Read data from endpoint FIFO. Might be similar to BulkReceive.
}
void TTemplateAsspUsbcc::IsoReadRxFifo(TInt aEndpoint)
//
// Endpoint 4 (ISOCHRONOUS OUT) (This one is called w/o interrupt to be served.)
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::IsoReadRxFifo(%d)", aEndpoint));
// TO DO: Read data from endpoint FIFO. Might be similar to BulkReadRxFifo.
}
void TTemplateAsspUsbcc::IntTransmit(TInt aEndpoint)
//
// Endpoint 5 (INTERRUPT IN).
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::IntTransmit(%d)", aEndpoint));
// TO DO: Write data to endpoint FIFO. Might be similar to BulkTransmit.
}
void TTemplateAsspUsbcc::RxComplete(TEndpoint* aEndpoint)
//
// Called at the end of an Rx (OUT) transfer to complete to the PIL.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::RxComplete"));
TUsbcRequestCallback* const req = aEndpoint->iRequest;
__ASSERT_DEBUG((req != NULL), Kern::Fault(KUsbPanicCat, __LINE__));
aEndpoint->iRxBuf = NULL;
aEndpoint->iRxTimerSet = EFalse;
aEndpoint->iRxMoreDataRcvd = EFalse;
req->iRxPackets = aEndpoint->iPackets;
req->iError = aEndpoint->iLastError;
EndpointRequestComplete(req);
aEndpoint->iRequest = NULL;
}
void TTemplateAsspUsbcc::StopRxTimer(TEndpoint* aEndpoint)
//
// Stops (cancels) the Rx timer for an endpoint.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::StopRxTimer"));
if (aEndpoint->iRxTimerSet)
{
__KTRACE_OPT(KUSB, Kern::Printf(" > stopping rx timer"));
aEndpoint->iRxTimer.Cancel();
aEndpoint->iRxTimerSet = EFalse;
}
}
void TTemplateAsspUsbcc::EndpointIntService(TInt aEndpoint)
//
// ISR for endpoint interrupts.
// Note: the aEndpoint here is a "hardware endpoint", not a aRealEndpoint.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::EndpointIntService(%d)", aEndpoint));
switch (aEndpoint)
{
case 0:
Ep0IntService();
break;
case 1:
BulkTransmit(aEndpoint);
break;
case 2:
BulkReceive(aEndpoint);
break;
case 3:
IsoTransmit(aEndpoint);
break;
case 4:
IsoReceive(aEndpoint);
break;
case 5:
IntTransmit(aEndpoint);
break;
default:
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Endpoint not found"));
break;
}
}
TInt TTemplateAsspUsbcc::ResetIntService()
//
// ISR for a USB Reset event interrupt.
// This function returns a value which can be used on the calling end to decide how to proceed.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::ResetIntService"));
// Clear an interrupt:
// TO DO: Clear reset interrupt flag here.
// TO DO (optional): Enquire about special conditions and possibly return here.
DeviceEventNotification(EUsbEventReset);
return KErrNone;
}
void TTemplateAsspUsbcc::SuspendIntService()
//
// ISR for a USB Suspend event interrupt.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::SuspendIntService"));
// Clear an interrupt:
// TO DO: Clear suspend interrupt flag here.
DeviceEventNotification(EUsbEventSuspend);
}
void TTemplateAsspUsbcc::ResumeIntService()
//
// ISR for a USB Resume event interrupt.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::ResumeIntService"));
// Clear an interrupt:
// TO DO: Clear resume interrupt flag here.
DeviceEventNotification(EUsbEventResume);
}
void TTemplateAsspUsbcc::SofIntService()
//
// ISR for a USB Start-of-Frame event interrupt.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::SofIntService"));
// Clear an interrupt:
// TO DO: Clear SOF interrupt flag here.
// TO DO (optional): Do something about the SOF condition.
}
void TTemplateAsspUsbcc::UdcInterruptService()
//
// Main UDC ISR - determines the cause of the interrupt, clears the condition, dispatches further for service.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::InterruptService"));
// TO DO: Find the cause of the interrupt (possibly querying a number of status registers) here.
