Convert Kernelhwsrv package from SFL to EPL
kernel\eka\compsupp is subject to the ARM EABI LICENSE
userlibandfileserver\fatfilenameconversionplugins\unicodeTables is subject to the Unicode license
kernel\eka\kernel\zlib is subject to the zlib license
; Copyright (c) 2003-2009 Nokia Corporation and/or its subsidiary(-ies).
; All rights reserved.
; This component and the accompanying materials are made available
; under the terms of the License "Eclipse Public License v1.0"
; which accompanies this distribution, and is available
; at the URL "http://www.eclipse.org/legal/epl-v10.html".
;
; Initial Contributors:
; Nokia Corporation - initial contribution.
;
; Contributors:
;
; Description:
; template/bootstrap/template.s
; Template for platform specific boot code
;
GBLL __VARIANT_S__ ; indicates that this is platform-specific code
GBLL __TEMPLATE_S__ ; indicates which source file this is
INCLUDE bootcpu.inc
;
;*******************************************************************************
;
; Platform specific constant definitions
RamBank0Base EQU 0x10000000
RamBank0MaxSize EQU 0x00800000
RamBank1Base EQU 0x20000000
RamBank1MaxSize EQU 0x00000000
PrimaryRomBase EQU 0x00000000
PrimaryRomSize EQU 0x00800000
ExtensionRomBase EQU 0x08000000
ExtensionRomSize EQU 0x00000000
Serial0PhysBase EQU 0x80000000
Serial1PhysBase EQU 0x80000100
;
;*******************************************************************************
;
AREA |Boot$$Code|, CODE, READONLY, ALIGN=6
;
;*******************************************************************************
;
;*******************************************************************************
; Initialise Hardware
; Initialise CPU registers
; Determine the hardware configuration
; Determine the reset reason. If it is wakeup from a low power mode, perform
; whatever reentry sequence is required and jump back to the kernel.
; Set up the memory controller so that at least some RAM is available
; Set R10 to point to the super page or to a temporary version of the super page
; with at least the following fields valid:
; iBootTable, iCodeBase, iActiveVariant, iCpuId
; In debug builds initialise the debug serial port
;
; Enter with:
; R12 points to TRomHeader
; NO STACK
; R14 = return address (as usual)
;
; All registers may be modified by this call
;*******************************************************************************
IF CFG_BootLoader
; For bootloader we only get here on a full reset
; Other resets will simply jump back into the previously-loaded image
EXPORT DoInitialiseHardware
DoInitialiseHardware ROUT
ELSE
EXPORT InitialiseHardware
InitialiseHardware ROUT
ENDIF
MOV r13, lr ; save return address
ADRL r1, ParameterTable ; pass address of parameter table
BL InitCpu ; initialise CPU/MMU registers
; Put your hardware initialising code here
IF CFG_DebugBootRom
BL InitDebugPort
ENDIF
; Set up the required super page values
LDR r10, =0xC0000000 ; initial super page
LDR r0, =0x05040001 ; variant code
STR r0, [r10, #SSuperPageBase_iActiveVariant]
STR r0, [r10, #SSuperPageBase_iHwStartupReason] ; reset reason (from hardware)
ADD r1, r10, #CpuPageOffset
STR r1, [r10, #SSuperPageBase_iMachineData]
ADRL r0, BootTable
STR r0, [r10, #SSuperPageBase_iBootTable] ; Set the boot function table
STR r12, [r10, #SSuperPageBase_iCodeBase] ; Set the base address of bootstrap code
MRC p15, 0, r0, c0, c0, 0 ; read CPU ID from CP15 (remove if no CP15)
STR r0, [r10, #SSuperPageBase_iCpuId]
MOV pc, r13 ; return
;*******************************************************************************
; Notify an unrecoverable error during the boot process
;
; Enter with:
; R14 = address at which fault detected
;
; Don't return
;*******************************************************************************
EXPORT Fault
Fault ROUT
B BasicFaultHandler ; generic handler dumps registers via debug
; serial port
;*******************************************************************************
; Reboot the system
;
; Enter with:
; R0 = reboot reason code
;
; Don't return (of course)
;*******************************************************************************
ALIGN 32, 0
EXPORT RestartEntry
RestartEntry ROUT
; save R0 parameter in HW dependent register which is preserved over reset
; put HW specific code here to reset system
SUB pc, pc, #8
;*******************************************************************************
; Get a pointer to the list of RAM banks
;
; The pointer returned should point to a list of {BASE; MAXSIZE;} pairs, where
; BASE is the physical base address of the bank and MAXSIZE is the maximum
; amount of RAM which may be present in that bank. MAXSIZE should be a power of
; 2 and BASE should be a multiple of MAXSIZE. The generic code will examine the
; specified range of addresses and determine the actual amount of RAM if any
; present in the bank. The list is terminated by an entry with zero size.
