Convert Kernelhwsrv package from SFL to EPL
kernel\eka\compsupp is subject to the ARM EABI LICENSE
userlibandfileserver\fatfilenameconversionplugins\unicodeTables is subject to the Unicode license
kernel\eka\kernel\zlib is subject to the zlib license
// Copyright (c) 1994-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32\common\des16.cpp
//
//
#include "common.h"
#include <e32des16_private.h>
#include <collate.h>
#ifdef _UNICODE
#include <unicode.h>
#include "collateimp.h"
#endif
#include "CompareImp.h"
#define __CHECK_ALIGNMENT(p,c) __ASSERT_DEBUG(!(TUint(p)&1),Des16Panic(c))
enum TDes16Panic
{
ETDesC16ConstructCString=0,
ETDesC16ConstructBufLength=1,
ETDesC16ConstructBufLengthMax=2,
ETDesC16FindPtrLen=3,
ETDesC16FindFPtrLen=4,
ETDesC16FindCPtrLen=5,
ETBufCBase16CopyStringMax=6,
EHBufC16AssignCString=7,
ETDes16AssignCString=8,
ETDes16CopyCString=9,
ETDes16CopyBufLength=10,
ETDes16AppendBufLength=11,
ETDes16RepeatBufLength=12,
ETDes16AppendJustify1=13,
ETDes16AppendJustify2=14,
ETPtrC16SetBufLength=15,
ETPtr16SetBufLengthMax=16,
ETDesC16Invariant=17,
ETDesC16Ptr=18
};
#ifdef _DEBUG
_LIT(KLitDes16Align,"Des16Align");
void Des16Panic(TDes16Panic aPanic)
{
PANIC_CURRENT_THREAD(KLitDes16Align,aPanic);
}
#endif
inline TUint16* memCopy(TUint16* aPtr, const TUint16* aSrc, TInt aLength)
{
return (TUint16 *)Mem::Copy(aPtr,aSrc,aLength<<1);
}
#if !defined( __DES16_MACHINE_CODED__) | defined(__EABI_CTORS__)
inline TInt StringLength(const TUint16* aPtr)
{
const TUint16* p = aPtr;
while (*p)
++p;
return p-aPtr;
}
#endif
inline TDesC16::TDesC16(TInt aType,TInt aLength)
:iLength(aLength|(aType<<KShiftDesType16))
{}
inline TInt TDesC16::Type() const
//
// Return the descriptor type
//
{
return(iLength>>KShiftDesType16);
}
inline TDes16::TDes16(TInt aType,TInt aLength,TInt aMaxLength)
: TDesC16(aType,aLength),iMaxLength(aMaxLength)
{}
// Class TBufCBase16
inline TBufCBase16::TBufCBase16(TInt aLength)
:TDesC16(EBufC,aLength)
{}
inline TUint16* TBufCBase16::WPtr() const
{return const_cast<TUint16*>(Ptr());}
#if !defined( __DES16_MACHINE_CODED__) | defined(__EABI_CTORS__)
EXPORT_C TPtr16::TPtr16(TBufCBase16& aLcb, TInt aMaxLength)
: TDes16(EBufCPtr,aLcb.Length(),aMaxLength),iPtr((TUint16*)&aLcb)
{
__ASSERT_DEBUG(aLcb.Length()<=aMaxLength,Panic(ETDes16LengthOutOfRange));
}
#endif
#if !defined( __DES16_MACHINE_CODED__)
/**
Gets a pointer to the data represented by the descriptor.
The data cannot be changed through the returned pointer.
@return A pointer to the data
*/
EXPORT_C const TUint16 *TDesC16::Ptr() const
{
const TUint16* p=NULL;
switch (Type())
{
case EBufC:
p=(&((SBufC16 *)this)->buf[0]); break;
case EPtrC:
p=(((SPtrC16 *)this)->ptr); break;
case EPtr:
p=(((SPtr16 *)this)->ptr); break;
case EBuf:
p=(&((SBuf16 *)this)->buf[0]); break;
case EBufCPtr:
p=(&((SBufCPtr16 *)this)->ptr->buf[0]); break;
default:
Panic(ETDes16BadDescriptorType);
}
__CHECK_ALIGNMENT(p,ETDesC16Ptr);
return p;
}
EXPORT_C const TUint16 &TDesC16::AtC(TInt anIndex) const
//
// Return a reference to the character in the buffer.
//
{
__ASSERT_ALWAYS(anIndex>=0 && anIndex<Length(),Panic(ETDes16IndexOutOfRange));
return(Ptr()[anIndex]);
}
/**
Compares this descriptor's data with the specified descriptor's data.
The comparison proceeds on a double-byte for double byte basis.
The result of the comparison is based on the difference of the first pair
of bytes to disagree.
Two descriptors are equal if they have the same length and content. Where
two descriptors have different lengths and the shorter descriptor's data
matches the first part of the longer descriptor's data, the shorter is
considered to be less than the longer.
@param aDes The 16-bit non-modifable descriptor whose data is to be compared
with this descriptor's data.
@return Positive. if this descriptor is greater than the specified descriptor.
Negative. if this descriptor is less than the specified descriptor.
Zero, if both descriptors have the same length and the their contents
are the same.
*/
EXPORT_C TInt TDesC16::Compare(const TDesC16 &aDes) const
{
return MEM_COMPARE_16(Ptr(),Length(),aDes.Ptr(),aDes.Length());
}
/**
Compares this descriptor's folded data with the specified descriptor's folded
data.
Note that folding is locale-independent behaviour. It is also important to
note that there can be no guarantee that folding is in any way culturally
appropriate, and should not be used for comparing strings in natural language;
use CompareC() for this.
@param aDes The 16-bit non-modifable descriptor whose data is to be compared
with this descriptor's data.
@return Positive, if this descriptor is greater than the specified descriptor.
Negative, if this descriptor is less than the specified descriptor.
Zero, if both descriptors have the same length and the their contents
are the same.
@see TDesC16::Compare()
*/
EXPORT_C TInt TDesC16::CompareF(const TDesC16 &aDes) const
{
return(Mem::CompareF(Ptr(),Length(),aDes.Ptr(),aDes.Length()));
}
/**
Compares this descriptor's data with the specified descriptor's data using
the standard collation method appropriate to the current locale.
@param aDes The 16-bit non-modifable descriptor whose data is to be compared
with this descriptor's data.
@return Positive, if this descriptor is greater than the specified descriptor.
Negative, if this descriptor is less than the specified descriptor.
Zero, if the content of both descriptors match.
@see TDesC16::Compare()
*/
EXPORT_C TInt TDesC16::CompareC(const TDesC16 &aDes) const
{
return(Mem::CompareC(Ptr(),Length(),aDes.Ptr(),aDes.Length()));
}
#endif
#ifdef _UNICODE
/**
Compares this descriptor's data with the specified descriptor's data to the
specified maximum collation level and using the specified collation method.
If no collation method is supplied, a default method is used that uses a
locale-independent collation table. This means that sorting and matching will
not be based on the current locale.
This function is only defined for 16-bit (Unicode) build variants. This means
that the function is not defined for 8-bit build variants, even when an
explicit 16-bit descriptor is used.
Strings may match even if the lengths of their respective descriptors are
different.
@param aDes The 16-bit non-modifable descriptor whose data is to
be compared with this descriptor's data.
@param aMaxLevel The maximum collation level. This is an integer with
values: 0, 1, 2 or 3, which, effectively, determines
how 'tight' the matching should be. Level 3 is always
used if the aim is to sort strings.
@param aCollationMethod A pointer to the collation method or NULL. Collation
methods can be retrieved by calls to
Mem::CollationMethodByIndex()
and Mem::CollationMethodById().
Specifying NULL means that the default method is used.
@return Positive, if this descriptor is greater than the specified descriptor.
Negative, if this descriptor is less than the specified descriptor.
Zero, if the content of both descriptors match.
@see Mem::CollationMethodByIndex()
@see Mem::CollationMethodById()
@see TDesC16::Compare()
*/
EXPORT_C TInt TDesC16::CompareC(const TDesC16& aDes, TInt aMaxLevel, const TCollationMethod* aCollationMethod) const
{
return Mem::CompareC(Ptr(),Length(),aDes.Ptr(),aDes.Length(),aMaxLevel,aCollationMethod);
}
/**
Get the normalized decomposed form of this 16 bit descriptor
@return A pointer to the 16-bit heap buffer containing normalized decomposed form
if creation is successful
@leave KErrNoMemory if not enough memory to construct the output buffer
*/
EXPORT_C HBufC16* TDesC16::GetNormalizedDecomposedFormL() const
{
//pre create a buffer with of size Length
TInt strLength=Length();
HBufC16* outBuf=HBufC16::NewL(strLength);
TUTF32Iterator input(Ptr(),Ptr()+strLength);
TCanonicalDecompositionIterator output;
output.Set(input);
TInt currentAllocateCount=0;
TUint16* outPtr = (TUint16* )outBuf->Des().Ptr();
TInt preAllocateCount= outBuf->Des().MaxLength();
for (;!output.AtEnd();output.Next(),currentAllocateCount++)
{
if (currentAllocateCount>=preAllocateCount)
{
const TInt KMaxGrowSize=16;
HBufC16* newOutBuf = outBuf->ReAlloc(preAllocateCount+KMaxGrowSize);
if(!newOutBuf)
{
delete outBuf;
User::Leave(KErrNoMemory);
}
outBuf = newOutBuf;
outPtr = (TUint16* )outBuf->Des().Ptr();
preAllocateCount = outBuf->Des().MaxLength();
}
outPtr[currentAllocateCount] = (TUint16)(TUint)(output.Current());
}
// update the length of the buffer...
outBuf->Des().SetLength(currentAllocateCount);
//compress the unused slot
if (currentAllocateCount<preAllocateCount)
outBuf = outBuf->ReAlloc(currentAllocateCount); // can't fail to shrink memory
return outBuf;
}
/**
Get the folded decomposed form of this 16 bit descriptor
@return A pointer to the 16-bit heap buffer containing folded decomposed form
if creation is succesful
@leave KErrNoMemory if not enough memory to construct the output buffer
*/
EXPORT_C HBufC16* TDesC16::GetFoldedDecomposedFormL() const
{
//pre create a buffer with of size Length
TInt strLength=Length();
HBufC16* outBuf=HBufC16::NewL(strLength);
TUTF32Iterator input(Ptr(),Ptr()+strLength);
TFoldedCanonicalIterator output (input);
TInt currentAllocateCount=0;
TUint16* outPtr = (TUint16* )outBuf->Des().Ptr();
TInt preAllocateCount= outBuf->Des().MaxLength();
const TUnicodeDataSet* charDataSet = GetLocaleCharSet()->iCharDataSet;
for (;!output.AtEnd();output.Next(charDataSet),currentAllocateCount++)
{
if (currentAllocateCount>=preAllocateCount)
{
const TInt KMaxGrowSize=16;
HBufC16* newOutBuf = outBuf->ReAlloc(preAllocateCount+KMaxGrowSize);
if(!newOutBuf)
{
delete outBuf;
User::Leave(KErrNoMemory);
}
outBuf = newOutBuf;
outPtr = (TUint16* )outBuf->Des().Ptr();
preAllocateCount = outBuf->Des().MaxLength();
}
outPtr[currentAllocateCount] = (TUint16)(TUint)(output.Current());
}
// update the length of the buffer...
outBuf->Des().SetLength(currentAllocateCount);
//compress the unused slot
if (currentAllocateCount<preAllocateCount)
outBuf = outBuf->ReAlloc(currentAllocateCount); // can't fail to shrink memory
return outBuf;
}
//some utils function
static void ResetAndDestroyArray(TAny* aPtr)
{
(STATIC_CAST(RPointerArray<HBufC8>*,aPtr))->ResetAndDestroy();
}
/**
Get the collation keys of this 16 bit descriptor for a given collation level
If no collation method is supplied, a default method is used that uses a
locale-independent collation table.
@param aMaxLevel The maximum collation level. This is an integer with
values: 0, 1, 2 or 3. Level 3 is always
used if the aim is to sort strings.
@param aCollationMethod A pointer to the collation method or NULL. Collation
methods can be retrieved by calls to
Mem::CollationMethodByIndex()
and Mem::CollationMethodById().
Specifying NULL means that the default method is used.
@return A pointer to the 8-bit heap buffer containing the collation keys if
creation is succesful
@leave KErrNoMemory if not enough memory to construct the output buffer
*/
EXPORT_C HBufC8* TDesC16::GetCollationKeysL(TInt aMaxLevel,const TCollationMethod* aCollationMethod) const
{
// Clamp the maximum level of the comparison.
if(aMaxLevel < 0)
aMaxLevel = 0;
if(aMaxLevel > 3)
aMaxLevel = 3;
RPointerArray<HBufC8> levelBuffer;
CleanupStack::PushL(TCleanupItem(ResetAndDestroyArray, &levelBuffer));
TInt strLength=Length();
TInt outputBufferSize=0;
//preallocate some initial buffer size as it is not possible to determine the max buffer
//required as a character can be further decomposed and each character can possibly
//have up to 8 collation keys and this limit might still change.
for (TInt i=0;i<=aMaxLevel;i++)
{
TInt levelKeySize=TCollationKey::MaxSizePerKey(i);
HBufC8* buffer=HBufC8::NewLC(strLength*levelKeySize);
levelBuffer.AppendL(buffer);
CleanupStack::Pop();
outputBufferSize+=levelKeySize;
}
TCollationMethod clm;
//if collationMethod is NULL, use the default one
if (aCollationMethod==NULL)
{
clm=*(GetLocaleCharSet()->iCollationDataSet->iMethod);
}
else
{
clm = *aCollationMethod;
}
//if the main table is empty use the standard table
if (clm.iMainTable==NULL)
clm.iMainTable=StandardCollationMethod();
TCollationValueIterator tvi(clm);
TUTF32Iterator input(Ptr(),Ptr()+strLength);
tvi.SetSourceIt(input);
//Expand the buffer by 16 bytes if buffer is exhausted
const TInt KMaxBufferGrowSize=16;
TInt currentKeyCount=0;
TInt preAllocateCount=strLength;
TCollationKey collateKey;
for (;tvi.GetCurrentKey(collateKey);tvi.Increment(),currentKeyCount++)
{
for (TInt i=0;i<=aMaxLevel;i++)
{
if (currentKeyCount==preAllocateCount)
levelBuffer[i]=levelBuffer[i]->ReAllocL((currentKeyCount+KMaxBufferGrowSize)*TCollationKey::MaxSizePerKey(i));
collateKey.AppendToDescriptor(levelBuffer[i]->Des(),i);
}
if (currentKeyCount==preAllocateCount)
preAllocateCount+=KMaxBufferGrowSize;
}
//append the level separator which is a "\x00\x00" for level 0 and \x00 for other level
outputBufferSize=(outputBufferSize*currentKeyCount)+(aMaxLevel==0?0:4+(aMaxLevel-1)*2);
HBufC8* outputResult=HBufC8::NewL(outputBufferSize);
TPtr8 outputResultPtr(outputResult->Des());
for (TInt count=0;count<=aMaxLevel;count++)
{
outputResultPtr.Append(*levelBuffer[count]);
if (count!=aMaxLevel)
{
if (count==0)
outputResultPtr.Append(0);
outputResultPtr.Append(0);
}
}
CleanupStack::PopAndDestroy();
return outputResult;
}
#endif
/**
Searches for the first occurrence of the specified data sequence within this
descriptor.
Searching always starts at the beginning of this descriptor's data.
@param pS A pointer to a location containing the data sequence to be searched
for.
@param aLenS The length of the data sequence to be searched for. This value
must not be negative, otherwise the function raises a panic.
@return The offset of the data sequence from the beginning of this descriptor's
data. KErrNotFound, if the data sequence cannot be found.
@panic USER 17 if aLenS is negative.
