Convert Kernelhwsrv package from SFL to EPL
kernel\eka\compsupp is subject to the ARM EABI LICENSE
userlibandfileserver\fatfilenameconversionplugins\unicodeTables is subject to the Unicode license
kernel\eka\kernel\zlib is subject to the zlib license
// Copyright (c) 1997-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32\euser\epoc\arm\uc_realx.cia
//
//
#include <e32cia.h>
#include <u32std.h>
#include <e32math.h>
#ifdef __USE_VFP_MATH
#include <arm_vfp.h>
#endif
#if defined(__USE_VFP_MATH) && !defined(__CPU_HAS_VFP)
#error __USE_VFP_MATH was defined but not __CPU_HAS_VFP - impossible combination, check variant.mmh
#endif
#ifndef __EABI_CTORS__
__NAKED__ EXPORT_C TRealX::TRealX()
/**
Constructs a default extended precision object.
This sets the value to zero.
*/
{
asm("mov r1, #0 ");
asm("str r1, [r0] ");
asm("str r1, [r0, #4] ");
asm("str r1, [r0, #8] ");
__JUMP(,lr);
}
__NAKED__ EXPORT_C TRealX::TRealX(TUint /*anExp*/, TUint /*aMantHi*/, TUint /*aMantLo*/)
/**
Constructs an extended precision object from an explicit exponent and
a 64 bit mantissa.
@param anExp The exponent
@param aMantHi The high order 32 bits of the 64 bit mantissa
@param aMantLo The low order 32 bits of the 64 bit mantissa
*/
{
asm("str r1, [r0, #8] ");
asm("str r2, [r0, #4] ");
asm("str r3, [r0, #0] ");
__JUMP(,lr);
}
#endif
__NAKED__ EXPORT_C TInt TRealX::Set(TInt /*anInt*/)
/**
Gives this extended precision object a new value taken
from a signed integer.
@param anInt The signed integer value.
@return KErrNone, always.
*/
{
asm("stmfd sp!, {lr} ");
asm("mov r2, r1 ");
asm("bl ConvertIntToTRealX ");
asm("stmia r0, {r1,r2,r3} ");
asm("mov r0, #0 "); // return KErrNone
__POPRET("");
}
#ifndef __EABI_CTORS__
__NAKED__ EXPORT_C TRealX::TRealX(TInt /*anInt*/)
/**
Constructs an extended precision object from a signed integer value.
@param anInt The signed integer value.
*/
{
// fall through
}
#endif
__NAKED__ EXPORT_C TRealX& TRealX::operator=(TInt /*anInt*/)
/**
Assigns the specified signed integer value to this extended precision object.
@param anInt The signed integer value.
@return A reference to this extended precision object.
*/
{
asm("stmfd sp!, {lr} ");
asm("mov r2, r1 ");
asm("bl ConvertIntToTRealX ");
asm("stmia r0, {r1,r2,r3} ");
__POPRET("");
asm("ConvertIntToTRealX: ");
asm("cmp r2, #0 ");
asm("movpl r3, #0 "); // if int>0, r3=0
asm("beq ConvertIntToTRealX0 "); // if int=0, return 0
asm("movmi r3, #1 "); // if int<0, r3=1
asm("rsbmi r2, r2, #0 "); // if int -ve, negate it
asm("orr r3, r3, #0x001E0000 ");
asm("orr r3, r3, #0x80000000 "); // r3=exponent 801E + sign bit
#ifdef __CPU_ARM_HAS_CLZ
CLZ(12,2);
asm("mov r2, r2, lsl r12 ");
asm("sub r3, r3, r12, lsl #16 ");
#else
asm("cmp r2, #0x10000 "); // normalise mantissa, decrementing exponent as needed
asm("movcc r2, r2, lsl #16 ");
asm("subcc r3, r3, #0x100000 ");
asm("cmp r2, #0x1000000 ");
asm("movcc r2, r2, lsl #8 ");
asm("subcc r3, r3, #0x080000 ");
asm("cmp r2, #0x10000000 ");
asm("movcc r2, r2, lsl #4 ");
asm("subcc r3, r3, #0x040000 ");
asm("cmp r2, #0x40000000 ");
asm("movcc r2, r2, lsl #2 ");
asm("subcc r3, r3, #0x020000 ");
asm("cmp r2, #0x80000000 ");
asm("movcc r2, r2, lsl #1 ");
asm("subcc r3, r3, #0x010000 ");
#endif
asm("ConvertIntToTRealX0: ");
asm("mov r1, #0 "); // low order word of mantissa = 0
__JUMP(,lr);
}
__NAKED__ EXPORT_C TInt TRealX::Set(const TInt64& /*anInt*/)
/**
Gives this extended precision object a new value taken from
a 64 bit integer.
@param anInt The 64 bit integer value.
@return KErrNone, always.
*/
{
asm("stmfd sp!, {lr} ");
asm("ldmia r1, {r1,r2} ");
asm("bl ConvertInt64ToTRealX ");
asm("stmia r0, {r1,r2,r3} ");
asm("mov r0, #0 "); // return KErrNone
__POPRET("");
}
#ifndef __EABI_CTORS__
__NAKED__ EXPORT_C TRealX::TRealX(const TInt64& /*anInt*/)
/**
Constructs an extended precision object from a 64 bit integer.
@param anInt A reference to a 64 bit integer.
*/
{
// fall through
}
#endif
__NAKED__ EXPORT_C TRealX& TRealX::operator=(const TInt64& /*anInt*/)
/**
Assigns the specified 64 bit integer value to this extended precision object.