;
; The pointer returned will usually be to constant data, but could equally well
; point to RAM if dynamic determination of the list is required.
;
; Enter with :
; R10 points to super page
; R12 points to ROM header
; R13 points to valid stack
;
; Leave with :
; R0 = pointer
; Nothing else modified
;*******************************************************************************
GetRamBanks ROUT
ADR r0, %FT1
MOV pc, lr
1
DCD RamBank0Base, RamBank0MaxSize
DCD RamBank1Base, RamBank1MaxSize
DCD 0,0 ; terminator
;*******************************************************************************
; Get a pointer to the list of ROM banks
;
; The pointer returned should point to a list of entries of SRomBank structures,
; usually declared with the ROM_BANK macro.
; The list is terminated by a zero size entry (four zero words)
;
; ROM_BANK PB, SIZE, LB, W, T, RS, SS
; PB = physical base address of bank
; SIZE = size of bank
; LB = linear base if override required - usually set this to 0
; W = bus width (ROM_WIDTH_8, ROM_WIDTH_16, ROM_WIDTH_32)
; T = type (see TRomType enum in kernboot.h)
; RS = random speed
; SS = sequential speed
;
; Only PB, SIZE, LB are used by the rest of the bootstrap.
; The information given here can be modified by the SetupRomBank call, if
; dynamic detection and sizing of ROMs is required.
;
; Enter with :
; R10 points to super page
; R12 points to ROM header
; R13 points to valid stack
;
; Leave with :
; R0 = pointer
; Nothing else modified
;*******************************************************************************
GetRomBanks ROUT
ADR r0, %FT1
MOV pc, lr
1
ROM_BANK PrimaryRomBase, PrimaryRomSize, 0, ROM_WIDTH_32, ERomTypeXIPFlash, 0, 0
ROM_BANK ExtensionRomBase, ExtensionRomSize, 0, ROM_WIDTH_32, ERomTypeXIPFlash, 0, 0
DCD 0,0,0,0 ; terminator
;*******************************************************************************
; Get a pointer to the list of hardware banks
;
; The pointer returned should point to a list of hardware banks declared with
; the HW_MAPPING and/or HW_MAPPING_EXT macros. A zero word terminates the list.
; For the direct memory model, all hardware on the system should be mapped here
; and the mapping will set linear address = physical address.
; For the moving or multiple model, only the hardware required to boot the kernel
; and do debug tracing needs to be mapped here. The linear addresses used will
; start at KPrimaryIOBase and step up as required with the order of banks in
; the list being maintained in the linear addresses used.
;
; HW_MAPPING PB, SIZE, MULT
; This declares a block of I/O with physical base PB and address range SIZE
; blocks each of which has a size determined by MULT. The page size used for
; the mapping is determined by MULT. The linear address base of the mapping
; will be the next free linear address rounded up to the size specified by
; MULT.
; The permissions used for the mapping are the standard I/O permissions (BTP_Hw).
;
; HW_MAPPING_EXT PB, SIZE, MULT
; This declares a block of I/O with physical base PB and address range SIZE
; blocks each of which has a size determined by MULT. The page size used for
; the mapping is determined by MULT. The linear address base of the mapping
; will be the next free linear address rounded up to the size specified by
; MULT.
; The permissions used for the mapping are determined by a BTP_ENTRY macro
; immediately following this macro in the HW bank list or by a DCD directive
; specifying a different standard permission type.
;
; HW_MAPPING_EXT2 PB, SIZE, MULT, LIN
; This declares a block of I/O with physical base PB and address range SIZE
; blocks each of which has a size determined by MULT. The page size used for
; the mapping is determined by MULT. The linear address base of the mapping
; is specified by the LIN parameter.