*/
EXPORT_C TInt TDesC16::Find(const TUint16 *pS,TInt aLenS) const
{
if (!aLenS)
return(0);
__ASSERT_ALWAYS(aLenS>0,Panic(ETDes16LengthNegative));
__CHECK_ALIGNMENT(pS,ETDesC16FindPtrLen);
const TUint16 *pB=Ptr();
TInt aLenB=Length();
const TUint16 *pC=pB-1; // using pre-increment addressing
TInt i=aLenB-aLenS;
if (i>=0)
{
const TUint16* pEndS=pS+aLenS-1; // using pre-increment addressing
const TUint16 *pEndB=pB+i; // using pre-increment addressing
TUint s=*pS;
for (;;)
{
do
{
if (pC==pEndB)
return KErrNotFound;
} while (*++pC!=s);
const TUint16 *p1=pC;
const TUint16 *p2=pS;
do
{
if (p2==pEndS)
return (pC-pB);
} while (*++p1==*++p2);
}
}
return(KErrNotFound);
}
/**
Searches for the first occurrence of the specified data sequence within this
descriptor.
Searching always starts at the beginning of this descriptor's
data.
@param aDes The 16-bit non-modifiable descriptor containing the data sequence
to be searched for.
@return The offset of the data sequence from the beginning of this descriptor's
data. KErrNotFound, if the data sequence cannot be found.
*/
EXPORT_C TInt TDesC16::Find(const TDesC16 &aDes) const
{
return(Find(aDes.Ptr(),aDes.Length()));
}
/**
Searches for the first occurrence of the specified folded data sequence within
this descriptor's folded data.
Searching always starts at the beginning of this descriptor's data.
Note that folding is locale-independent behaviour. It is also important to
note that there can be no guarantee that folding is in any way culturally
appropriate, and should not be used for finding strings in natural language;
use FindC() for this.
@param pS A pointer to a location containing the data sequence to be
searched for.
@param aLenS The length of the data sequence to be searched for. This value
must not be negative, otherwise the function raises a panic.
@return The offset of the data sequence from the beginning of this descriptor's
data. KErrNotFound, if the data sequence cannot be found. Zero, if the
length of the search data sequence is zero.
@panic USER 17 if aLenS is negative
@see TDesC16::FindC()
*/
EXPORT_C TInt TDesC16::FindF(const TUint16 *pS,TInt aLenS) const
{
__CHECK_ALIGNMENT(pS,ETDesC16FindFPtrLen);
TUTF32Iterator candidateStrIt(Ptr(), Ptr() + Length());
TUTF32Iterator searchTermIt(pS, pS + aLenS);
return ::FindFolded(candidateStrIt, searchTermIt);
}
/**
Searches for the first occurrence of the specified folded data sequence within
this descriptor's folded data.
Searching always starts at the beginning of this descriptor's data.
Note that folding is locale-independent behaviour. It is also important to
note that there can be no guarantee that folding is in any way culturally
appropriate, and should not be used for finding strings in natural language;
use FindC() for this.
@param aDes The 16-bit non-modifable descriptor containing the data sequence
to be searched for.
@return The offset of the data sequence from the beginning of this descriptor's
data. KErrNotFound, if the data sequence cannot be found.
Zero, if the length of the search data sequence is zero.
@see TDesC16::FindC()
*/
EXPORT_C TInt TDesC16::FindF(const TDesC16 &aDes) const
{
TUTF32Iterator candidateStrIt(Ptr(), Ptr() + Length());
TUTF32Iterator searchTermIt(aDes.Ptr(), aDes.Ptr() + aDes.Length());
return ::FindFolded(candidateStrIt, searchTermIt);
}
/**
Searches for the first occurrence of the specified collated data sequence within
this descriptor's collated data.
Searching always starts at the beginning of this descriptor's data. The function
uses the standard collation method appropriate to the current locale.
@param aText A pointer to a location containing the data sequence to be
searched for.
@param aLength The length of the data sequence to be searched for.
@return The offset of the data sequence from the beginning of this descriptor's data.
KErrNotFound, if the data sequence cannot be found.
@panic USER 17 if aLength is negative.
*/
EXPORT_C TInt TDesC16::FindC(const TUint16 *aText,TInt aLength) const
{
__CHECK_ALIGNMENT(aText,ETDesC16FindCPtrLen);
TCollate c(GetLocaleCharSet(),TCollationMethod::EIgnoreNone | TCollationMethod::EFoldCase);
return c.Find(Ptr(),Length(),aText,aLength,1);
}
/**
Searches for the first occurrence of the specified collated data sequence
within this descriptor's collated data to the specified maximum collation
level.
@param aText A pointer to a location containing the data sequence to
be searched for.
@param aLength The length of the data sequence to be searched for.
@param aMaxLevel The maximum collation level. This is an integer with
values: 0, 1, 2 or 3, which, effectively, determines
how 'tight' the matching should be. Level 3 is always
used if the aim is to sort strings.
@return The offset of the data sequence from the beginning of this descriptor's data.
KErrNotFound, if the data sequence cannot be found.
*/
EXPORT_C TInt TDesC16::FindC(const TUint16 *aText,TInt aLength, TInt aMaxLevel) const
{
__CHECK_ALIGNMENT(aText,ETDesC16FindCPtrLen);
TCollate c(GetLocaleCharSet(),TCollationMethod::EIgnoreNone | TCollationMethod::EFoldCase);
return c.Find(Ptr(),Length(),aText,aLength,aMaxLevel);
}
/**
Searches for the first occurrence of the specified collated data sequence
within this descriptor's collated data.
Searching always starts at the beginning of this descriptor's data. The
function uses the standard collation method appropriate to the current
locale.
@param aDes The 16-bit non-modifable descriptor containing the data sequence
to be searched for.
@return The offset of the data sequence from the beginning of this descriptor's
data. KErrNotFound, if the data sequence cannot be found.
*/
EXPORT_C TInt TDesC16::FindC(const TDesC16 &aDes) const
{
return(FindC(aDes.Ptr(),aDes.Length()));
}
/**
Searches for the first occurrence of the specified collated data sequence
within this descriptor's collated data.
Searching always starts at the beginning of this descriptor's data. The
function uses the standard collation method appropriate to the current
locale.
@param aDes The 16-bit non-modifable descriptor containing the data sequence
to be searched for.
@param aLengthFound A refernce to the maximal length of the match found in the candidate
string. KErrNotFound, if the data sequence cannot be found.
@param aCollationMethod A pointer to the collation method or NULL. Collation
methods can be retrieved by calls to
Mem::CollationMethodByIndex()
and Mem::CollationMethodById().
Specifying NULL means that the default method is used.
@param aMaxLevel The maximum collation level. This is an integer with
values: 0, 1, 2 or 3, which, effectively, determines
how 'tight' the matching should be. Level 3 is always
used if the aim is to sort strings.
@return The offset of the data sequence from the beginning of this descriptor's
data. KErrNotFound, if the data sequence cannot be found.
*/
EXPORT_C TInt TDesC16::FindC(const TDesC16 &aDes, TInt &aLengthFound, const TCollationMethod &aMethod, TInt aMaxLevel) const
{
TCollate c(aMethod);
return c.Find(Ptr(),Length(),aDes.Ptr(),aDes.Length(),aLengthFound,aMaxLevel);
}
#ifdef _UNICODE
LOCAL_C const TText* convTable(TMatchType aType)
{
switch (aType)
{
case EMatchFolded: // at present, folding is...
case EMatchCollated: return (const TText *)(TChar::EFoldStandard); // ...the same as collation: use all folding methods
default: return 0;
}
}
#else
LOCAL_C const TText* convTable(TMatchType aType)
{
switch (aType)
{
case EMatchFolded: return Locl::FoldTable();
case EMatchCollated: return Locl::CollTable();
default: return NULL;
}
}
#endif
inline TUint conv(const TUint16* aStr,const TText *aConv, const TUnicodeDataSet* aCharDataSet)
//
// If aConv is not NULL then convert the character.
//
{
#ifdef _UNICODE
if (aConv)
return TUnicode(*aStr).Fold((TInt)aConv, aCharDataSet);
else
return *aStr;
#else
TUint c=*aStr;
return aConv && c<0x100 ? aConv[c] : c;
#endif
}
inline TUint lookup(const TUint16* aStr,const TText *aConv)
{
#ifdef _UNICODE
return TUnicode(*aStr).Fold((TInt)aConv,GetLocaleCharSet()->iCharDataSet);
#else
TUint c=*aStr;
return c<0x100 ? aConv[c] : c;
#endif
}
TInt DoMatch16(const TDesC16 &aLeftD,const TDesC16 &aRightD,TMatchType aType)
{
const TText* table=convTable(aType);
const TUint16* pRight=aRightD.Ptr();
const TUint16* pM=pRight-1; // pre-increment addressing
const TUint16* pP=pM+aRightD.Length();
const TUint16* pLeft=aLeftD.Ptr()-1; // pre-increment addressing
const TUint16* pB=pLeft;
const TUint16* pE=pB+aLeftD.Length();
const TUnicodeDataSet* charDataSet = GetLocaleCharSet()->iCharDataSet;
// Match any pattern up to the first star
TUint c;
for (;;)
{
if (pM==pP) // exhausted the pattern
return pB==pE ? 0 : KErrNotFound;
TUint c=conv(++pM,table, charDataSet);
if (c==KMatchAny)
break;
if (pB==pE) // no more input
return KErrNotFound;
if (c!=conv(++pB,table, charDataSet) && c!=KMatchOne) // match failed
return KErrNotFound;
}
// reached a star
if (pM==pP)
return 0;
TInt r=pM==pRight ? -1 : 0;
for (;;)
{
c=conv(++pM,table, charDataSet);
if (c==KMatchAny)
{
star: if (pM==pP) // star at end of pattern, always matches
return Max(r,0);
if (r<-1) // skipped some '?', matches at beginning
r=0;
continue;
}
if (pB==pE) // no more input
return KErrNotFound;
if (c==KMatchOne)
{ // skip a character in the input
if (pM==pP)
return r+((r>=0) ? 0 : (pE-pLeft));
++pB;
if (r<0)
--r;
continue;
}
// Matching a non-wild character
for (;;)
{
if (table)
{
while (lookup(++pB,table)!=c)
{
if (pB==pE) // no more input
return KErrNotFound;
}
}
else
{
while (*++pB!=c)
{
if (pB==pE) // no more input
return KErrNotFound;
}
}
// Try to match up to the next star
const TUint16* pb=pB;
const TUint16* pm=pM;
for (;;)
{
if (pm<pP)
{
TUint cc=conv(++pm,table, charDataSet);
if (cc==KMatchAny)
{ // sub-match successful, back to main loop
r+=(r>=0 ? 0 : pB-pLeft);
pB=pb;
pM=pm;
goto star;
}
if (pb==pE)
return KErrNotFound; // no more input
if (cc!=conv(++pb,table, charDataSet) && cc!=KMatchOne)
break; // sub-match failed, try next input character
}
else if (pb==pE) // end of matching pattern
return r+(r>=0 ? 0 : pB-pLeft); // end of input, so have a match
else
break; // try next input character
}
}
}
}
EXPORT_C TDesC16::TPrefix TDesC16::HasPrefixC(const TDesC16& aPossiblePrefix,
TInt aLevel, const TCollationMethod* aCollationMethod) const
/**
Compares aPossiblePrefix against the start of the descriptor, using a
collated comparison.
@param aLevel The maximum level at which to perform the collation.
0: Only check character identities.
1: Check accents as well.
2: Check case as well.
3: Check Unicode values.
Currently only level 0 is supported.
@param aCollationMethod The collation method to be used for the matching.
@return EIsPrefix, if aPossiblePrefix can be extended to
be equivalent to the text at the start of this descriptor.
EIsNotPrefix if aPossiblePrefix cannot
be extended to be equivalent to the text at the start of this descriptor.
EMightBePrefix if it currently does not seem to be a prefix, but it
is possible that it could be extended to become equivalent to text at
the start of this descriptor.
EMightBePrefix is returned in cases where it would be expensive
to determine for sure.
*/
{
const TText16* lp = aPossiblePrefix.Ptr();
const TText16* rp = Ptr();
TInt ll = aPossiblePrefix.Length();
TInt rl = Length();
TInt r;
if (!aCollationMethod)
{
TCollate c(GetLocaleCharSet());
r = c.Compare(rp, rl, lp, ll, aLevel);
}
else
{
TCollate c(*aCollationMethod);
r = c.Compare(rp, rl, lp, ll, aLevel);
}
return r == 1 || r == 0? EIsPrefix : EIsNotPrefix;
}
EXPORT_C TInt TDesC16::Match(const TDesC16 &aDes) const
/**
Searches this descriptor's data for a match with the match pattern supplied
in the specified descriptor.
The match pattern can contain the wildcard characters "*" and "?", where "*"
matches zero or more consecutive occurrences of any character and "?" matches
a single occurrence of any character.
Note that there is no 'escape character', which means that it is not possible
to match either the "*" character itself or the "?" character itself using
this function.
@param aDes A 16-bit non-modifable descriptor containing the match pattern.
@return If a match is found, the offset within this descriptor's data where
the match first occurs. KErrNotFound, if there is no match.
*/
{
return DoMatch16(*this,aDes,EMatchNormal);
}
EXPORT_C TInt TDesC16::MatchF(const TDesC16 &aDes) const
/**
Searches this descriptor's folded data for a match with the folded match pattern
supplied in the specified descriptor.
The match pattern can contain the wildcard characters "*" and "?", where "*"
matches zero or more consecutive occurrences of any character and "?" matches
a single occurrence of any character.
Note that folding is locale-independent behaviour. It is also important to
note that there can be no guarantee that folding is in any way culturally
appropriate, and should not be used for matching strings in natural language;
use MatchC() for this.
Note that there is no 'escape character', which means that it is not possible
to match either the "*" character itself or the "?" character itself using
this function.
@param aDes A 16-bit non-modifable descriptor containing the match pattern.
@return If a match is found, the offset within this descriptor's data where
the match first occurs. KErrNotFound, if there is no match.
@see TDesC16::MatchC()
*/
{
const TText16* csp = Ptr();
const TText16* stp = aDes.Ptr();
return LocateMatchStringFolded(csp, csp + Length(), stp, stp + aDes.Length());
}
EXPORT_C TInt TDesC16::MatchC(const TDesC16 &aPattern) const
/**
Searches this descriptor's collated data for a match with the collated match
pattern supplied in the specified descriptor.
The function uses the standard collation method appropriate to
the current locale.
The match pattern can contain the wildcard characters "*" and "?", where "*"
matches zero or more consecutive occurrences of any character and "?" matches
a single occurrence of any character.
Note that there is no 'escape character', which means that it is not possible
to match either the "*" character itself or the "?" character itself using
this function.
@param aPattern A 16-bit non-modifable descriptor containing the match pattern.
@return If a match is found, the offset within this descriptor's data where
the match first occurs. KErrNotFound, if there is no match.
*/
{
TCollationMethod m=*Mem::GetDefaultMatchingTable();
m.iFlags |= (TCollationMethod::EIgnoreNone | TCollationMethod::EFoldCase);
TCollate c(m);
return c.Match(Ptr(), Length(), aPattern.Ptr(), aPattern.Length(), 0, '?', '*');
}
/**
Searches this descriptor's collated data for a match with the collated match
pattern supplied in the specified descriptor.
The function uses the standard collation method appropriate to
the current locale.
The match pattern can contain the wildcard characters specified by aWildChar and aWildSequenceChar
parameters, where aWildSequenceChar matches zero or more consecutive occurrences of any character and
aWildChar matches a single occurrence of any character.
@param aPattern A 16-bit non-modifable descriptor containing the match pattern.
@param aWildChar Wild card character which may be specified for aSearchTerm.
@param aWildSequenceChar Wild card sequence character which may be specified for aSearchTerm.