// Determine the type of UDC interrupt & then serve it:
// (The following operations are of course EXAMPLES only.)
volatile const TUint32* const status_reg = (TUint32*) 0xdefaced;
const TUint32 status = *status_reg;
enum {reset_interrupt, suspend_interrupt, resume_interrupt, sof_interrupt, ep_interrupt};
// Reset interrupt
if (status & reset_interrupt)
{
ResetIntService();
}
// Suspend interrupt
if (status & suspend_interrupt)
{
SuspendIntService();
}
// Resume interrupt
if (status & resume_interrupt)
{
ResumeIntService();
}
// Start-of-Frame interrupt
if (status & sof_interrupt)
{
SofIntService();
}
// Endpoint interrupt
if (status & ep_interrupt)
{
const TInt ep = status & 0xffff0000;
{
EndpointIntService(ep);
}
}
}
void TTemplateAsspUsbcc::Ep0NextState(TEp0State aNextState)
//
// Moves the Ep0 state to aNextState.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::Ep0NextState"));
iEp0State = aNextState;
}
void TTemplateAsspUsbcc::UdcIsr(TAny* aPtr)
//
// This is the static ASSP first-level UDC interrupt service routine. It dispatches the call to the
// actual controller's ISR.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::UdcIsr"));
static_cast<TTemplateAsspUsbcc*>(aPtr)->UdcInterruptService();
}
TInt TTemplateAsspUsbcc::UsbClientConnectorCallback(TAny* aPtr)
//
// This function is called in ISR context by the Variant's UsbClientConnectorInterruptService.
// (This function is static.)
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::UsbClientConnectorCallback"));
TTemplateAsspUsbcc* const ptr = static_cast<TTemplateAsspUsbcc*>(aPtr);
ptr->iCableConnected = ptr->iAssp->UsbClientConnectorInserted();
#ifdef _DEBUG
_LIT(KIns, "inserted");
_LIT(KRem, "removed");
__KTRACE_OPT(KUSB, Kern::Printf(" > USB cable now %lS", ptr->iCableConnected ? &KIns : &KRem));
#endif
if (ptr->iCableConnected)
{
ptr->DeviceEventNotification(EUsbEventCableInserted);
}
else
{
ptr->DeviceEventNotification(EUsbEventCableRemoved);
}
return KErrNone;
}
TInt TTemplateAsspUsbcc::SetupUdcInterrupt()
//
// Registers and enables the UDC interrupt (ASSP first level interrupt).
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::SetupUdcInterrupt"));
// Register UDC interrupt:
const TInt error = Interrupt::Bind(EAsspIntIdUsb, UdcIsr, this);
if (error != KErrNone)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Binding UDC interrupt failed"));
return error;
}
// Enable UDC interrupt:
Interrupt::Enable(EAsspIntIdUsb);
return KErrNone;
}
void TTemplateAsspUsbcc::ReleaseUdcInterrupt()
//
// Disables and unbinds the UDC interrupt.
//
{
__KTRACE_OPT(KUSB, Kern::Printf("TTemplateAsspUsbcc::ReleaseUdcInterrupt"));
// Disable UDC interrupt:
Interrupt::Disable(EAsspIntIdUsb);
// Unregister UDC interrupt:
Interrupt::Unbind(EAsspIntIdUsb);
}
//
// --- DLL Exported Function --------------------------------------------------
//
DECLARE_STANDARD_EXTENSION()
//
// Creates and initializes a new USB client controller object on the kernel heap.
//
{
__KTRACE_OPT(KUSB, Kern::Printf(" > Initializing USB client support (Udcc)..."));
TTemplateAsspUsbcc* const usbcc = new TTemplateAsspUsbcc();
if (!usbcc)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Memory allocation for TTemplateAsspUsbcc failed"));
return KErrNoMemory;
}
TInt r;
if ((r = usbcc->Construct()) != KErrNone)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Construction of TTemplateAsspUsbcc failed (%d)", r));
delete usbcc;
return r;
}
if (usbcc->RegisterUdc(0) == NULL)
{
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: PIL registration of PSL failed"));
delete usbcc;
return KErrGeneral;
}
__KTRACE_OPT(KUSB, Kern::Printf(" > Initializing USB client support: Done"));
return KErrNone;
}
// --- EOF --------------------------------------------------------------------