; The permissions used for the mapping are the standard I/O permissions (BTP_Hw).
;
; HW_MAPPING_EXT3 PB, SIZE, MULT, LIN
; This declares a block of I/O with physical base PB and address range SIZE
; blocks each of which has a size determined by MULT. The page size used for
; the mapping is determined by MULT. The linear address base of the mapping
; is specified by the LIN parameter.
; The permissions used for the mapping are determined by a BTP_ENTRY macro
; immediately following this macro in the HW bank list or by a DCD directive
; specifying a different standard permission type.
;
; Configurations without an MMU need not implement this function.
;
; Enter with :
; R10 points to super page
; R12 points to ROM header
; R13 points to valid stack
;
; Leave with :
; R0 = pointer
; Nothing else modified
;*******************************************************************************
GetHwBanks ROUT
ADR r0, %FT1
MOV pc, lr
1
IF CFG_MMDirect
; for direct model we must map all peripherals here
; use section mappings to reduce number of page tables required
HW_MAPPING 0x00100000, 31, HW_MULT_1M ; 0x00100000 - 0x01FFFFFF
HW_MAPPING 0x08000000, 32, HW_MULT_1M ; 0x08000000 - 0x09FFFFFF
HW_MAPPING 0x80000000, 1, HW_MULT_1M ; 0x80000000 - 0x800FFFFF
HW_MAPPING 0x90000000, 1, HW_MULT_1M ; 0x90000000 - 0x900FFFFF
HW_MAPPING 0xA0000000, 1, HW_MULT_1M ; 0xA0000000 - 0xA00FFFFF
HW_MAPPING 0xB0000000, 1, HW_MULT_1M ; 0xB0000000 - 0xB00FFFFF
HW_MAPPING 0xB0100000, 1, HW_MULT_1M ; 0xB0100000 - 0xB01FFFFF
ELSE
HW_MAPPING 0x80000000, 1, HW_MULT_4K ; 0x80000000 - 0x80000FFF mapped at KPrimaryIOBase + 0
HW_MAPPING 0x80010000, 1, HW_MULT_4K ; 0x80010000 - 0x80010FFF mapped at KPrimaryIOBase + 0x1000
HW_MAPPING 0x80020000, 1, HW_MULT_64K ; 0x80020000 - 0x8002FFFF mapped at KPrimaryIOBase + 0x10000
HW_MAPPING_EXT 0x90000000, 1, HW_MULT_4K ; 0x90000000 - 0x90000FFF mapped at KPrimaryIOBase + 0x20000 ...
DCD BTP_Rom ; ... with same permissions as ROM
ENDIF
DCD 0 ; terminator
;*******************************************************************************
; Set up RAM bank
;
; Do any additional RAM controller initialisation for each RAM bank which wasn't
; done by InitialiseHardware.
; Called twice for each RAM bank :-
; First with R3 = 0xFFFFFFFF before bank has been probed
; Then, if RAM is present, with R3 indicating validity of each byte lane, ie
; R3 bit 0=1 if D0-7 are valid, bit1=1 if D8-15 are valid etc.
; For each call R1 specifies the bank physical base address.
;
; Enter with :
; R10 points to super page
; R12 points to ROM header
; R13 points to stack
; R1 = physical base address of bank
; R3 = width (bottom 4 bits indicate validity of byte lanes)
; 0xffffffff = preliminary initialise
;
; Leave with :
; No registers modified
;*******************************************************************************
SetupRamBank ROUT
MOV pc, lr
;*******************************************************************************
; Set up ROM bank
;
; Do any required autodetection and autosizing of ROMs and any additional memory
; controller initialisation for each ROM bank which wasn't done by
; InitialiseHardware.
;
; The first time this function is called R11=0 and R0 points to the list of
; ROM banks returned by the BTF_RomBanks call. This allows any preliminary setup
; before autodetection begins.
;
; This function is subsequently called once for each ROM bank with R11 pointing
; to the current information held about that ROM bank (SRomBank structure).
; The structure pointed to by R11 should be updated with the size and width
; determined. The size should be set to zero if there is no ROM present in the
; bank.