@param aEscapeChar The escape character, or 0 if there is to be none. The escape character removes any
special meaning from the subsequent character. For example, if the escape, wild card
and wild sequence characters are \, ? And * respectively, the search term "\?\*\\" matches
only the candidate string "?*\";
@param aMaxLevel Determines the tightness of the collation. At level 0, only
character identities are distinguished. At level 1 accents are
distinguished as well. At level 2 case is distinguishes as well. At
level 3 all valid different Unicode characters are considered different.
@param aCollationMethod A pointer to the collation method or NULL. Collation methods can be retrieved by calls to
Mem::CollationMethodByIndex() and Mem::CollationMethodById().
Specifying NULL means that the default method is used.
@return If a match is found, the offset within this descriptor's data where
the match first occurs. KErrNotFound, if there is no match.
*/
EXPORT_C TInt TDesC16::MatchC(const TDesC16 &aPattern, TInt aWildChar, TInt aWildSequenceChar,
TInt aEscapeChar, TInt aMaxLevel, const TCollationMethod* aCollationMethod) const
{
TCollationMethod m(aCollationMethod ? *aCollationMethod : *Mem::GetDefaultMatchingTable());
m.iFlags |= (TCollationMethod::EIgnoreNone | TCollationMethod::EFoldCase);
TCollate c(m);
return c.Match(Ptr(), Length(), aPattern.Ptr(), aPattern.Length(), aMaxLevel, aWildChar, aWildSequenceChar, aEscapeChar);
}
/**
Searches this descriptor's collated data for a match with the collated match
pattern supplied in the specified descriptor.
The function uses the standard collation method appropriate to
the current locale.
The match pattern can contain the wildcard characters specified by aWildChar and aWildSequenceChar
parameters, where aWildSequenceChar matches zero or more consecutive occurrences of any character and
aWildChar matches a single occurrence of any character.
@param aPattern A 16-bit non-modifable descriptor containing the match pattern.
@param aFlags Flags providing advanced control of the collation algorithm @see TCollationFlag
@param aWildChar Wild card character which may be specified for aSearchTerm. Defaulted to '?' if omitted.
@param aWildSequenceChar Wild card sequence character which may be specified for aSearchTerm.
Defaulted to '*' if omitted.
@param aEscapeChar The escape character, or 0 if there is to be none. The escape character removes any
special meaning from the subsequent character. For example, if the escape, wild card
and wild sequence characters are \, ? And * respectively, the search term "\?\*\\" matches
only the candidate string "?*\". Defaulted to 0 if omitted.
@param aMaxLevel Determines the tightness of the collation. Defaulted to 3 if omitted. At level 0, only
character identities are distinguished. At level 1 accents are
distinguished as well. At level 2 case is distinguishes as well. At
level 3 all valid different Unicode characters are considered different.
@param aCollationMethod A pointer to the collation method. Collation methods can be retrieved by calls to
Mem::CollationMethodByIndex(), Mem::CollationMethodById() or by custom defined name.
Flags can be set on definition of the custom TCollationMethod, or by const_cast-ing
the returned pointer and setting the iFlags field directly. @see TCollationMethod
@return If a match is found, the offset within this descriptor's data where
the match first occurs. KErrNotFound, if there is no match.
*/
EXPORT_C TInt TDesC16::MatchC(const TDesC16 &aPattern, const TCollationMethod* aCollationMethod,
TInt aMaxLevel, TInt aWildChar, TInt aWildSequenceChar, TInt aEscapeChar) const
{
TCollate c(*aCollationMethod);
return c.Match(Ptr(), Length(), aPattern.Ptr(), aPattern.Length(), aMaxLevel, aWildChar, aWildSequenceChar, aEscapeChar);
}
#ifndef __DES16_MACHINE_CODED_HWORD__
EXPORT_C TInt TDesC16::Locate(TChar aChar) const
/**
Searches for the first occurrence of a character within this descriptor's
data.
The search starts at the beginning of the data, i.e. at the leftmost
position.
@param aChar The character to be found.
@return The offset of the character position from the beginning of the data.
KErrNotFound, if no matching character can be found.
*/
{
const TUint16 *pBuf=Ptr();
const TUint16 *pB=pBuf-1;
const TUint16 *pE=pB+Length();
do
{
if (pB==pE)
return KErrNotFound;
} while (TUint(*++pB)!=aChar);
return pB-pBuf;
}
#endif
LOCAL_C TInt DoLocateF16(const TDesC16& aDes,TUint aChar)
//
// Locate character aChar in the descriptor folded.
//
{
#ifdef _UNICODE
const TText* table = convTable(EMatchFolded);
TUint16 aChar16 = (TUint16)aChar;
aChar = lookup(&aChar16,table);
#else
const TText* table=Locl::FoldTable;
if (aChar<0x100)
aChar=table[aChar];
#endif
const TUint16 *pBuf=aDes.Ptr();
const TUint16 *pB=pBuf-1;
const TUint16 *pE=pB+aDes.Length();
do
{
if (pB==pE)
return KErrNotFound;
} while (lookup(++pB,table)!=aChar);
return pB-pBuf;
}
EXPORT_C TInt TDesC16::LocateF(TChar aChar) const
/**
Searches for the first occurrence of a folded character within this
descriptor's folded data.
The search starts at the beginning of the data, i.e. at the leftmost
position.
Note that folding is locale-independent behaviour. It is also important to
note that there can be no guarantee that folding is in any way culturally
appropriate, and should not be used for searching strings in natural language.
@param aChar The character to be found.
@return The offset of the character position from the beginning of the data.
KErrNotFound, if no matching character can be found.
*/
{
return DoLocateF16(*this,aChar);
}
#ifndef __DES16_MACHINE_CODED_HWORD__
EXPORT_C TInt TDesC16::LocateReverse(TChar aChar) const
/**
Searches for the first occurrence of a character within this descriptor's
data, searching from the end of the data.
The search starts at the rightmost position.
@param aChar The character to be found.
@return The offset of the character position from the beginning of the data.
KErrNotFound, if no matching character can be found.
*/
{
TInt len=Length();
if (len==0)
return(KErrNotFound);
const TUint16 *pB=Ptr();
const TUint16 *pE=pB+len-1;
while (pE>=pB)
{
if (TUint(*pE)==aChar)
break;
pE--;
}
return(pE<pB ? KErrNotFound : pE-pB);
}
#endif
EXPORT_C TInt TDesC16::LocateReverseF(TChar aChar) const
/**
Searches for the first occurrence of a folded character within this descriptor's
folded data, searching from the end of the data.
The search starts at the rightmost position.
Note that folding is locale-independent behaviour. It is also important to
note that there can be no guarantee that folding is in any way culturally
appropriate, and should not be used for searching strings in natural language.
@param aChar The character to be found
@return The offset of the character position from the beginning of the data.
KErrNotFound, if no matching character can be found.
*/
{
TInt len=Length();
if (len==0)
return(KErrNotFound);
const TUint16 *pB=Ptr();
const TUint16 *pE=pB+len-1;
aChar.Fold();
while (pE>=pB)
{
TCharF c(*pE);
if (c==aChar)
break;
pE--;
}
return(pE<pB ? KErrNotFound : pE-pB);
}
EXPORT_C HBufC16 *TDesC16::Alloc() const
/**
Creates a new 16-bit heap descriptor and initialises it with a copy of this
descriptor's data.
@return A pointer to the new 16-bit heap descriptor, if creation is successful.
NULL, if creation of the descriptor fails.
*/
{
HBufC16 *pH=HBufC16::New(Length());
if (pH)
*pH=(*this);
return(pH);
}
EXPORT_C HBufC16 *TDesC16::AllocL() const
/**
Creates a new 16-bit heap descriptor and initialises it with a copy of this
descriptor's data.
The function leaves, if creation of the descriptor fails.
@return A pointer to the 16-bit heap descriptor, if creation is successful.
*/
{
HBufC16 *pH=HBufC16::NewL(Length());
*pH=(*this);
return(pH);
}
EXPORT_C HBufC16 *TDesC16::AllocLC() const
/**
Creates a new 16-bit heap descriptor, initialises it with a copy of this
descriptor's data, and puts a pointer to the descriptor onto the cleanup stack.
The function leaves, if creation of the descriptor fails.
@return A pointer to the 16-bit heap descriptor, if creation is successful.
The pointer is also put onto the cleanup stack.
*/
{
HBufC16 *pH=HBufC16::NewLC(Length());
*pH=(*this);
return(pH);
}
#if !defined(__DES16_MACHINE_CODED__)
EXPORT_C TPtrC16 TDesC16::Left(TInt aLength) const
/**
Extracts the leftmost part of the data.
The function does not cut or remove any data but constructs a non-modifiable
pointer descriptor to represent the leftmost part of the data.
@param aLength The length of the data to be extracted. If this value is
greater than the length of the descriptor, the function
extracts the whole of the descriptor.
@return The 16-bit non-modifiable pointer descriptor representing the leftmost
part of the data.
@panic USER 10 if aLength is negative.
*/
{
__ASSERT_ALWAYS(aLength>=0,Panic(ETDes16PosOutOfRange));
return(TPtrC16(Ptr(),Min(aLength,Length())));
}
EXPORT_C TPtrC16 TDesC16::Right(TInt aLength) const
/**
Extracts the rightmost part of the data.
The function does not cut or remove any data but constructs a non-modifiable
pointer descriptor to represent the rightmost part of the data.
@param aLength The length of data to be extracted. If this value
is greater than the length of the descriptor, the function
extracts the whole of the descriptor.
@return The 16-bit non-modifiable pointer descriptor representing the rightmost
part of the data.
@panic USER 10 if aLength is negative.
*/
{
__ASSERT_ALWAYS(aLength>=0,Panic(ETDes16PosOutOfRange));
TInt len=Length();
if (aLength>len)
aLength=len;
return(TPtrC16(Ptr()+len-aLength,aLength));
}
EXPORT_C TPtrC16 TDesC16::Mid(TInt aPos) const
/**
Extracts a portion of the data.
The function does not cut or remove any data but constructs a non-modifiable
pointer descriptor to represent the defined portion.
The portion is identified by its starting position and by the length of the
remainder of the data starting from the specified position.
@param aPos The starting position of the data to be extracted. This is an
offset value; a zero value refers to the leftmost data position.
@return The 16-bit non-modifiable pointer descriptor representing the specified
portion of the data.
@panic USER 10 if aPos is negative or aPos is greater than the
length of the descriptor.
*/
{
TInt len=Length();
__ASSERT_ALWAYS(aPos>=0 && aPos<=len,Panic(ETDes16PosOutOfRange));
return(TPtrC16(Ptr()+aPos,len-aPos));
}
EXPORT_C TPtrC16 TDesC16::Mid(TInt aPos,TInt aLength) const
/**
Extracts a portion of the data.
The function does not cut or remove any data but constructs a non-modifiable
pointer descriptor to represent the defined portion.
The portion is identified by its starting position and by its length.
@param aPos The starting position of the data to be extracted. This is an
offset value; a zero value refers to the leftmost data position.
@param aLength The length of data to be extracted.
@return The 16-bit non-modifiable pointer descriptor representing the specified
portion of the data.
@panic USER 10 if aPos is negative or aPos plus aLength is greater than the
length of the descriptor.
*/
{
__ASSERT_ALWAYS(aPos>=0 && (aPos+aLength)<=Length(),Panic(ETDes16PosOutOfRange));
return(TPtrC16(Ptr()+aPos,aLength));
}
#endif // !defined(__DES16_MACHINE_CODED__)
#if !defined( __DES16_MACHINE_CODED__) | defined(__EABI_CTORS__)
EXPORT_C TBufCBase16::TBufCBase16()
//
// Constructor
//
: TDesC16(EBufC,0)
{}
#endif
#if !defined( __DES16_MACHINE_CODED_HWORD__) | defined(__EABI_CTORS__)
EXPORT_C TBufCBase16::TBufCBase16(const TUint16 *aString,TInt aMaxLength)
//
// Constructor
//
: TDesC16(EBufC,0)
{
Copy(aString,aMaxLength);
}
#endif
#if !defined( __DES16_MACHINE_CODED__) | defined(__EABI_CTORS__)
EXPORT_C TBufCBase16::TBufCBase16(const TDesC16 &aDes,TInt aMaxLength)
//
// Constructor
//
: TDesC16(EBufC,0)
{
Copy(aDes,aMaxLength);
}
#endif
#ifndef __DES16_MACHINE_CODED_HWORD__
EXPORT_C void TBufCBase16::Copy(const TUint16 *aString,TInt aMaxLength)
//
// Copy from a string.
//
{
__CHECK_ALIGNMENT(aString,ETBufCBase16CopyStringMax);
TInt len=STRING_LENGTH_16(aString);
__ASSERT_ALWAYS(len<=aMaxLength,Panic(ETDes16Overflow));
memCopy(WPtr(),aString,len);
DoSetLength(len);
}
#endif
#ifndef __DES16_MACHINE_CODED__
EXPORT_C void TBufCBase16::Copy(const TDesC16 &aDes,TInt aMaxLength)
//
// Copy from a descriptor.
//
{
TInt len=aDes.Length();
__ASSERT_ALWAYS(len<=aMaxLength,Panic(ETDes16Overflow));
memCopy(WPtr(),aDes.Ptr(),len);
DoSetLength(len);
}
#endif
inline HBufC16::HBufC16(TInt aLength)
:TBufCBase16(aLength)
{}
EXPORT_C HBufC16 *HBufC16::New(TInt aMaxLength)
/**
Creates, and returns a pointer to, a new 16-bit heap descriptor.
The heap descriptor is empty and its length is zero.
Data can, subsequently, be assigned into it using the assignment operators.
@param aMaxLength The requested maximum length of the descriptor. Note that
the resulting heap cell size and, therefore, the resulting
maximum length of the descriptor may be larger than
requested.
@return A pointer to the new 16-bit heap descriptor. NULL, if the 16-bit heap
descriptor cannot be created.
@panic USER 18 if aMaxLength is negative.
@see HBufC16::operator=()
*/
{
__ASSERT_ALWAYS(aMaxLength>=0,Panic(ETDes16MaxLengthNegative));
return new(STD_CLASS::Alloc(_FOFF(HBufC16,iBuf[aMaxLength]))) HBufC16(0);
}
EXPORT_C HBufC16 *HBufC16::NewL(TInt aMaxLength)
/**
Creates, and returns a pointer to, a new 16-bit heap descriptor, and leaves
on failure.
The heap descriptor is empty and its length is zero.
Data can, subsequently, be assigned into it using the assignment operators.
@param aMaxLength The requested maximum length of the descriptor. Note that
the resulting heap cell size and, therefore, the resulting
maximum length of the descriptor may be larger
than requested.
@return A pointer to the new 16-bit heap descriptor. The function leaves, if
the new 16-bit heap descriptor cannot be created.
@panic USER 18 if aMaxLength is negative.
@see HBufC16::operator=()
*/
{
return static_cast<HBufC16*>(User::LeaveIfNull(New(aMaxLength)));
}
EXPORT_C HBufC16 *HBufC16::NewLC(TInt aMaxLength)
/**
Creates, adds a pointer onto the cleanup stack and returns a pointer to, a
new 16-bit heap descriptor; leaves on failure.
The heap descriptor is empty and its length is zero.
Data can, subsequently, be assigned into it using the assignment operators.
@param aMaxLength The requested maximum length of the descriptor. Note that
the resulting heap cell size and, therefore, the resulting
maximum length of the descriptor may be larger
than requested.
@return A pointer to the new 16-bit heap descriptor. The function leaves, if
the new 16-bit heap descriptor cannot be created.
@panic USER 18 if aMaxLength is negative.
