// Copyright (c) 2007-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
//
#include <plat_priv.h>
#include "mm.h"
#include "mmu.h"
#include "mslaballoc.h"
//
// RSlabAllocatorBase
//
RSlabAllocatorBase::RSlabAllocatorBase(TBool aDelayedCleanup)
: iFreeCount(0), iReserveCount(0),
iSpinLock(TSpinLock::EOrderGenericIrqHigh3),
iDelayedCleanup(aDelayedCleanup), iSlabMap(0), iMemory(0), iMapping(0)
{
}
RSlabAllocatorBase::~RSlabAllocatorBase()
{
delete iSlabMap;
MM::MappingDestroy(iMapping);
MM::MemoryDestroy(iMemory);
}
TInt RSlabAllocatorBase::Construct(TUint aMaxSlabs, TUint aObjectSize)
{
return Construct(aMaxSlabs,aObjectSize,0);
}
TInt RSlabAllocatorBase::Construct(TUint aMaxSlabs, TUint aObjectSize, TLinAddr aBase)
{
TRACE2(("RSlabAllocatorBase::Construct(0x%08x,0x%08x,0x%08x)",aMaxSlabs,aObjectSize,aBase));
// set sizes...
iObjectSize = aObjectSize;
iObjectsPerSlab = ((KPageSize-sizeof(TSlabHeader))/aObjectSize);
// sanity check arguments...
__NK_ASSERT_DEBUG(iObjectsPerSlab);
__NK_ASSERT_DEBUG(aObjectSize>=sizeof(SDblQueLink));
__NK_ASSERT_DEBUG(aObjectSize%sizeof(TAny*)==0);
// construct bitmap for slabs...
iSlabMap = TBitMapAllocator::New(aMaxSlabs,ETrue);
if(!iSlabMap)
return KErrNoMemory;
if(aBase)
{
// setup base address, we expect one slab to already be mapped at this address...
iBase = aBase;
// initialise first slab...
iSlabMap->Alloc(0,1);
InitSlab(iBase);
}
else
{
// construct memory object for slabs...
__NK_ASSERT_DEBUG(!iMemory);
TInt r = MM::MemoryNew(iMemory,EMemoryObjectUnpaged,aMaxSlabs);
if(r!=KErrNone)
return r;
// construct memory mapping for slabs...
r = MM::MappingNew(iMapping,iMemory,ESupervisorReadWrite,KKernelOsAsid);
if(r!=KErrNone)
return r;
// setup base address...
iBase = MM::MappingBase(iMapping);
}
// done...
return KErrNone;
}
TAny* RSlabAllocatorBase::Alloc()
{
#ifdef _DEBUG
RamAllocLock::Lock();
TBool fail = K::CheckForSimulatedAllocFail();
RamAllocLock::Unlock();
if(fail)
return 0;
#endif
__SPIN_LOCK_IRQ(iSpinLock);
// check if we need to allocate a new slab...
if(iFreeCount<=iReserveCount && !NewSlab())
{
__SPIN_UNLOCK_IRQ(iSpinLock);
return 0;
}
// get a slab with unused objects...
TSlabHeader* slab = (TSlabHeader*)iFreeList.iA.iNext;
__NK_ASSERT_DEBUG(slab!=(TSlabHeader*)&iFreeList.iA.iNext);
#ifdef _DEBUG
CheckSlab(slab);
#endif
// get object from slab...
SDblQueLink* object = (SDblQueLink*)slab->iFreeList.iA.iNext;
TRACE2(("RSlabAllocatorBase::Alloc got 0x%08x",object));
object->Deque();
__NK_ASSERT_DEBUG(slab->iAllocCount<iObjectsPerSlab);
++slab->iAllocCount;
--iFreeCount;
// see if there are uninitialised free objects after the one just allocated...
if(slab->iHighWaterMark==object)
{
SDblQueLink* nextFree = (SDblQueLink*)((TLinAddr)object+iObjectSize);
if((TAny*)((TLinAddr)nextFree+iObjectSize)<=slab)
{
slab->iHighWaterMark = nextFree;
slab->iFreeList.Add(nextFree);
}
}
// if slab has no more free objects, remove it from the free list...