;
; Enter with :
; R10 points to super page
; R12 points to ROM header
; R13 points to stack
; R11 points to SRomBank info for this bank
; R11 = 0 for preliminary initialise (all banks)
;
; Leave with :
; Update SRomBank info with detected size/width
; Set the size field to 0 if the ROM bank is absent
; Can modify R0-R4 but not other registers
;
;*******************************************************************************
SetupRomBank ROUT
MOV pc, lr
;*******************************************************************************
; Reserve physical memory
;
; Reserve any physical RAM needed for platform-specific purposes before the
; bootstrap begins allocating RAM for page tables/kernel data etc.
;
; There are two methods for this:
; 1. The function ExciseRamArea may be used. This will remove a contiguous
; region of physical RAM from the RAM bank list. That region will never
; again be identified as RAM.
; 2. A list of excluded physical address ranges may be written at [R11].
; This should be a list of (base,size) pairs terminated by a (0,0) entry.
; This RAM will still be identified as RAM by the kernel but will not
; be allocated by the bootstrap and will subsequently be marked as
; allocated by the kernel immediately after boot.
;
; Enter with :
; R10 points to super page
; R11 indicates where preallocated RAM list should be written.
; R12 points to ROM header
; R13 points to stack
;
; Leave with :
; R0-R3 may be modified. Other registers should be preserved.
;*******************************************************************************
ReservePhysicalMemory ROUT
MOV pc, lr
;*******************************************************************************
; Return parameter specified by R0 (see TBootParam enum)
;
; Enter with :
; R0 = parameter number
;
; Leave with :
; If parameter value is supplied, R0 = value and N flag clear
; If parameter value is not supplied, N flag set. In this case the
; parameter may be defaulted or the system may fault.
; R0,R1,R2 modified. No other registers modified.
;
;*******************************************************************************
GetParameters ROUT
ADR r1, ParameterTable
B FindParameter
ParameterTable
; Include any parameters specified in TBootParam enum here
; if you want to override them.
DCD BPR_UncachedLin, 0 ; parameter number, parameter value
IF :DEF: CFG_CPU_ARM1136 :LAND: (:LNOT: :DEF: CFG_CPU_ARM1136_ERRATUM_364296_FIXED)
DCD BPR_FinalMMUCRSet, ExtraMMUCR + MMUCR_FI
DCD BPR_AuxCRSet, DefaultAuxCRSet + 0x80000000
ENDIF
DCD -1 ; terminator
;*******************************************************************************
; Do final platform-specific initialisation before booting the kernel
;
; Typical uses for this call would be:
; 1. Mapping cache flushing areas
; 2. Setting up pointers to routines in the bootstrap which are used by
; the variant or drivers (eg idle code).
;
; Enter with :
; R10 points to super page
; R11 points to TRomImageHeader for the kernel
; R12 points to ROM header
; R13 points to stack
;
; Leave with :
; R0-R9 may be modified. Other registers should be preserved.
;
;*******************************************************************************
FinalInitialise ROUT
STMFD sp!, {lr}
IF CFG_Template
; set up main cache flush area
MOV r1, #0xE0000000 ; physical address
IF CFG_MMDirect
MOV r0, r1 ; direct, linear = physical
ELSE
LDR r0, =KDCacheFlushArea ; linear
ENDIF
STR r0, [r10, #SSuperPageBase_iDCacheFlushArea]
MOV r2, #BTP_MainCache ; permissions
MOV r3, #0x100000 ; size
MOV r4, #20 ; use section
BL MapContiguous
; set up mini cache flush area
ADD r1, r1, r3 ; physical address
ADD r0, r0, r3 ; linear
STR r0, [r10, #SSuperPageBase_iAltDCacheFlushArea]
MOV r2, #BTP_MiniCache ; permissions
BL MapContiguous
MOV r3, #0x80000 ; wrap for cache flush