@see HBufC16::operator=()
*/
{
HBufC16* buf=NewL(aMaxLength);
CleanupStack::PushL(buf);
return buf;
}
EXPORT_C HBufC16 *HBufC16::NewMax(TInt aMaxLength)
/**
Creates, and returns a pointer to, a new 16-bit heap descriptor.
No data is assigned into the new descriptor but its length
is set to aMaxLength.
Data can, subsequently, be assigned into it using the assignment operators.
@param aMaxLength The requested maximum length of the descriptor. Note that
the resulting heap cell size and, therefore, the resulting
maximum length of the descriptor may be larger
than requested. This also means that the resulting maximum
length of the descriptor may be greater than its length.
@return A pointer to the new 16-bit heap descriptor. NULL, if the new 16-bit
heap descriptor cannot be created.
@panic USER 18 if aMaxLength is negative.
@see HBufC16::operator=()
*/
{
__ASSERT_ALWAYS(aMaxLength>=0,Panic(ETDes16MaxLengthNegative));
return new(STD_CLASS::Alloc(_FOFF(HBufC16,iBuf[aMaxLength]))) HBufC16(aMaxLength);
}
EXPORT_C HBufC16 *HBufC16::NewMaxL(TInt aMaxLength)
/**
Creates, and returns a pointer to, a new 16-bit heap descriptor;
leaves on failure.
No data is assigned into the new descriptor but its length is set
to aMaxLength.
Data can, subsequently, be assigned into it using the assignment operators.
@param aMaxLength The requested maximum length of the descriptor. Note that
the resulting heap cell size and, therefore, the resulting
maximum length of the descriptor may be larger
than requested. This also means that the resulting
maximum length of the descriptor may be greater than its length.
@return A pointer to the new 16-bit heap descriptor. The function leaves, if
the new 16-bit heap descriptor cannot be created.
@panic USER 18 if aMaxLength is negative.
@see HBufC16::operator=()
*/
{
return static_cast<HBufC16*>(User::LeaveIfNull(NewMax(aMaxLength)));
}
EXPORT_C HBufC16 *HBufC16::NewMaxLC(TInt aMaxLength)
/**
Creates, adds a pointer onto the cleanup stack and returns a pointer to, a
new 16-bit heap descriptor; leaves on failure.
No data is assigned into the new descriptor but its length
is set to aMaxLength.
Data can, subsequently, be assigned into it using the assignment operators.
@param aMaxLength The requested maximum length of the descriptor. Note that
the resulting heap cell size and, therefore, the resulting
maximum length of the descriptor may be larger than requested.
@return A pointer to the new 16-bit heap descriptor. This is also put onto
the cleanup stack. The function leaves, if the new 16-bit heap descriptor
cannot be created.
@panic USER 18 if aMaxLength is negative.
@see HBufC16::operator=()
*/
{
HBufC16* buf=NewMaxL(aMaxLength);
CleanupStack::PushL(buf);
return buf;
}
EXPORT_C HBufC16 &HBufC16::operator=(const TUint16 *aString)
/**
Copies data into this 16-bit heap descriptor replacing any existing data.
The length of this descriptor is set to reflect the new data.
Note that the maximum length of this (target) descriptor is the length
of the descriptor buffer in the allocated host heap cell; this may be greater
than the maximum length specified when this descriptor was created or
last re-allocated.
@param aString A pointer to a zero-terminated string.
@return A reference to this 16-bit heap descriptor.
@panic USER 11 if the length of the string, excluding the zero terminator,
is greater than the maximum length of this (target) descriptor.
*/
{
__CHECK_ALIGNMENT(aString,EHBufC16AssignCString);
Copy(aString,(STD_CLASS::AllocLen(this)-sizeof(TDesC16))/sizeof(TUint16));
return(*this);
}
EXPORT_C HBufC16 &HBufC16::operator=(const TDesC16 &aDes)
/**
Copies data into this 16-bit heap descriptor replacing any existing data.
The length of this descriptor is set to reflect the new data.
Note that the maximum length of this (target) descriptor is the length
of the descriptor buffer in the allocated host heap cell; this may be greater
than the maximum length specified when this descriptor was created or
last re-allocated.
@param aDes A 16-bit non-modifiable descriptor.
@return A reference to this 16-bit heap descriptor.
@panic USER 11 if the length of the descriptor aDes is greater than the
maximum length of this (target) descriptor
*/
{
Copy(aDes,(STD_CLASS::AllocLen(this)-sizeof(TDesC16))/sizeof(TUint16));
return(*this);
}
EXPORT_C HBufC16 *HBufC16::ReAlloc(TInt aMaxLength)
/**
Expands or contracts this 16-bit heap descriptor.
This is done by:
1. creating a new heap descriptor.
2. copying the original data into the new descriptor.
3. deleting the original descriptor.
@param aMaxLength The new requested maximum length of the descriptor.
Note that the resulting heap cell size and, therefore,
the resulting maximum length of the descriptor may be
larger than requested.
@return A pointer to the new expanded or contracted 16-bit heap descriptor -
the original descriptor is deleted. NULL, if the new 16-bit heap descriptor
cannot be created - the original descriptor remains unchanged.
@panic USER 14 if aMaxLength is less than the length of the existing data.
@panic USER 18 if aMaxLength is negative.
*/
{
__ASSERT_ALWAYS(aMaxLength>=0,Panic(ETDes16MaxLengthNegative));
__ASSERT_ALWAYS(Length()<=aMaxLength,Panic(ETDes16ReAllocTooSmall));
return((HBufC16 *)STD_CLASS::ReAlloc(this,(aMaxLength*sizeof(TUint16))+sizeof(TDesC16)));
}
EXPORT_C HBufC16 *HBufC16::ReAllocL(TInt aMaxLength)
/**
Expands or contracts this 16-bit heap descriptor; leaves on failure.
This is done by:
1. creating a new heap descriptor.
2. copying the original data into the new descriptor.
3. deleting the original descriptor.
@param aMaxLength The new requested maximum length of the descriptor.
Note that the resulting heap cell size and, therefore,
the resulting maximum length of the descriptor may be
larger than requested.
@return A pointer to the new expanded or contracted 16-bit heap descriptor -
the original descriptor is deleted. The function leaves, if the new
16-bit heap descriptor cannot be created - the original descriptor
remains unchanged.
@panic USER 14 if aMaxLength is less than the length of the existing data.
@panic USER 18 if aMaxLength is negative.
*/
{
__ASSERT_ALWAYS(aMaxLength>=0,Panic(ETDes16MaxLengthNegative));
__ASSERT_ALWAYS(Length()<=aMaxLength,Panic(ETDes16ReAllocTooSmall));
return((HBufC16 *)STD_CLASS::ReAllocL(this,(aMaxLength*sizeof(TUint16))+sizeof(TDesC16)));
}
EXPORT_C TPtr16 HBufC16::Des()
/**
Creates and returns a 16-bit modifiable pointer descriptor for the data
represented by this 16-bit heap descriptor.
The content of a heap descriptor normally cannot be altered, other than by
complete replacement of the data. Creating a modifiable pointer descriptor
provides a way of changing the data.
The modifiable pointer descriptor is set to point to this heap descriptor's
data.
The length of the modifiable pointer descriptor is set to the length of this
heap descriptor.
The maximum length of the modifiable pointer descriptor is set to the length
of the heap descriptor's buffer. Note that the maximum length is the length
of the descriptor buffer in the allocated host heap cell; this may be greater
than the maximum length requested when this descriptor was originally created
or last re-allocated.
When data is modified through this new pointer descriptor, the lengths of
both it and this heap descriptor are changed.
Note that it is a common mistake to use Des() to create a TDesC16& reference.
While not incorrect, it is simpler and much more efficient to simply dereference
the heap descriptor.
@return A 16-bit modifiable pointer descriptor representing the data in this
16-bit heap descriptor.
*/
{
return DoDes((STD_CLASS::AllocLen(this)-sizeof(TDesC16))/sizeof(TUint16));
}
#ifndef __DES16_MACHINE_CODED__
EXPORT_C void TDes16::SetLength(TInt aLength)
/**
Sets the length of the data represented by the descriptor to the
specified value.
@param aLength The new length of the descriptor.
@panic USER 11 if aLength is negative or is greater than the maximum length of
this (target) descriptor.
*/
{
__ASSERT_ALWAYS(TUint(aLength)<=TUint(MaxLength()),Panic(ETDes16Overflow));
DoSetLength(aLength);
if (Type()==EBufCPtr)
((SBufCPtr16 *)this)->ptr->length=aLength; // Relies on iType==0 for an TBufC
}
EXPORT_C void TDes16::SetMax()
/**
Sets the length of the data to the maximum length of the descriptor.
*/
{
SetLength(iMaxLength);
}
#endif
#ifndef __DES16_MACHINE_CODED_HWORD__
EXPORT_C void TDes16::Copy(const TUint16 *aString)
/**
Copies data into this descriptor replacing any existing data.
The length of this descriptor is set to reflect the new data.
@param aString A pointer to a zero-terminated string.
@panic USER 11 if the length of aString, excluding the zero terminator, is
greater than the maximum length of this (target) descriptor.
*/
{
__CHECK_ALIGNMENT(aString,ETDes16CopyCString);
TInt len=STRING_LENGTH_16(aString);
SetLength(len);
memCopy(WPtr(),aString,len);
}
#endif
#ifndef __DES16_MACHINE_CODED__
EXPORT_C void TDes16::Copy(const TUint16 *aBuf,TInt aLength)
/**
Copies data into this descriptor replacing any existing data.
The length of this descriptor is set to reflect the new data.
@param aBuf The start address of data to be copied.
@param aLength The length of data to be copied.
@panic USER 11 if aLength is negative or is greater than maximum length
of this (target) descriptor.
*/
{
__CHECK_ALIGNMENT(aBuf,ETDes16CopyBufLength);
SetLength(aLength);
memCopy(WPtr(),aBuf,aLength);
}
EXPORT_C void TDes16::Copy(const TDesC16 &aDes)
/**
Copies data into this descriptor replacing any existing data.
The length of this descriptor is set to reflect the new data.
@param aDes A 16-bit non modifiable descriptor.
@panic USER 11 if the length of aDes is greater than the maximum length
of this (target) descriptor.
*/
{
TInt len=aDes.Length();
SetLength(len);
memCopy(WPtr(),aDes.Ptr(),len);
}
#endif
EXPORT_C void TDes16::Copy(const TDesC8 &aDes)
/**
Copies data into this descriptor replacing any existing data.
The length of this descriptor is set to reflect the new data.
@param aDes An 8 bit non modifiable descriptor.
@panic USER 11 if the length of aDes is greater than the maximum
length of this (target) descriptor.
*/
{
TInt len=aDes.Length();
SetLength(len);
const TUint8 *pS=aDes.Ptr();
const TUint8 *pE=pS+len;
TUint16 *pT=WPtr();
while (pS<pE)
*pT++=(*pS++);
}
#ifndef __DES16_MACHINE_CODED_HWORD__
EXPORT_C void TDes16::Append(TChar aChar)
/**
Appends data onto the end of this descriptor's data.
The length of this descriptor is incremented to reflect the new content.
@param aChar A single character to be appended. The length of the descriptor
is incremented by one.
@panic USER 11 if the resulting new length of this descriptor is greater than
its maximum length.
*/
{
TInt len=Length();
TUint16 *pB=WPtr()+len;
SetLength(len+1);
*pB++=(TUint16)aChar;
}
#endif
#ifndef __DES16_MACHINE_CODED__
EXPORT_C void TDes16::Append(const TUint16 *aBuf,TInt aLength)
/**
Appends data onto the end of this descriptor's data.
The length of this descriptor is incremented to reflect the new content.
@param aBuf A pointer to the data to be copied.
@param aLength The length of data to be copied.
@panic USER 11 if the resulting new length of this descriptor is greater than
its maximum length.
@panic USER 17 if aLength is negative.
*/
{
__ASSERT_ALWAYS(aLength>=0,Panic(ETDes16LengthNegative));
__CHECK_ALIGNMENT(aBuf,ETDes16AppendBufLength);
TInt len=Length();
SetLength(len+aLength);
memCopy(WPtr()+len,aBuf,aLength);
}
EXPORT_C void TDes16::Append(const TDesC16 &aDes)
/**
Appends data onto the end of this descriptor's data.
The length of this descriptor is incremented to reflect the new content.
@param aDes A 16-bit non modifiable descriptor whose data is to be appended.
@panic USER 11 if the resulting new length of this descriptor is greater than
its maximum length.
*/
{
TInt len=Length();
TInt n=aDes.Length();
SetLength(len+n);
memCopy(WPtr()+len,aDes.Ptr(),n);
}
#endif
EXPORT_C void TDes16::Swap(TDes16 &aDes)
/**
Swaps the data represented by this descriptor with the data represented by
the specified descriptor.
The lengths of both descriptors are also swapped to reflect the change.
Note that each descriptor must be capable of accommodating the contents of
the other descriptor.
Each descriptor must be capable of accommodating the contents of the other
descriptor. If the maximum length of either descriptor is smaller than the
length of the other descriptor, then the function raises a USER 11 panic.
@param aDes The 16-bit modifiable descriptor whose data is to be swapped with
the data of this descriptor.
@panic USER 11 if the maximum length of either descriptor is smaller than the
length of the other descriptor.
*/
{
TInt l=Length();
TInt r=aDes.Length();
aDes.SetLength(l);
SetLength(r);
TInt s=Min(l,r);
l-=s;
r-=s;
TUint16 *pL=WPtr();
TUint16 *pR=aDes.WPtr();
while (s--)
{
TChar a=(*pL);
*pL++=(*pR);
*pR++=(TUint16)a;
}
while (l--)
*pR++=(*pL++);
while (r--)
*pL++=(*pR++);
}
#ifndef __DES16_MACHINE_CODED_HWORD__
EXPORT_C void TDes16::Fill(TChar aChar)
/**
Fills the descriptor's data area with the specified character, replacing any
existing data.
The descriptor is filled from the beginning up to its current length. The
descriptor's length does not change. It is not filled to its maximum length.
@param aChar The fill character.
*/
{
TUint16 *pB=WPtr();
TUint16 *pE=pB+Length();
while (pB<pE)
*pB++=(TUint16)aChar;
}
#endif
EXPORT_C void TDes16::Fill(TChar aChar,TInt aLength)
/**
Fills the descriptor's data area with the specified character, replacing any
existing data.
The descriptor is filled with the specified number of characters,
and its length is changed to reflect this.
@param aChar The fill character.
@param aLength The new length of the descriptor and the number of fill characters
to be copied into it.
@panic USER 11 if aLength is negative or is greater than the maximum length
of this descriptor.
*/
{
SetLength(aLength);
Fill(aChar);
}
EXPORT_C void TDes16::AppendFill(TChar aChar,TInt aLength)
/**
Appends and fills this descriptor with the specified character.
The descriptor is appended with the specified number of characters.
and its length is changed to reflect this.
@param aChar The fill character.
@param aLength The number of fill characters to be appended.
@panic USER 11 if aLength is negative, or the resulting length of this
descriptor is greater than its maximum length.
*/
{
TInt len=Length();
TUint16 *pB=WPtr()+len;
SetLength(len+aLength);
TUint16 *pE=pB+aLength;
while (pB<pE)
*pB++=(TUint16)aChar;
}
#ifndef __DES16_MACHINE_CODED_HWORD__
EXPORT_C void TDes16::ZeroTerminate()
/**
Appends a zero terminator onto the end of this descriptor's data.
The length of the descriptor is not changed. It must, however, be strictly less than
the descriptor's maximum length.
This condition guarantees that there is sufficient space for the zero terminator.
@panic USER 11 if the descriptor's length is not strictly less than its
maximum length.
*/
{
TInt len=Length();
__ASSERT_ALWAYS(len<MaxLength(),Panic(ETDes16Overflow));
WPtr()[len]=0;
}
EXPORT_C const TUint16 *TDes16::PtrZ()
/**
Appends a zero terminator onto the end of this descriptor's data and returns
a pointer to the data.