if(slab->iFreeList.iA.iNext==&slab->iFreeList.iA)
slab->Deque();
__SPIN_UNLOCK_IRQ(iSpinLock);
return object;
}
void RSlabAllocatorBase::Free(TAny* aObject)
{
TRACE2(("RSlabAllocatorBase::Free(0x%08x)",aObject));
if(!aObject)
{
// nothing to do
return;
}
__SPIN_LOCK_IRQ(iSpinLock);
// check object address is valid...
__NK_ASSERT_DEBUG((TLinAddr)aObject-iBase < iSlabMap->iSize*(TLinAddr)KPageSize); // in range
__NK_ASSERT_DEBUG(((TLinAddr)aObject&KPageMask)%iObjectSize==0); // aligned correctly
__NK_ASSERT_DEBUG(((TLinAddr)aObject&KPageMask)<iObjectSize*iObjectsPerSlab); // in slab
// get slab for object...
TSlabHeader* slab = (TSlabHeader*)(((TLinAddr)aObject|KPageMask)+1)-1;
#ifdef _DEBUG
CheckSlab(slab);
#endif
// if slab didn't previously have any free objects, add it to the free list...
if(slab->iFreeList.iA.iNext==&slab->iFreeList.iA)
iFreeList.AddHead(slab);
// add object to slab's free list...
slab->iFreeList.AddHead((SDblQueLink*)(TAny*)aObject);
TUint allocCount = --slab->iAllocCount;
__NK_ASSERT_DEBUG(allocCount<iObjectsPerSlab);
++iFreeCount;
if(!allocCount)
{
// if slab is empty, put it on end of free list...
slab->Deque();
iFreeList.Add(slab);
}
else
{
// migrate slab to try and keep fuller slabs near the free list start...
TSlabHeader* nextSlab = (TSlabHeader*)slab->iNext;
if(nextSlab!=(SDblQueLink*)&iFreeList && allocCount<=nextSlab->iAllocCount)
{
slab->Deque();
slab->InsertAfter(nextSlab);
}
}
#ifdef _DEBUG
CheckSlab(slab);
#endif
// check for spare empty slab...
TSlabHeader* lastSlab = (TSlabHeader*)iFreeList.iA.iPrev;
if(lastSlab->iNext!=lastSlab->iPrev && lastSlab->iAllocCount==0) // not only slab and it's empty...
{
// free up slab...
if(!iDelayedCleanup)
{
// free up slab now, (this also relinquishes iSpinLock)...
FreeSlab(lastSlab);
}
else
{
// queue later cleanup...
__SPIN_UNLOCK_IRQ(iSpinLock);
iCleanup.Add(CleanupTrampoline,this);
}
}
else
{
__SPIN_UNLOCK_IRQ(iSpinLock);
}
}
#ifdef _DEBUG
void RSlabAllocatorBase::CheckSlab(TSlabHeader* aSlab)
{
// Kern::Printf("CheckSlab %x %x %d",aSlab,aSlab->iHighWaterMark,aSlab->iAllocCount);
TAny* base = (TAny*)((TLinAddr)aSlab&~KPageMask);
SDblQueLink* o = aSlab->iFreeList.First();
TUint max = ((TLinAddr)aSlab->iHighWaterMark-(TLinAddr)base)/iObjectSize+1;
__NK_ASSERT_DEBUG(aSlab->iAllocCount<=max);
__NK_ASSERT_DEBUG(max<=iObjectsPerSlab);
TUint freeCount = max-aSlab->iAllocCount;
while(freeCount)
{
// Kern::Printf("CheckSlab o=%x",o);
__NK_ASSERT_DEBUG(o>=base);
__NK_ASSERT_DEBUG(o<=aSlab->iHighWaterMark);
__NK_ASSERT_DEBUG((((TLinAddr)o-(TLinAddr)base)%iObjectSize)==0);
o = o->iNext;
--freeCount;
}
__NK_ASSERT_DEBUG(o==&aSlab->iFreeList.iA);
}
#endif
TBool RSlabAllocatorBase::NewSlab()
{
TRACE2(("RSlabAllocatorBase::NewSlab()"));
for(;;)
{
__SPIN_UNLOCK_IRQ(iSpinLock);
MM::MemoryLock(iMemory);
if(iAllocatingSlab)
{
// we've gone recursive...