STR r3, [r10, #SSuperPageBase_iDCacheFlushWrap]
STR r3, [r10, #SSuperPageBase_iAltDCacheFlushWrap]
; set up idle code address
ADR r0, IdleCode
ADD r5, r10, #CpuPageOffset
STR r0, [r5, #CPUPage_Idle]
ENDIF
LDMFD sp!, {pc}
;*******************************************************************************
; Output a character to the debug port
;
; Enter with :
; R0 = character to output
; R13 points to valid stack
;
; Leave with :
; nothing modified
;*******************************************************************************
DoWriteC ROUT
IF CFG_DebugBootRom
STMFD sp!, {r1,lr}
BL GetDebugPortBase
; wait for debug port to be ready for data
; output character to debug port
LDMFD sp!, {r1,pc}
ELSE
MOV pc, lr
ENDIF
IF CFG_DebugBootRom
;*******************************************************************************
; Initialise the debug port
;
; Enter with :
; R12 points to ROM header
; There is no valid stack
;
; Leave with :
; R0-R2 modified
; Other registers unmodified
;*******************************************************************************
InitDebugPort ROUT
MOV r0, lr
BL GetDebugPortBase ; r1 = base address of debug port
; set up debug port
MOV pc, r0
;*******************************************************************************
; Get the base address of the debug UART
;
; Enter with :
; R12 points to ROM header
; There may be no stack
;
; Leave with :
; R1 = base address of port
; No other registers modified
;*******************************************************************************
GetDebugPortBase ROUT
LDR r1, [r12, #TRomHeader_iDebugPort]
CMP r1, #1
BNE %FA1 ; skip if not port 1
GET_ADDRESS r1, Serial1PhysBase, Serial1LinBase
MOV pc, lr
1
GET_ADDRESS r1, Serial0PhysBase, Serial0LinBase
MOV pc, lr
ENDIF ; CFG_DebugBootRom
;*******************************************************************************
; BOOT FUNCTION TABLE
;*******************************************************************************
BootTable
DCD DoWriteC ; output a debug character
DCD GetRamBanks ; get list of RAM banks
DCD SetupRamBank ; set up a RAM bank
DCD GetRomBanks ; get list of ROM banks
DCD SetupRomBank ; set up a ROM bank
DCD GetHwBanks ; get list of HW banks
DCD ReservePhysicalMemory ; reserve physical RAM if required
DCD GetParameters ; get platform dependent parameters
DCD FinalInitialise ; Final initialisation before booting the kernel
IF :LNOT: CFG_MMUPresent ; no mmu, so use stub version ...
DCD AllocatorStub ; allocate memory
ELSE
DCD HandleAllocRequest ; allocate memory
DCD GetPdeValue ; usually in generic code
DCD GetPteValue ; usually in generic code
DCD PageTableUpdate ; usually in generic code
DCD EnableMmu ; Enable the MMU (usually in generic code)
ENDIF
; These entries specify the standard MMU permissions for various areas
; They can be omitted if MMU is absent
IF CFG_MMUPresent
BTP_ENTRY CLIENT_DOMAIN, PERM_RORO, MEMORY_FULLY_CACHED, 1, 1, 0, 0 ; ROM
BTP_ENTRY CLIENT_DOMAIN, PERM_RWNO, MEMORY_FULLY_CACHED, 0, 1, 0, 0 ; kernel data/stack/heap
BTP_ENTRY CLIENT_DOMAIN, PERM_RWNO, MEMORY_FULLY_CACHED, 0, 1, 0, 0 ; super page/CPU page
BTP_ENTRY CLIENT_DOMAIN, PERM_RWNO, MEMORY_FULLY_CACHED, 0, 1, 0, 0 ; page directory/tables
BTP_ENTRY CLIENT_DOMAIN, PERM_RONO, MEMORY_FULLY_CACHED, 1, 1, 0, 0 ; exception vectors
BTP_ENTRY CLIENT_DOMAIN, PERM_RWNO, MEMORY_STRONGLY_ORDERED, 0, 1, 0, 0 ; hardware registers
DCD 0 ; unused (minicache flush)
DCD 0 ; unused (maincache flush)
BTP_ENTRY CLIENT_DOMAIN, PERM_RWNO, MEMORY_FULLY_CACHED, 0, 1, 0, 0 ; page table info
BTP_ENTRY CLIENT_DOMAIN, PERM_RWRW, MEMORY_FULLY_CACHED, 1, 1, 0, 0 ; user RAM
BTP_ENTRY CLIENT_DOMAIN, PERM_RONO, MEMORY_STRONGLY_ORDERED, 1, 1, 0, 0 ; temporary identity mapping
BTP_ENTRY CLIENT_DOMAIN, UNC_PERM, MEMORY_STRONGLY_ORDERED, 0, 1, 0, 0 ; uncached
ENDIF
END