The length of the descriptor is not changed. It must be strictly less than
the descriptor's maximum length.
This condition guarantees that there is sufficient space for the
zero terminator.
@return A pointer to the descriptor's zero terminated data.
@panic USER 11 if the descriptor's length is not strictly less than its
maximum length.
*/
{
ZeroTerminate();
return(Ptr());
}
#endif
#ifndef __DES16_MACHINE_CODED__
EXPORT_C void TDes16::Zero()
/**
Sets the length of the data to zero.
*/
{
SetLength(0);
}
#endif
#ifndef __DES16_MACHINE_CODED__
EXPORT_C void TDes16::FillZ()
/**
Fills the descriptor's data area with binary zeroes, i.e.0x0000, replacing any
existing data.
The descriptor is filled from the beginning up to its current length. The
descriptor's length does not change. It is not filled to its maximum length.
*/
{
memclr(WPtr(),Length()*2);
}
#endif
EXPORT_C void TDes16::FillZ(TInt aLength)
/**
Fills the descriptor's data area with binary zeroes, i.e. 0x0000, replacing any
existing data, and changes its length.
The descriptor is filled with the specified number of binary zeroes.
The descriptor's length is changed to reflect this.
@param aLength The new length of the descriptor and the number of binary zeroes
to be copied into it.
@panic USER 11 if aLength is negative, or is greater than the maximum length
of this descriptor.
*/
{
SetLength(aLength);
FillZ();
}
EXPORT_C void TDes16::Fold()
/**
Performs folding on the content of this descriptor.
Note that folding is locale-independent behaviour. It is also important to
note that there can be no guarantee that folding is in any way culturally
appropriate, and should not be used when dealing with strings in natural
language.
*/
{
TUint16 *pB=WPtr();
TInt len=Length();
while (len--)
{
TCharF c(*pB);
*pB++=(TUint16)c;
}
}
EXPORT_C void TDes16::Collate()
/**
Performs collation on the content of this descriptor.
*/
{
TUint16 *pB=WPtr();
TInt len=Length();
while (len--)
{
TChar c=User::Collate(*pB);
*pB++=(TUint16)c;
}
}
EXPORT_C void TDes16::LowerCase()
/**
Converts the content of this descriptor to lower case.
Conversion is implemented as appropriate to the current locale.
*/
{
TUint16 *pB=WPtr();
TInt len=Length();
while (len--)
{
TCharLC c(*pB);
*pB++=(TUint16)c;
}
}
EXPORT_C void TDes16::UpperCase()
/**
Converts the content of this descriptor to upper case.
Conversion is implemented as appropriate to the current locale.
*/
{
TUint16 *pB=WPtr();
TInt len=Length();
while (len--)
{
TCharUC c(*pB);
*pB++=(TUint16)c;
}
}
EXPORT_C void TDes16::Capitalize()
/**
Capitalises the content of this descriptor.
Capitalisation is implemented as appropriate to the current locale.
*/
{
TUint16 *pB=WPtr();
TInt len=Length();
if (len--)
{
*pB=(TUint16)User::TitleCase(*pB);
++pB;
while (len--)
{
*pB=(TUint16)User::LowerCase(*pB);
++pB;
}
}
}
EXPORT_C void TDes16::CopyF(const TDesC16 &aDes)
/**
Copies and folds data from the specified descriptor into this descriptor replacing
any existing data.
The length of this descriptor is set to reflect the new
data.
Note that folding is locale-independent behaviour. It is also important to
note that there can be no guarantee that folding is in any way culturally
appropriate, and should not be used when dealing with strings in natural
language.
@param aDes A 16-bit non-modifiable descriptor.
@panic USER 11 if the length of aDes is greater than the maximum length of
this target descriptor.
*/
{
TInt len=aDes.Length();
SetLength(len);
const TUint16 *pS=aDes.Ptr();
TUint16 *pT=WPtr();
while (len--)
{
TCharF c(*pS++);
*pT++=(TUint16)c;
}
}
EXPORT_C void TDes16::CopyC(const TDesC16 &aDes)
/**
Copies and collates data from the specified descriptor
into this descriptor replacing any existing data.
The length of this descriptor is set to reflect the new data.
@param aDes A 16-bit non-modifiable descriptor.
@panic USER 11 if the length of aDes is greater than the maximum length of
this target descriptor.
*/
{
TInt len=aDes.Length();
SetLength(len);
const TUint16 *pS=aDes.Ptr();
TUint16 *pT=WPtr();
while (len--)
{
TChar c=User::Collate(*pS++);
*pT++=(TUint16)c;
}
}
EXPORT_C void TDes16::CopyLC(const TDesC16 &aDes)
/**
Copies text from the specified descriptor and converts it to lower case before
putting it into this descriptor, replacing any existing data.
The length of this descriptor is set to reflect the new data.
Conversion to lower case is implemented as appropriate to the current locale.
@param aDes A 16-bit non modifiable descriptor.
@panic USER 11 if the length of aDes is greater than the maximum length of
this target descriptor.
*/
{
TInt len=aDes.Length();
SetLength(len);
const TUint16 *pS=aDes.Ptr();
TUint16 *pT=WPtr();
while (len--)
{
TCharLC c(*pS++);
*pT++=(TUint16)c;
}
}
EXPORT_C void TDes16::CopyUC(const TDesC16 &aDes)
/**
Copies text from the specified descriptor and converts it to upper case before
putting it into this descriptor, replacing any existing data.
The length of this descriptor is set to reflect the new data.
Conversion to upper case is implemented as appropriate to the current locale.
@param aDes A 16-bit non modifiable descriptor.
@panic USER 11 if the length of aDes is greater than the maximum length of
this target descriptor.
*/
{
TInt len=aDes.Length();
SetLength(len);
const TUint16 *pS=aDes.Ptr();
TUint16 *pT=WPtr();
while (len--)
{
TCharUC c(*pS++);
*pT++=(TUint16)c;
}
}
EXPORT_C void TDes16::CopyCP(const TDesC16 &aDes)
/**
Copies text from the specified descriptor and capitalises it before putting
it into this descriptor, replacing any existing data.
The length of this descriptor is set to reflect the new data.
Capitalisation is implemented as appropriate to the current locale.
@param aDes A 16-bit non-modifiable descriptor.
@panic USER 11 if the length of aDes is greater than the maximum length of
this target descriptor.
*/
{
TInt len=aDes.Length();
SetLength(len);
const TUint16 *pS=aDes.Ptr();
TUint16 *pT=WPtr();
if (len--)
{
TChar c(*pS++);
#ifdef _UNICODE
c.TitleCase();
#else
c.UpperCase();
#endif
*pT++=(TUint16)c;
while (len--)
{
TCharLC c=(*pS++);
*pT++=(TUint16)c;
}
}
}
EXPORT_C void TDes16::Repeat(const TUint16 *aBuf,TInt aLength)
/**
Copies data with repetition into this descriptor, from a memory location
specified by pointer, replacing any existing data.
Copying proceeds until this descriptor is filled up to its current length.
If it cannot contain a whole number of copies of the source data, then the
last copy is truncated.
@param aBuf A pointer to data to be repeatedly copied.
@param aLength The length of data to be copied.
@panic USER 17 if aLength is negative.
*/
{
__ASSERT_ALWAYS(aLength>=0,Panic(ETDes16LengthNegative));
__CHECK_ALIGNMENT(aBuf,ETDes16RepeatBufLength);
TUint16 *pB=WPtr();
TInt len=Length();
if (len && aLength)
{
while (len)
{
TInt i=Min(len,aLength);
pB=memCopy(pB,aBuf,i);
len-=i;
}
}
}
EXPORT_C void TDes16::Repeat(const TDesC16 &aDes)
/**
Copies data with repetition into this descriptor, from another descriptor,
replacing any existing data.
Copying proceeds until this descriptor is filled up to its current length.
If it cannot contain a whole number of copies of the source data, then the
last copy is truncated.
@param aDes A 16-bit non modifiable descriptor whose data is to be repeatedly
copied.
*/
{
Repeat(aDes.Ptr(),aDes.Length());
}
EXPORT_C void TDes16::Trim()
/**
Deletes leading and trailing whitespace characters from the descriptor's data.
The length of the descriptor is reduced to reflect the loss of the whitespace characters.
@see TDes16::TrimLeft()
@see TDes16::TrimRight()
*/
{
TrimLeft();
TrimRight();
}
EXPORT_C void TDes16::TrimAll()
/**
Deletes leading and trailing whitespace characters from the descriptor's data
and replaces each contiguous set of whitespace characters within the data by one
whitespace character.
The length of the descriptor is reduced to reflect the loss of the whitespace
characters.
@see TDes16::Trim()
*/
{
TrimLeft();
TrimRight();
TUint16 *pBuf=(TUint16 *)Ptr();
TUint16 *pSrc=pBuf;
TUint16 *pDst=pBuf;
TInt len=Length();
TInt spaces=0;
while (len--)
{
TChar c=*pSrc;
if (c.IsSpace())
{
if (spaces++==0)
{
if (pDst!=pSrc)
*pDst=*pSrc;
pDst++;
}
}
else
{
spaces=0;
if (pDst!=pSrc)
*pDst=*pSrc;
pDst++;
}
pSrc++;
}
Delete(pDst-pBuf, pSrc-pDst);
}
EXPORT_C void TDes16::TrimLeft()
/**
Deletes leading whitespace characters from the descriptor's data.
All whitespace characters up to, but not including the first
non-whitespace character, are deleted.
The length of the descriptor is reduced to reflect the loss
of the whitespace characters.
*/
{
const TUint16 *pBuf=Ptr();
const TUint16 *pB=pBuf;
TInt len=Length();
while (len--)
{
TChar c=(*pB);
if (!c.IsSpace())
break;
pB++;
}
Delete(0,pB-pBuf);
}
EXPORT_C void TDes16::TrimRight()
/**
Deletes trailing whitespace characters from the descriptor's data.
The process starts on the right hand side of the descriptor's data
and proceeds to the left.
All whitespace characters up to, but not including the first non-whitespace character,
are deleted.
The length of the descriptor is reduced to reflect the loss of the whitespace
characters.
*/
{
TInt len=Length();
if (len==0)
return;
const TUint16 *pB=Ptr()+len-1;
TInt s=len;
while (s)
{
TChar c=(*pB--);
if (!c.IsSpace())
break;
s--;
}
Delete(s,len-s);
}
EXPORT_C void TDes16::Insert(TInt aPos,const TDesC16 &aDes)
/**
Inserts data into this descriptor.
The length of this descriptor is changed to reflect the extra data.
@param aPos The position within the data where insertion is to start. This
is an offset value; a zero value refers to the leftmost data
position.
@param aDes A 16-bit non modifiable descriptor whose data is to be inserted.
@panic USER 10 if aPos is negative or is greater than the length of this
descriptor.
@panic USER 11 if the resulting length of this descriptor is greater than its
maximum length.
*/
{
TInt len=Length();
__ASSERT_ALWAYS(aPos>=0 && aPos<=len,Panic(ETDes16PosOutOfRange));
TInt s=aDes.Length();
__ASSERT_ALWAYS((len+s)<=MaxLength(),Panic(ETDes16Overflow));
TUint16 *pB=WPtr();
memCopy(pB+aPos+s,pB+aPos,len-aPos);
memCopy(pB+aPos,aDes.Ptr(),aDes.Length());
SetLength(len+s);
}
EXPORT_C void TDes16::Delete(TInt aPos,TInt aLength)
/**
Deletes data from this descriptor.
The length of this descriptor is changed to reflect the loss of data.
@param aPos The position within the data where deletion is to start. This
is an offset value; a zero value refers to the leftmost data
position.
@param aLength The length of data to be deleted. If necessary, the function
adjusts this value to ensure that no data beyond the end of
the descriptor data area is deleted.
@panic USER 10 if aPos is negative or is greater than the length of this
descriptor.
*/
{
TInt len=Length();
__ASSERT_ALWAYS(aPos>=0 && aPos<=len,Panic(ETDes16PosOutOfRange));
TInt d=Min(len-aPos,aLength);
TUint16 *pB=WPtr();
memCopy(pB+aPos,pB+aPos+d,len-aPos-d);
SetLength(len-d);
}
EXPORT_C void TDes16::Replace(TInt aPos,TInt aLength,const TDesC16 &aDes)
/**
Replaces data in this descriptor.
The specified length can be different to the length of the replacement data.
The length of this descriptor changes to reflect the change of data.
@param aPos The position within the data where replacement is to start.
This is an offset value; a zero value refers to the leftmost
data position.
@param aLength The length of data to be replaced.
@param aDes The source 16-bit non modifiable descriptor whose data is to
replace the target descriptor's data at aPos.
@panic USER 8 if aLength is negative or the sum of aLength and aPos is
greater than the length of this descriptor.
@panic USER 10 if aPos is negative or is greater than the length of this
descriptor.
@panic USER 11 if the resulting length of this descriptor is greater than its
maximum length.
@panic USER 16 if the length of the source descriptor aDes is negative or is
greater than the maximum length of this target descriptor,
*/
{
TInt len=Length();
__ASSERT_ALWAYS(aPos>=0 && aPos<=len,Panic(ETDes16PosOutOfRange));
__ASSERT_ALWAYS(aLength>=0 && aPos+aLength<=len,Panic(ETDes16LengthOutOfRange));
TInt s=aDes.Length();
TInt maxlen=MaxLength();
__ASSERT_ALWAYS(s>=0 && s<=maxlen,Panic(ETDes16RemoteLengthOutOfRange));
__ASSERT_ALWAYS((len+s-aLength)<=maxlen,Panic(ETDes16Overflow));
TUint16 *pB=WPtr();
memCopy(pB+aPos+s,pB+aPos+aLength,len-aPos-aLength);
memCopy(pB+aPos,aDes.Ptr(),s);
SetLength(len+s-aLength);
}
EXPORT_C void TDes16::Justify(const TDesC16 &aDes,TInt aWidth,TAlign anAlignment,TChar aFill)
/**
Copies data into this descriptor and justifies it, replacing any existing data.
The length of this descriptor is set to reflect the new data.
The target area is considered to be an area of specified width positioned at
the beginning of this descriptor's data area. Source data is copied into, and
aligned within this target area according to the specified alignment
instruction.
If the length of the target area is larger than the length of the source, then
spare space within the target area is padded with the fill character.
@param aDes A 16-bit non-modifiable descriptor containing the source data.
The length of the data to be copied is the smaller of:
the length of the source descriptor, and
the width of the target area (only if this is not the
explicit negative value KDefaultJustifyWidth).
@param aWidth The width of the target area. If this has the specific
negative value KDefaultJustifyWidth, then the width is
re-set to the length of the data source.
@param anAlignment The alignment of the data within the target area
@param aFill The fill character used to pad the target area.
@panic USER 11 if the resulting length of this descriptor is greater than
its maximum length or aWidth has a negative value other
than KDefaultJustifyWidth.
*/
{
Zero();
AppendJustify(aDes.Ptr(),aDes.Length(),aWidth,anAlignment,aFill);
}
EXPORT_C void TDes16::AppendJustify(const TDesC16 &aDes,TInt aWidth,TAlign anAlignment,TChar aFill)
/**
Appends data onto the end of this descriptor's data and justifies it.
The source of the appended data is an existing descriptor.
The target area is considered to be an area of specified width, immediately
following this descriptor's existing data. Source data is copied into, and
aligned within this target area according to the specified alignment instruction.
If the length of the target area is larger than the length of the source,
then spare space within the target area is padded with the fill character.
@param aDes A 16-bit non-modifiable descriptor containing the source
data. The length of the data to be copied is the smaller of:
the length of the source descriptor, and
the width of the target area (only if this is not the
explicit negative value KDefaultJustifyWidth).