__NK_ASSERT_DEBUG(iFreeCount); // check we still have some reserved objects
// lie and pretend we've allocated a slab which will allow Alloc() to proceed...
MM::MemoryUnlock(iMemory);
__SPIN_LOCK_IRQ(iSpinLock);
return true;
}
iAllocatingSlab = true;
// still need new slab?
if(iFreeCount<=iReserveCount)
{
// find unused slab...
TInt i = iSlabMap->Alloc();
if(i<0)
break; // out of memory
// commit memory for slab...
TInt r = MM::MemoryAlloc(iMemory,i,1);
if(r!=KErrNone)
{
iSlabMap->Free(i);
break; // error
}
// initialise slab...
TLinAddr page = iBase+(i<<KPageShift);
InitSlab(page);
TRACE2(("RSlabAllocatorBase::NewSlab() allocated 0x%08x",(TSlabHeader*)(page+KPageSize)-1));
}
iAllocatingSlab = false;
MM::MemoryUnlock(iMemory);
__SPIN_LOCK_IRQ(iSpinLock);
// still need new slab?
if(iFreeCount>iReserveCount)
return true; // no, so finish
}
// failed...
iAllocatingSlab = false;
MM::MemoryUnlock(iMemory);
__SPIN_LOCK_IRQ(iSpinLock);
return false;
}
void RSlabAllocatorBase::InitSlab(TLinAddr aPage)
{
TRACE2(("RSlabAllocatorBase::InitSlab(0x%08x)",aPage));
// header goes at end of slab...
TSlabHeader* slab = (TSlabHeader*)(aPage+KPageSize)-1;
// link first object in slab onto the slab's free list...
SDblQueLink* head = &slab->iFreeList.iA;
SDblQueLink* first = (SDblQueLink*)aPage;
head->iNext = first;
head->iPrev = first;
first->iPrev = head;
first->iNext = head;
// setup rest of slab header...
slab->iAllocCount = 0;
slab->iHighWaterMark = first;
// put new slab at end of free slab list...
__SPIN_LOCK_IRQ(iSpinLock);
iFreeList.Add(slab);
iFreeCount += iObjectsPerSlab;
__SPIN_UNLOCK_IRQ(iSpinLock);
}
void RSlabAllocatorBase::FreeSlab(TSlabHeader* aSlab)
{
TRACE2(("RSlabAllocatorBase::FreeSlab(0x%08x)",aSlab));
aSlab->Deque();
iFreeCount -= iObjectsPerSlab;
__SPIN_UNLOCK_IRQ(iSpinLock);
MM::MemoryLock(iMemory);
TUint i = ((TLinAddr)aSlab-iBase)>>KPageShift;
MM::MemoryFree(iMemory,i,1);
iSlabMap->Free(i);
MM::MemoryUnlock(iMemory);
}
//
// Cleanup
//
void RSlabAllocatorBase::CleanupTrampoline(TAny* aSelf)
{
((RSlabAllocatorBase*)aSelf)->Cleanup();
}
void RSlabAllocatorBase::Cleanup()
{
// free any empty slabs...
for(;;)
{
__SPIN_LOCK_IRQ(iSpinLock);
TSlabHeader* slab = (TSlabHeader*)iFreeList.iA.iPrev; // get slab from end of list
if(slab==iFreeList.iA.iNext)
break; // only slab left, so leave it
if(slab->iAllocCount!=0)
break; // slab has allocated objects, so end, (empty slabs are always at end of list)
FreeSlab(slab);
}
__SPIN_UNLOCK_IRQ(iSpinLock);
}