@param aWidth The width of the target area. If this has the specific
negative value KDefaultJustifyWidth, then the width is
re-set to the length of the data source.
@param anAlignment The alignment of the data within the target area.
@param aFill The fill character used to pad the target area.
@panic USER 11 if the resulting length of this descriptor is greater than
its maximum length or aWidth has a negative value other
than KDefaultJustifyWidth.
*/
{
AppendJustify(aDes.Ptr(),aDes.Length(),aWidth,anAlignment,aFill);
}
EXPORT_C void TDes16::AppendJustify(const TDesC16 &aDes,TInt aLength,TInt aWidth,TAlign anAlignment,TChar aFill)
/**
Appends data onto the end of this descriptor's data and justifies it.
The source of the appended data is an existing descriptor.
The target area is considered to be an area of specified width, immediately
following this descriptor's existing data. Source data is copied into, and
aligned within this target area according to the specified alignment instruction.
If the length of the target area is larger than the length of the source,
then spare space within the target area is padded with the fill character.
@param aDes An 8-bit non-modifiable descriptor containing the source data.
@param aLength The length of data to be copied from the source descriptor.
If this is greater than the width of the target area, then
the length of data copied is limited to the width.
The length of data to be copied must not be greater than
the length of the source descriptor. Note that this
condition is not automatically tested.
@param aWidth The width of the target area. If this has the specific negative
value KDefaultJustifyWidth, then the width is
re-set to the length of the data source.
@param anAlignment The alignment of the data within the target area.
@param aFill The fill character used to pad the target area.
@panic USER 11 if the resulting length of this descriptor is greater than
its maximum length or aWidth has a negative value other
than KDefaultJustifyWidth.
*/
{
AppendJustify(aDes.Ptr(),aLength,aWidth,anAlignment,aFill);
}
EXPORT_C void TDes16::AppendJustify(const TUint16 *aString,TInt aWidth,TAlign anAlignment,TChar aFill)
/**
Appends a zero terminated string onto the end of this descriptor's data and
justifies it.
The zero terminator is not copied.
The target area is considered to be an area of specified width, immediately
following this descriptor's existing data. Source data is copied into, and
aligned within, this target area according to the specified alignment instruction.
If the length of the target area is larger than the length of the source,
then spare space within the target area is padded with the fill character.
@param aString A pointer to a zero terminated string The length of the data
to be copied is the smaller of: the length of the string (excluding the zero
terminator), the width of the target area (only if this is not the explicit
negative value KDefaultJustifyWidth).
@param aWidth The width of the target area. If this has the specific negative
value KDefaultJustifyWidth, then the width is re-set to the length of the
zero terminated string (excluding the zero terminator).
@param anAlignment The alignment of the data within the target area.
@param aFill The fill character used to pad the target area.
@panic USER 11 if the resulting length of this descriptor is greater than
its maximum length or aWidth has a negative value other
than KDefaultJustifyWidth.
*/
{
__CHECK_ALIGNMENT(aString,ETDes16AppendJustify1);
AppendJustify(aString,STRING_LENGTH_16(aString),aWidth,anAlignment,aFill);
}
EXPORT_C void TDes16::AppendJustify(const TUint16 *aString,TInt aLength,TInt aWidth,TAlign anAlignment,TChar aFill)
/**
Appends data onto the end of this descriptor's data and justifies it.
The source of the appended data is a memory location.
The target area is considered to be an area of specified width, immediately
following this descriptor's existing data. Source data is copied into, and
aligned within, this target area according to the specified alignment instruction.
If the length of the target area is larger than the length of the source,
then spare space within the target area is padded with the fill character.
@param aString A pointer to a source memory location.
@param aLength The length of data to be copied. If this is greater than the
width of the target area, then the length of data copied is
limited to the width.
@param aWidth The width of the target area. If this has the specific negative
value KDefaultJustifyWidth, then the width is
re-set to the length of the data source.
@param anAlignment The alignment of the data within the target area.
@param aFill The fill character used to pad the target area.
@panic USER 11 if the resulting length of this descriptor is greater than
its maximum length or aWidth has a negative value other
than KDefaultJustifyWidth.
@panic USER 17 if aLength is negative.
*/
{
__ASSERT_ALWAYS(aLength>=0,Panic(ETDes16LengthNegative));
__CHECK_ALIGNMENT(aString,ETDes16AppendJustify2);
if (aWidth==KDefaultJustifyWidth)
aWidth=aLength;
if (aLength>aWidth)
aLength=aWidth;
TInt offset=Length();
AppendFill(aFill,aWidth);
TInt r=aWidth-aLength;
if (anAlignment==ECenter)
r>>=1;
else if (anAlignment==ELeft)
r=0;
memCopy(WPtr()+offset+r,aString,aLength);
}
EXPORT_C void TDes16::NumFixedWidth(TUint aVal,TRadix aRadix,TInt aWidth)
/**
Converts the specified unsigned integer into a fixed width character
representation based on the specified number system and copies the conversion
into this descriptor, replacing any existing data.
The length of this descriptor is set to reflect the new data.
The function generates the exact number of specified characters, either padding
to the left with character zeroes or discarding low order characters as necessary.
When a hexadecimal conversion is specified, hexadecimal characters are in
lower case.
This function is equivalent to using Format() with parameters which specify:
1. a fixed length target field
2. padding with zero characters, for example "%08x".
When this is the case, always use NumFixedWidth() in preference
to Format() as it is more efficient.
@param aVal The unsigned integer value.
@param aRadix The number system representation for the unsigned integer.
@param aWidth The number of characters: to be used to contain the conversion,
to be copied into this descriptor.
*/
{
Zero();
AppendNumFixedWidth(aVal,aRadix,aWidth);
}
EXPORT_C void TDes16::NumFixedWidthUC(TUint aVal,TRadix aRadix,TInt aWidth)
/**
Converts the specified unsigned integer into a fixed width character
representation based on the specified number system and copies the conversion
into this descriptor, replacing any existing data.
The length of this descriptor is set to reflect the new data.
The function generates the exact number of specified characters, either padding
to the left with character zeroes or discarding low order characters as
necessary.
When a hexadecimal conversion is specified, hexadecimal characters are in
upper case.
This function is equivalent to using Format() with parameters which specify:
1. a fixed length target field
2. padding with zero characters, for example "%08x".
When this is the case, always use NumFixedWidthUC() in
preference to Format() as it is more efficient.
@param aVal The unsigned integer value.
@param aRadix The number system representation for the unsigned integer.
@param aWidth The number of characters: to be used to contain the conversion,
to be copied into this descriptor.
@see TDes16::Format()
*/
{
Zero();
AppendNumFixedWidthUC(aVal,aRadix,aWidth);
}
EXPORT_C void TDes16::Num(TInt64 aVal)
/**
Converts the 64-bit signed integer into a decimal character representation
and copies the conversion into this descriptor, replacing any existing data.
The length of this descriptor is set to reflect the new data.
If the integer is negative, the character representation is prefixed by a
minus sign.
@param aVal The 64-bit signed integer value.
*/
{
Zero();
AppendNum(aVal);
}
EXPORT_C void TDes16::Num(TUint64 aVal, TRadix aRadix)
/**
Converts the specified 64 bit unsigned integer into a character representation
based on the specified number system and copies the conversion into this
descriptor, replacing any existing data.
The length of this descriptor is set to reflect the new data.
When a hexadecimal conversion is specified, hexadecimal characters are in
lower case.
@param aVal The 64 bit integer value. This is treated as an unsigned
value for all builds.
@param aRadix The number system representation for the 64 bit integer.
*/
{
Zero();
AppendNum(aVal,aRadix);
}
EXPORT_C void TDes16::NumUC(TUint64 aVal, TRadix aRadix)
/**
Converts the specified 64 bit unsigned integer into a character representation
based on the specified number system and copies the conversion into this
descriptor, replacing any existing data.
The length of this descriptor is set to reflect the new data.
When a hexadecimal conversion is specified, hexadecimal characters are in
upper case.
@param aVal The 64 bit integer value. This is always treated as an unsigned
value for all builds.
@param aRadix The number system representation for the 64 bit integer. If no
explicit value is specified, then EDecimal is the default.
*/
{
Zero();
AppendNumUC(aVal,aRadix);
}
void TDes16::DoPadAppendNum(TInt l, TInt aW, const TUint8* p)
{
__ASSERT_DEBUG( ((l|(TInt)p)&1)==0, Panic(EDes16PadAppendBadAlign));
l>>=1;
if (aW<=0)
{
Append((const TUint16*)p, l);
return;
}
TInt l0 = Length();
SetLength(l0 + aW);
TUint16* d = WPtr() + l0;
for (; aW>l; --aW) *d++ = (TUint16)'0';
memcpy(d, p, aW*2);
}
EXPORT_C void TDes16::AppendNumFixedWidth(TUint aVal,TRadix aRadix,TInt aWidth)
/**
Converts the specified unsigned integer into a fixed width character
representation based on the specified number system and appends the conversion
onto the end of this descriptor's data.
The length of this descriptor is incremented to reflect the new content.
The function generates the exact number of specified characters, either padding
to the left with character zeroes or discarding low order characters as
necessary.
When a hexadecimal conversion is specified, hexadecimal characters are in
lower case.
@param aVal The unsigned integer value.
@param aRadix The number system representation for the unsigned integer.
@param aWidth The number of characters to be used to contain the conversion,
and to be appended to this descriptor.
*/
{
TBuf16<32> buf;
buf.Num(aVal,aRadix);
if (buf.Length()>=aWidth)
Append(buf.Left(aWidth));
else
{
TInt i=aWidth-buf.Length();
while(i--)
Append(TChar('0'));
Append(buf);
}
}
#ifndef __DES16_MACHINE_CODED__
EXPORT_C TPtr16 TDes16::LeftTPtr(TInt aLength) const
/**
Extracts the leftmost part of the data.
The function does not cut or remove any data but constructs a modifiable pointer
descriptor to represent the leftmost part of the data.
@param aLength The length of the data to be extracted. If this value is
greater than the length of the descriptor, the function
extracts the whole of the descriptor.
@return The 16-bit modifiable pointer descriptor representing the leftmost part
of the data.
@panic USER 10 if aLength is negative.
*/
{
__ASSERT_ALWAYS(aLength>=0,Panic(ETDes16PosOutOfRange));
TInt len = Min(aLength,Length());
return(TPtr16((TUint16*)Ptr(),len,len));
}
EXPORT_C TPtr16 TDes16::RightTPtr(TInt aLength) const
/**
Extracts the rightmost part of the data.
The function does not cut or remove any data but constructs a modifiable pointer
descriptor to represent the rightmost part of the data.
@param aLength The length of data to be extracted. If this value
is greater than the length of the descriptor, the function
extracts the whole of the descriptor.
@return The 16-bit modifiable pointer descriptor representing the rightmost part
of the data.
@panic USER 10 if aLength is negative.
*/
{
__ASSERT_ALWAYS(aLength>=0,Panic(ETDes16PosOutOfRange));
TInt len=Length();
if (aLength>len)
aLength=len;
return(TPtr16((TUint16*)Ptr()+len-aLength,aLength,aLength));
}
EXPORT_C TPtr16 TDes16::MidTPtr(TInt aPos) const
/**
Extracts a portion of the data.
The function does not cut or remove any data but constructs a modifiable pointer
descriptor to represent the defined portion.
The portion is identified by its starting position and by the length of the
remainder of the data starting from the specified position.
@param aPos The starting position of the data to be extracted. This is an
offset value; a zero value refers to the leftmost data position.
@return The 16-bit modifiable pointer descriptor representing the specified
portion of the data.
@panic USER 10 if aPos is negative or aPos is greater than the
length of the descriptor.
*/
{
TInt len=Length();
__ASSERT_ALWAYS(aPos>=0 && aPos<=len,Panic(ETDes16PosOutOfRange));
return(TPtr16((TUint16*)Ptr()+aPos,len-aPos,len-aPos));
}
EXPORT_C TPtr16 TDes16::MidTPtr(TInt aPos,TInt aLength) const
/**
Extracts a portion of the data.
The function does not cut or remove any data but constructs a modifiable pointer
descriptor to represent the defined portion.
The portion is identified by its starting position and by its length.
@param aPos The starting position of the data to be extracted. This is an
offset value; a zero value refers to the leftmost data position.
@param aLength The length of data to be extracted.
@return The 16-bit modifiable pointer descriptor representing the specified
portion of the data.
@panic USER 10 if aPos is negative or aPos plus aLength is greater than the
length of the descriptor.
*/
{
__ASSERT_ALWAYS(aPos>=0 && (aPos+aLength)<=Length(),Panic(ETDes16PosOutOfRange));
return(TPtr16((TUint16*)Ptr()+aPos,aLength,aLength));
}
#endif
EXPORT_C void TDes16::AppendNumFixedWidthUC(TUint aVal,TRadix aRadix,TInt aWidth)
/**
Converts the specified unsigned integer into a fixed width character
representation based on the specified number system and appends the conversion
onto the end of this descriptor's data.
The length of this descriptor is incremented to reflect the new content.
The function generates the exact number of specified characters, either
padding to the left with character zeroes or discarding low order characters
as necessary.
When a hexadecimal conversion is specified, hexadecimal characters are in
upper case.
@param aVal The unsigned integer value.
@param aRadix The number system representation for the unsigned integer.
@param aWidth The number of characters: to be used to contain the conversion,
to be appended to this descriptor.
*/
{
TBuf16<32> buf;
buf.NumUC(aVal,aRadix);
if (buf.Length()>=aWidth)
Append(buf.Left(aWidth));
else
{
TInt i=aWidth-buf.Length();
while(i--)
Append(TChar('0'));
Append(buf);
}
}
EXPORT_C void TDes16::AppendNum(TInt64 aVal)
/**
Converts the 64-bit signed integer into a decimal character representation
and appends the conversion onto the end of this descriptor's data.
The length of this descriptor is incremented to reflect the new content.
If the integer is negative, the character representation is prefixed by a
minus sign.
@param aVal The 64-bit signed integer value.
*/
{
if (aVal<0)
{
Append('-');
aVal=-aVal;
}
AppendNum(static_cast<TUint64>(aVal), EDecimal);
}
void TDes16::DoAppendNum(TUint64 aVal, TRadix aRadix, TUint aA, TInt aW)
//
// Convert a TUint64 into the descriptor.
//
{
TUint16 buf[APPEND_BUF_SIZE_64];
TUint8* p = (TUint8*)(buf + APPEND_BUF_SIZE_64);
TInt l = __DoConvertNum(aVal, aRadix, aA|256, p);
// coverity[overrun-local]
DoPadAppendNum(l, aW, p);
}
EXPORT_C void TDes16::AppendNum(TUint64 aVal, TRadix aRadix)
/**
Converts the specified 64 bit integer into a character representation
based on the specified number system and appends the conversion onto the end
of this descriptor's data.
The length of this descriptor is incremented to reflect the new content.
When a hexadecimal conversion is specified, hexadecimal characters are in
lower case.
@param aVal The 64 bit integer value. This is always treated as an unsigned
value.
@param aRadix The number system representation for the 64 bit integer.
*/
{
DoAppendNum(aVal, aRadix, 'a', 0);
}
EXPORT_C void TDes16::AppendNumUC(TUint64 aVal,TRadix aRadix)
/**
Converts the specified 64 bit integer into a character representation
based on the specified number system and appends the conversion onto the end
of this descriptor's data.
The length of this descriptor is incremented to reflect the new content.
When a hexadecimal conversion is specified, hexadecimal characters are in
upper case.
@param aVal The 64 bit integer value. This is always treated as an unsigned
value.
@param aRadix The number system representation for the 64 bit integer. If no
explicit value is specified, then EDecimal is the default.
*/
{
DoAppendNum(aVal, aRadix, 'A', 0);
}
EXPORT_C void TDes16::Format(TRefByValue<const TDesC16> aFmt,...)
/**
Formats and copies text into this descriptor, replacing any existing data.
The length of this descriptor is set to reflect the new data.
The function takes a format string and a variable number of arguments.
The format string contains literal text embedded with directives for converting
the trailing list of arguments into text.
The embedded directives are character sequences prefixed with the '%' character.
The literal text is simply copied into this descriptor unaltered while
the '%' directives are used to convert successive arguments from the
trailing list.
The resulting stream of literal text and converted arguments is copied into
this descriptor.
The syntax of the embedded directives follows one of four general patterns.
Note that formatting of single numerical values can be achieved more
conveniently using the Num() and NumUC() member functions of this class.
The full description of the syntax of a format string cannot be included here.
For full details, navigate to the Symbian OS guide, and follow the hierarchy of links:
@code
Symbian OS Guide
Base
Using User Library (E32)
Buffers and Strings
Using Descriptors
How to Use Descriptors
Format string syntax
@endcode
@param aFmt The descriptor containing the format string.
The TRefByValue class provides a constructor which takes a
TDesC8 type.
@param ... A variable number of arguments to be converted to text as
dictated by the format string.
@panic USER 11 if the resulting length of text in this descriptor exceeds
the descriptor's maximum length.
@panic USER 12 if the format string has incorrect syntax.
@see TDes16::Num()
@see TDes16::NumUC()
*/
{
VA_LIST list;
VA_START(list,aFmt);
// coverity[uninit_use_in_call]
FormatList(aFmt,list);
}
EXPORT_C void TDes16::FormatList(const TDesC16 &aFmt,VA_LIST aList)
/**
Formats and copies text into this descriptor, replacing any existing data.
The length of this descriptor is set to reflect the new data.
The behaviour of this function is the same as Format(). In practice, it is
better and easier to use Format(), passing a variable number of arguments
as required by the format string.
@param aFmt The descriptor containing the format string.
@param aList A pointer to an argument list.
@see TDes16::Format()
@see VA_LIST
*/
{
Zero();
AppendFormatList(aFmt,aList);
}
EXPORT_C void TDes16::AppendFormat(TRefByValue<const TDesC16> aFmt,TDes16Overflow *aOverflowHandler,...)
/**
Formats and appends text onto the end of this descriptor's data.
The length of this descriptor is incremented to reflect the new content.
The function takes a format string and a variable number of arguments.
The format string contains literal text, embedded with directives,
for converting the trailing list of arguments into text.
The embedded directives are character sequences prefixed with the '%' character.
The literal text is simply copied into this descriptor unaltered while
the '%' directives are used to convert successive arguments from the
trailing list. See the description of the Format() function.
Literal text is appended on a character by character basis.
If it results in the length of this descriptor exceeding its maximum length,
then the function:
1. calls the Overflow() member function of the overflow handler, if an overflow
handler is supplied
2 raises a USER 11 panic, if no overflow handler is supplied.
As much literal text as possible will have been copied into this descriptor
and this descriptor will have reached its maximum length.
Text converted from a trailing argument is appended as a complete string.
If an attempt to append this string fails because the resulting length
of this descriptor would exceed its maximum length, then the function:
1. calls the Overflow() member function of the overflow handler, if an overflow
handler is supplied
2 raises a USER 11 panic, if no overflow handler is supplied.
None of the generated text is appended and length of this descriptor
may be less than the maximum.
@param aFmt The 16-bit non-modifiable descriptor containing the
format string. The TRefByValue class provides a
constructor which takes a TDesC16 type.
@param aOverflowHandler A pointer to the overflow handler.
@param ... A variable number of arguments to be converted to text
as dictated by the format string.
@panic USER 11 if the length of the descriptor exceeds its maximum length and
no overflow handler has been supplied.
@panic USER 12 if the format string has incorrect syntax.
@see TDes16::Format()
@see TDes16Overflow::Overflow()
*/
{
VA_LIST list;
VA_START(list, aOverflowHandler);
// coverity[uninit_use_in_call]
AppendFormatList(aFmt,list,aOverflowHandler);
}
EXPORT_C void TDes16::AppendFormat(TRefByValue<const TDesC16> aFmt,...)
/**
Formats and appends text onto the end of this descriptor's data.
The length of this descriptor is incremented to reflect the new content.
The function takes a format string and a variable number of arguments.
The format string contains literal text, embedded with directives,
for converting the trailing list of arguments into text.
The embedded directives are character sequences prefixed with the '%' character.
The literal text is simply copied into this descriptor unaltered while
the '%' directives are used to convert successive arguments from the
trailing list. See the description of the Format() function.
Literal text is appended on a character by character basis.
Text converted from a trailing argument is appended as a complete string.
@param aFmt The 16-bit non-modifiable descriptor containing the
format string. The TRefByValue class provides a
constructor which takes a TDesC16 type.
@param ... A variable number of arguments to be converted to text
as dictated by the format string.
@panic USER 11 if the resulting length of text in this descriptor exceeds
the descriptor's maximum length.
@panic USER 12 if the format string has incorrect syntax.
@see TDes16::Format()
*/
{
VA_LIST list;
VA_START(list,aFmt);
AppendFormatList(aFmt,list);
}
#if !defined(__DES16_MACHINE_CODED__) | defined(__EABI_CTORS__)
EXPORT_C TPtrC16::TPtrC16()
: TDesC16(EPtrC,0),iPtr(0)
/**
Constructs an empty 16-bit non-modifiable pointer descriptor.
It represents no data and its length is zero.
The non-modifiable pointer descriptor can, subsequently, be set to represent
data.
@see TPtrC16::Set()
*/
{}
EXPORT_C TPtrC16::TPtrC16(const TDesC16 &aDes)
: TDesC16(EPtrC,aDes.Length()),iPtr(aDes.Ptr())
/**
Constructs the 16-bit non-modifiable pointer descriptor from any existing
descriptor.
It is set to point to the same data and is given the same length as the source
descriptor.
@param aDes A reference to a 16-bit non-modifiable descriptor.
*/
{}
#endif
#if !defined(__DES16_MACHINE_CODED_HWORD__) | defined(__EABI_CTORS__)
EXPORT_C TPtrC16::TPtrC16(const TUint16 *aString)
: TDesC16(EPtrC,STRING_LENGTH_16(aString)),iPtr(aString)
/**
Constructs the 16-bit non-modifiable pointer descriptor to point to a zero
terminated string, whether in RAM or ROM.
The length of the descriptor is set to the length of the zero terminated string,
excluding the zero terminator.
@param aString A pointer to a zero terminated string.
*/
{
__CHECK_ALIGNMENT(aString,ETDesC16ConstructCString);
}
#endif
#if !defined(__DES16_MACHINE_CODED__) | defined(__EABI_CTORS__)
EXPORT_C TPtrC16::TPtrC16(const TUint16 *aBuf,TInt aLength)
: TDesC16(EPtrC,aLength),iPtr(aBuf)
/**
Constructs the 16-bit non-modifiable pointer descriptor to point to the
specified location in memory, whether in RAM or ROM.
The length of the descriptor is set to the specified length.
@param aBuf A pointer to the location that the descriptor is to represent.
@param aLength The length of the descriptor.This value must be non-negative.
@panic USER 17 if aLength is negative.
*/
{
__ASSERT_ALWAYS(aLength>=0,Panic(ETDes16LengthNegative));
__CHECK_ALIGNMENT(aBuf,ETDesC16ConstructBufLength);
}
EXPORT_C TPtr16::TPtr16(TUint16 *aBuf,TInt aMaxLength)
: TDes16(EPtr,0,aMaxLength),iPtr(aBuf)
/**
Constructs the 16-bit modifiable pointer descriptor to point to the specified
location in memory, whether in RAM or ROM.
The length of the descriptor is set to zero, and its maximum length is set to
the specified value.
@param aBuf A pointer to the location that the descriptor is to represent.
@param aMaxLength The maximum length of the descriptor.
@panic USER 18 if aMaxLength is negative.
*/
{
__ASSERT_ALWAYS(aMaxLength>=0,Panic(ETDes16MaxLengthNegative));
__CHECK_ALIGNMENT(aBuf,ETDesC16ConstructBufLengthMax);
}
EXPORT_C TPtr16::TPtr16(TUint16 *aBuf,TInt aLength,TInt aMaxLength)
: TDes16(EPtr,aLength,aMaxLength),iPtr(aBuf)
/**
Constructs the 16-bit modifiable pointer descriptor to point to the specified
location in memory, whether in RAM or ROM.
The length of the descriptor and its maximum length are set to the specified
values.
@param aBuf A pointer to the location that the descriptor is to represent.
@param aLength The length of the descriptor.
@param aMaxLength The maximum length of the descriptor.
@panic USER 8 if aLength is negative, or is greater than the descriptor's
maximum length,
@panic USER 18 if aMaxLength is negative.
*/
{
__ASSERT_ALWAYS(aMaxLength>=0,Panic(ETDes16MaxLengthNegative));
__ASSERT_ALWAYS(TUint(aLength)<=TUint(aMaxLength),Panic(ETDes16LengthOutOfRange));
__CHECK_ALIGNMENT(aBuf,ETDesC16ConstructBufLengthMax);
}
EXPORT_C TBufBase16::TBufBase16(TInt aMaxLength)
:TDes16(EBuf,0,aMaxLength)
{
__ASSERT_DEBUG(aMaxLength>=0,Panic(ETDes16MaxLengthNegative));
}
EXPORT_C TBufBase16::TBufBase16(TInt aLength,TInt aMaxLength)
:TDes16(EBuf,aLength,aMaxLength)
{
__ASSERT_DEBUG(aMaxLength>=0,Panic(ETDes16MaxLengthNegative));
__ASSERT_ALWAYS(TUint(aLength)<=TUint(aMaxLength),Panic(ETDes16LengthOutOfRange));
}
#endif
#if !defined( __DES16_MACHINE_CODED_HWORD__) | defined(__EABI_CTORS__)
EXPORT_C TBufBase16::TBufBase16(const TUint16* aString,TInt aMaxLength)
:TDes16(EBuf,0,aMaxLength)
{
__ASSERT_DEBUG(aMaxLength>=0,Panic(ETDes16MaxLengthNegative));
Copy(aString);
}
#endif
#if !defined( __DES16_MACHINE_CODED__) | defined(__EABI_CTORS__)
EXPORT_C TBufBase16::TBufBase16(const TDesC16& aDes,TInt aMaxLength)
:TDes16(EBuf,0,aMaxLength)
{
__ASSERT_DEBUG(aMaxLength>=0,Panic(ETDes16MaxLengthNegative));
Copy(aDes);
}
#endif
EXPORT_C void TDesC16::__DbgTestInvariant() const
//
// Test that the class obeys its invariant.
//
{
#if defined(_DEBUG)
switch (Type())
{
case EBufC:
case EPtrC:
case EPtr:
case EBuf:
case EBufCPtr:
break;
default:
User::Invariant();
}
if (Ptr() != NULL) // TPtr and TPtrC can be null
__CHECK_ALIGNMENT(Ptr(),ETDesC16Invariant);
#endif
}
EXPORT_C void TPtrC16::__DbgTestInvariant() const
//
// Test that the class obeys its invariant.
//
{
#if defined(_DEBUG)
TDesC16::__DbgTestInvariant(); // Test base class
if (Type()!=EPtrC)
User::Invariant();
#endif
}
EXPORT_C void TDes16::__DbgTestInvariant() const
//
// Test that the class obeys its invariant.
//
{
#if defined(_DEBUG)
TDesC16::__DbgTestInvariant(); // Test base class
if (Length()>MaxLength() || !(Type()==EPtr || Type()==EBufCPtr || Type()==EBuf))
User::Invariant();
#endif
}
EXPORT_C void HBufC16::__DbgTestInvariant() const
//
// Test that the class obeys its invariant.
//
{
#if defined(_DEBUG)
TDesC16::__DbgTestInvariant(); // Test base class
if (Length()>(TInt)(STD_CLASS::AllocLen(this)-sizeof(TDesC16)) || Type()!=EBufC)
User::Invariant();
#endif
}
EXPORT_C void TPtr16::__DbgTestInvariant() const
//
// Test that the class obeys its invariant.
//
{
#if defined(_DEBUG)
TDes16::__DbgTestInvariant(); // Test base class
if (!(Type()==EPtr || Type()==EBufCPtr))
User::Invariant();
#endif
}
/** Collapse all characters from 16 to 8 bits
@return 8-bit pointer descriptor to transformed text
*/
EXPORT_C TPtr8 TDes16::Collapse()
{
TInt l = Length();
TInt ml = MaxLength();
TText8* d = (TText8*)Ptr();
TText8* d0 = d;
const TText16* s = (const TText16*)d;
const TText16* sE = s + l;
while (s < sE)
*d++ = (TText8)*s++;
return TPtr8(d0, l, ml*sizeof(TText));
}
// Truncate literal string to fit into descriptor
EXPORT_C void TDes16IgnoreOverflow::Overflow(TDes16& /*aDes*/)
{}
#ifndef __KERNEL_MODE__
/**
Default constructor.
Constructs a zero-length 16-bit resizable buffer descriptor.
Note that the object owns no allocated memory.
*/
EXPORT_C RBuf16::RBuf16()
:TDes16(EPtr,0,0),iEPtrType(NULL)
{
// Zero-length RBuf16 is of type EPtr with NULL pointer.
}
/**
Constructor.
Constructs a 16-bit resizable buffer descriptor, transferring ownership of the
specified heap descriptor to this object.
@param aHBuf The heap descriptor to be transferred to this object. This pointer
can be NULL, which means that a zero length 16-bit resizable
buffer descriptor is constructed, and the object will not own any
allocated memory.
*/
EXPORT_C RBuf16::RBuf16(HBufC16* aHBuf)
{
if(aHBuf)
//Create EBufCPtr type descriptor that points to aHBuf
new(this) TPtr16(aHBuf->Des());
else
//Create zero-length RBuf16. It is EPtr type of descriptor that points to NULL.
new(this) RBuf16();
}
/**
Protected constructor.
*/
EXPORT_C RBuf16::RBuf16(TInt aType,TInt aLength,TInt aMaxLength)
:TDes16(aType,aLength,aMaxLength)
{
}
/**
Transfers ownership of the specified 16-bit resizable buffer descriptor's
buffer to this object.
Note that the function assumes that this descriptor does not already own any
allocated memory. It does not check, nor does it free any pre-existing owned
allocated memory. If this descriptor does already own allocated memory,
RBuf16::Close() should be invoked on this descriptor before this function is
invoked.
@param aRBuf The source 16-bit resizable buffer. The ownership of this
object's buffer is to be transferred.
@see RBuf16::Close()
*/
EXPORT_C void RBuf16::Assign(const RBuf16& aRBuf)
{
Mem::Copy(this, &aRBuf, sizeof(*this));
__TEST_INVARIANT;
}
/**
Assigns ownership of the specified allocated memory to this object.
The allocated memory forms the buffer for this descriptor. The current length
of the descriptor is set to zero.
Note that the function assumes that this descriptor does not already own any
allocated memory. It does not check, nor does it free any pre-existing owned
allocated memory. If this descriptor does already own allocated memory,
RBuf16::Close() should be invoked on this descriptor before this function is
invoked.
@param aHeapCell The allocated memory to be assigned to this object. This
pointer can be NULL, which means that a zero length 16-bit
resizable buffer descriptor is created.
@param aMaxLength The maximum length of the descriptor.
@panic USER 8 If the specified maximum length is greater then the size of
the allocated heap cell, or the specified maximum length
is NOT zero when the pointer to the heap cell is NULL.
@see TDesC16::Length()
@see TDes16::MaxLength()
@see RBuf16::Close()
*/
EXPORT_C void RBuf16::Assign(TUint16 *aHeapCell,TInt aMaxLength)
{
Assign(aHeapCell,0,aMaxLength);
}
/**
Assigns ownership of the specified allocated memory to this object.
The allocated memory forms the buffer for this descriptor. The current length
of the descriptor is set to the value of the second parameter.
Note that the function assumes that this descriptor does not already own any
allocated memory. It does not check, nor does it free any pre-existing owned
allocated memory. If this descriptor does already own allocated memory,
RBuf16::Close() should be invoked on this descriptor before this function is
invoked.
@param aHeapCell The allocated memory to be assigned to this object.
@param aLength The length of the descriptor.
@param aMaxLength The maximum length of the descriptor.
@panic USER 8 If the specified maximum length is greater then the size of
the allocated heap cell, or the specified length is greater then
the specified maximum length, or the specified maximum length
is NOT zero when the pointer to the heap cell is NULL.
@see TDesC16::Length()
@see TDes16::MaxLength()
@see RBuf16::Close()
*/
EXPORT_C void RBuf16::Assign(TUint16 *aHeapCell,TInt aLength,TInt aMaxLength)
{
__ASSERT_ALWAYS(aLength<=aMaxLength, Panic(ETDes16LengthOutOfRange));
if(aHeapCell)
{
__ASSERT_ALWAYS(User::AllocLen(aHeapCell) >= aMaxLength * (TInt)sizeof(TUint16), Panic(ETDes16LengthOutOfRange));
//Create EPtr type descriptor that points to aHeapCell
new(this) TPtr16(aHeapCell,aLength,aMaxLength);
}
else
{
__ASSERT_ALWAYS(aMaxLength == 0, Panic(ETDes16LengthOutOfRange));
//Create zero-length RBuf. It is EPtr type of descriptor that points to NULL.
new(this) RBuf16();
}
__TEST_INVARIANT;
}
/**
Transfers ownership of the specified heap descriptor to this object.
Note that the function assumes that this descriptor does not already own any
allocated memory. It does not check, nor does it free any pre-existing owned
allocated memory. If this descriptor does already own allocated memory,
RBuf16::Close() should be invoked on this descriptor before this function is
invoked.
@param aHBuf The heap descriptor to be transferred to this object.
This pointer can be NULL, which means that a zero length
16-bit resizable buffer descriptor is created.
@see RBuf16::Close()
*/
EXPORT_C void RBuf16::Assign(HBufC16* aHBuf)
{
new(this) RBuf16(aHBuf);
}
/**
Swaps the content of two 16-bit resizable buffer descriptors.
@param aRBuf The 16-bit resizable buffer descriptor whose contents are to be
swapped with this one.
*/
EXPORT_C void RBuf16::Swap(RBuf16& aRBuf)
{
Mem::Swap(this,&aRBuf,sizeof(*this));
}
/**
Creates a 16-bit resizable buffer descriptor.
The function allocates sufficient memory to contain descriptor data up to
the specified maximum length.
The current length of the descriptor is set to zero. The maximum length of
the descriptor is set to the specified value.
Note that the function assumes that this descriptor does not already own any
allocated memory. It does not check, nor does it free any pre-existing owned
allocated memory. If this descriptor does already own allocated memory,
RBuf16::Close() should be invoked on this descriptor before this function is
invoked.
@param aMaxLength The maximum length of the descriptor.
@return KErrNone, if successful; KErrNoMemory, if there is insufficient memory.
@see TDesC16::Length()
@see TDes16::MaxLength()
@see RBuf16::Close()
*/
EXPORT_C TInt RBuf16::Create(TInt aMaxLength)
{
if (aMaxLength)
{
//Allocate memory
TUint16* buf=(TUint16*)User::Alloc(aMaxLength*sizeof(TUint16));
if(!buf) return KErrNoMemory;
iEPtrType = buf;
}
else
iEPtrType = NULL; //Zero-length descriptor.
//Create EPtr type descriptor.
new(this) RBuf16(EPtr,0,aMaxLength);
__TEST_INVARIANT;
return KErrNone;
}
/**
Creates 16-bit resizable buffer descriptor, and leaves on failure.
The function allocates sufficient memory to contain descriptor data up to
the specified maximum length.
The current length of the descriptor is set to zero. The maximum length of
the descriptor is set to the specified value.
Note that the function assumes that this descriptor does not already own any
allocated memory. It does not check, nor does it free any pre-existing owned
allocated memory. If this descriptor does already own allocated memory,
RBuf16::Close() should be invoked on this descriptor before this function is
invoked.
@param aMaxLength The maximum length of the descriptor.
@leave KErrNoMemory If there is insufficient memory.
@see TDesC16::Length()
@see TDes16::MaxLength()
@see RBuf16::Close()
*/
EXPORT_C void RBuf16::CreateL(TInt aMaxLength)
{
User::LeaveIfError(Create(aMaxLength));
}
/**
Creates a 16-bit resizable buffer descriptor.
The function allocates sufficient memory to contain descriptor data up to
the specified maximum length.
Both the current length and the maximum length of the descriptor are set to
the specified value.
Note that the function assumes that this descriptor does not already own any
allocated memory. It does not check, nor does it free any pre-existing owned
allocated memory. If this descriptor does already own allocated memory,
RBuf16::Close() should be invoked on this descriptor before this function is
invoked.
@param aMaxLength The length and the maximum length of the descriptor.
@return KErrNone, if successful; KErrNoMemory, if there is insufficient memory.
@see RBuf16::Close()
*/
EXPORT_C TInt RBuf16::CreateMax(TInt aMaxLength)
{
TInt err=Create(aMaxLength);
if(err==KErrNone)
SetMax();
return err;
}
/**
Creates a 16-bit resizable buffer descriptor, and leaves on failure.
The function allocates sufficient memory to contain descriptor data up to
the specified maximum length.
Both the current length and the maximum length of the descriptor are set to
the specified value.
Note that the function assumes that this descriptor does not already own any
allocated memory. It does not check, nor does it free any pre-existing owned
allocated memory. If this descriptor does already own allocated memory,
RBuf16::Close() should be invoked on this descriptor before this function is
invoked.
@param aMaxLength The length and the maximum length of the descriptor.
@leave KErrNoMemory If there is insufficient memory.
@see TDesC16::Length()
@see TDes16::MaxLength()
@see RBuf16::Close()
*/
EXPORT_C void RBuf16::CreateMaxL(TInt aMaxLength)
{
User::LeaveIfError(CreateMax(aMaxLength));
}
/**
Creates a 16-bit resizable buffer descriptor to contain a copy of the
specified (source) descriptor.
The function allocates sufficient memory so that this descriptor's maximum
length is the same as the length of the source descriptor. Both the current
length and the maximum length of this descriptor are set to
the length of the source descriptor.
The data contained in the source descriptor is copied into this
descriptor.
Note that the function assumes that this descriptor does not
already own any allocated memory. It does not check, nor does it free any
pre-existing owned allocated memory. If this descriptor does already own
allocated memory, RBuf16::Close() should be invoked on this descriptor before
this function is invoked.
@param aDes Source descriptor to be copied into this object.
@return KErrNone, if successful; KErrNoMemory, if there is insufficient memory.
@see TDesC16::Length()
@see TDes16::MaxLength()
@see TDes16::Copy()
@see RBuf16::Close()
*/
EXPORT_C TInt RBuf16::Create(const TDesC16& aDes)
{
return Create(aDes,aDes.Length());
}
/**
Creates a 16-bit resizable buffer descriptor to contain a copy of the specified
(source) descriptor, and leaves on failure.
The function allocates sufficient memory so that this descriptor's maximum
length is the same as the length of the source descriptor.Both the current
length and the maximum length of this descriptor are set to the length
of the source descriptor.
The data contained in the source descriptor is copied into this descriptor.
Note that the function assumes that this descriptor does not already own any
allocated memory. It does not check, nor does it free any
pre-existing owned allocated memory. If this descriptor does already own
allocated memory, RBuf16::Close() should be invoked on this descriptor before
this function is invoked.
@param aDes Source descriptor to be copied into this object.
@leave KErrNoMemory If there is insufficient memory.
@see TDesC16::Length()
@see TDes16::MaxLength()
@see TDes16::Copy()
@see RBuf16::Close()
*/
EXPORT_C void RBuf16::CreateL(const TDesC16& aDes)
{
CreateL(aDes,aDes.Length());
}
/**
Creates a 16-bit resizable buffer descriptor to contain a copy of the
specified (source) descriptor.
The function allocates sufficient memory so that this descriptor's maximum length
is the same as the value of the aMaxLength parameter.
The data contained in the source descriptor is copied into this descriptor.
The length of data copied is either
- the length of the source descriptor aDes
or
- the value of the aMaxLength parameter
whichever is the smaller value. The current length of this descriptor is also
set to the smaller value.
Note that the function assumes that this descriptor does not already own any
allocated memory. It does not check, nor does it free any pre-existing owned
allocated memory. If this descriptor does already own allocated memory,
RBuf16::Close() should be invoked on this descriptor before this function is
invoked.
@param aDes Source descriptor to be copied into this object.
@param aMaxLength The maximum length of this descriptor.
@return KErrNone, if successful; KErrNoMemory, if there is insufficient memory.
@see TDesC16::Length()
@see TDes16::MaxLength()
@see TDes16::Copy()
@see RBuf16::Close()
*/
EXPORT_C TInt RBuf16::Create(const TDesC16& aDes,TInt aMaxLength)
{
TInt err=Create(aMaxLength);
if(err==KErrNone)
Copy(aDes.Left(aMaxLength));
return err;
}
/**
Creates a 16-bit resizable buffer descriptor to contain a copy of the specified
(source) descriptor, and leaves on failure.
The function allocates sufficient memory so that this descriptor's maximum
length is the same as the value of the aMaxLength parameter.
The data contained in the source descriptor is copied into this descriptor.
The length of data copied is either
- the length of the source descriptor aDes
or
- the value of the aMaxLength parameter
whichever is the smaller value. The current length of this descriptor is also
set to the smaller value.
Note that the function assumes that this descriptor does not already own any
allocated memory. It does not check, nor does it free any pre-existing owned
allocated memory. If this descriptor does already own allocated memory,
RBuf16::Close() should be invoked on this descriptor before this function is
invoked.
@param aDes Source descriptor to be copied into this object.
@param aMaxLength The maximum length of this descriptor.
@leave KErrNoMemory If there is insufficient memory.
@see TDesC16::Length()
@see TDes16::MaxLength()
@see TDes16::Copy()
@see RBuf16::Close()
*/
EXPORT_C void RBuf16::CreateL(const TDesC16& aDes,TInt aMaxLength)
{
CreateL(aMaxLength);
Copy(aDes.Left(aMaxLength));
}
/**
Resizes this 16-bit resizable buffer descriptor.
The length and contents of the descriptor are unchanged.
If the buffer descriptor was created from a zero-length heap descriptor
HBufC, this method might leak memory (the heap descriptor is not freed).
It is possible to avoid this by calling the Close() method prior to ReAlloc(),
but this should be done only in this situation (otherwise the buffer contents
will be lost).
For example, add
@code
if (desc.MaxLength() == 0) desc.Close();
@endcode
before the call to ReAlloc().
@param aMaxLength The new maximum length of the descriptor. This can be zero,
which results in a descriptor with zero maximum length and no
allocated memory.
@return KErrNone, if successful; KErrNoMemory, if there is insufficient memory.
@panic USER 14 If the new maximum length is less then the current descriptor length.
*/
EXPORT_C TInt RBuf16::ReAlloc(TInt aMaxLength)
{
__ASSERT_ALWAYS(Length()<=aMaxLength, Panic(ETDes16ReAllocTooSmall));
__TEST_INVARIANT;
if (!aMaxLength) //Reallocation to zero length
{
User::Free(iEPtrType); //Free memory
new (this) RBuf16(); //Create zero-length RBuf
return KErrNone;
}
if (!iMaxLength) //Reallocation from zero length
return Create(aMaxLength);
switch(Type())
{
case EPtr:
{
TUint16* buf = (TUint16*)User::ReAlloc(iEPtrType,aMaxLength*sizeof(TUint16));
if(!buf) return KErrNoMemory;
iEPtrType = buf;
iMaxLength = aMaxLength;
break;
}
case EBufCPtr:
{
HBufC16* hbufc = iEBufCPtrType->ReAlloc(aMaxLength);
if(!hbufc) return KErrNoMemory;
Assign(hbufc);
break;
}
}
__TEST_INVARIANT;
return KErrNone;
}
/**
Resizes this 16-bit resizable buffer descriptor, leaving on failure.
The length and contents of the descriptor are unchanged.
If the buffer descriptor was created from a zero-length heap descriptor
HBufC, this method might leak memory (the heap descriptor is not freed).
It is possible to avoid this by calling the Close() method prior to ReAllocL(),
but this should be done only in this situation (otherwise the buffer contents
will be lost).
For example, add
@code
if (desc.MaxLength() == 0) desc.Close();
@endcode
before the call to ReAlloc().
@param aMaxLength The new maximum length of the descriptor. This can be zero,
which results in a descriptor with zero maximum length and no
allocated memory.
@return KErrNone, if successful; KErrNoMemory, if there is insufficient memory.
@panic USER 14 If the new maximum length is less then the current descriptor length.
*/
EXPORT_C void RBuf16::ReAllocL(TInt aMaxLength)
{
User::LeaveIfError(ReAlloc(aMaxLength));
}
/**
Deallocates memory assigned to this object, and re-initializes the object as
a zero-length descriptor.
*/
EXPORT_C void RBuf16::Close()
{
User::Free(iEPtrType);
//Create zero-length RBuf. It is EPtr type of descriptor that points to NULL.
new(this) RBuf16();
}
/**
Pushes a cleanup item for this object onto the cleanup stack.
The effect of this is to cause Close() to be called on this 16-bit resizable
buffer descriptor, when CleanupStack::PopAndDestroy() is called at some later time.
@code
...
RBuf16 x;
....
x.CleanupClosePushL();
...
CleanupStack::PopAndDestroy();
...
@endcode
@see RBuf16::Close()
*/
EXPORT_C void RBuf16::CleanupClosePushL()
{
::CleanupClosePushL(*this);
}
/**
Tests that the class obeys its invariant.
*/
EXPORT_C void RBuf16::__DbgTestInvariant() const
{
#ifdef _DEBUG
TDes16::__DbgTestInvariant();
switch(Type())
{
case EPtr:
if (iEPtrType)
{
__ASSERT_DEBUG(User::AllocLen(iEPtrType) >= iMaxLength*(TInt)sizeof(TUint16), Panic(EInvariantFalse));
}
break;
case EBufCPtr:
iEBufCPtrType->__DbgTestInvariant();
__ASSERT_DEBUG(iEBufCPtrType->Des().MaxLength() == iMaxLength, Panic(EInvariantFalse));
__ASSERT_DEBUG(iEBufCPtrType->Length() == Length(), Panic(EInvariantFalse));
break;
default:
User::Invariant();
}
#endif // _DEBUG
}
#endif // __KERNEL_MODE__
#if defined(__DES16_MACHINE_CODED__) || defined(__EABI__)
GLDEF_C void Des16PanicBadDesType()
{
Panic(ETDes16BadDescriptorType);
}
GLDEF_C void Des16PanicPosOutOfRange()
{
Panic(ETDes16PosOutOfRange);
}
#endif
#ifdef __DES16_MACHINE_CODED__
GLDEF_C void Des16PanicLengthNegative()
{
Panic(ETDes16LengthNegative);
}
GLDEF_C void Des16PanicMaxLengthNegative()
{
Panic(ETDes16MaxLengthNegative);
}
GLDEF_C void Des16PanicLengthOutOfRange()
{
Panic(ETDes16LengthOutOfRange);
}
GLDEF_C void Des16PanicDesOverflow()
{
Panic(ETDes16Overflow);
}
GLDEF_C void Des16PanicDesIndexOutOfRange()
{
Panic(ETDes16IndexOutOfRange);
}
#endif