@param anInt A reference to a 64 bit integer.
@return A reference to this extended precision object.
*/
{
asm("stmfd sp!, {lr} ");
asm("ldmia r1, {r1,r2} ");
asm("bl ConvertInt64ToTRealX ");
asm("stmia r0, {r1,r2,r3} ");
__POPRET("");
asm("ConvertInt64ToTRealX: ");
asm("movs r3, r2, lsr #31 "); // sign bit into r3 bit 0
asm("beq ConvertInt64ToTRealX1 "); // skip if plus
asm("rsbs r1, r1, #0 "); // take absolute value
asm("rsc r2, r2, #0 ");
asm("ConvertInt64ToTRealX1: ");
asm("cmp r2, #0 "); // does it fit into 32 bits?
asm("moveq r2, r1 "); // if it does, do 32 bit conversion
asm("beq ConvertUintToTRealX1 ");
#ifdef __CPU_ARM_HAS_CLZ
CLZ(12,2);
asm("mov r2, r2, lsl r12 ");
asm("rsb r12, r12, #32 ");
asm("orr r2, r2, r1, lsr r12 ");
asm("rsb r12, r12, #32 ");
#else
asm("mov r12, #32 "); // 32-number of left-shifts needed to normalise
asm("cmp r2, #0x10000 "); // calculate number required
asm("movcc r2, r2, lsl #16 ");
asm("subcc r12, r12, #16 ");
asm("cmp r2, #0x1000000 ");
asm("movcc r2, r2, lsl #8 ");
asm("subcc r12, r12, #8 ");
asm("cmp r2, #0x10000000 ");
asm("movcc r2, r2, lsl #4 ");
asm("subcc r12, r12, #4 ");
asm("cmp r2, #0x40000000 ");
asm("movcc r2, r2, lsl #2 ");
asm("subcc r12, r12, #2 ");
asm("cmp r2, #0x80000000 ");
asm("movcc r2, r2, lsl #1 ");
asm("subcc r12, r12, #1 "); // r2 is now normalised
asm("orr r2, r2, r1, lsr r12 "); // shift r1 left into r2
asm("rsb r12, r12, #32 ");
#endif
asm("mov r1, r1, lsl r12 ");
asm("add r3, r3, #0x80000000 "); // exponent = 803E-r12
asm("add r3, r3, #0x003E0000 ");
asm("sub r3, r3, r12, lsl #16 ");
__JUMP(,lr);
}
__NAKED__ EXPORT_C TInt TRealX::Set(TUint /*anInt*/)
/**
Gives this extended precision object a new value taken from
an unsigned integer.
@param The unsigned integer value.
@return KErrNone, always.
*/
{
asm("stmfd sp!, {lr} ");
asm("mov r2, r1 ");
asm("bl ConvertUintToTRealX ");
asm("stmia r0, {r1,r2,r3} ");
asm("mov r0, #0 "); // return KErrNone
__POPRET("");
}
#ifndef __EABI_CTORS__
__NAKED__ EXPORT_C TRealX::TRealX(TUint /*anInt*/)
/**
Constructs an extended precision object from an unsigned integer value.
@param anInt The unsigned integer value.
*/
{
// fall through
}
#endif
__NAKED__ EXPORT_C TRealX& TRealX::operator=(TUint /*anInt*/)
/**
Assigns the specified unsigned integer value to this extended precision object.
@param anInt The unsigned integer value.
@return A reference to this extended precision object.
*/
{
asm("stmfd sp!, {lr} ");
asm("mov r2, r1 ");
asm("bl ConvertUintToTRealX ");
asm("stmia r0, {r1,r2,r3} ");
__POPRET("");
asm("ConvertUintToTRealX: ");
asm("mov r3, #0 ");
asm("ConvertUintToTRealX1: ");
asm("cmp r2, #0 "); // check for zero
asm("beq ConvertUintToTRealX0 ");
asm("orr r3, r3, #0x001E0000 ");
asm("orr r3, r3, #0x80000000 "); // r3=exponent 801E
#ifdef __CPU_ARM_HAS_CLZ
CLZ(12,2);
asm("mov r2, r2, lsl r12 ");
asm("sub r3, r3, r12, lsl #16 ");
#else
asm("cmp r2, #0x10000 "); // normalise mantissa, decrementing exponent as needed
asm("movcc r2, r2, lsl #16 ");
asm("subcc r3, r3, #0x100000 ");
asm("cmp r2, #0x1000000 ");
asm("movcc r2, r2, lsl #8 ");
asm("subcc r3, r3, #0x080000 ");
asm("cmp r2, #0x10000000 ");
asm("movcc r2, r2, lsl #4 ");
asm("subcc r3, r3, #0x040000 ");
asm("cmp r2, #0x40000000 ");
asm("movcc r2, r2, lsl #2 ");
asm("subcc r3, r3, #0x020000 ");
asm("cmp r2, #0x80000000 ");
asm("movcc r2, r2, lsl #1 ");
asm("subcc r3, r3, #0x010000 ");
#endif
asm("ConvertUintToTRealX0: ");
asm("mov r1, #0 "); // low order word of mantissa = 0
__JUMP(,lr);
}
__NAKED__ EXPORT_C void TRealX::SetZero(TBool /*aNegative*/)
/**
Sets the value of this extended precision object to zero.
@param aNegative ETrue, the value is a negative zero;
EFalse, the value is a positive zero, this is the default.
*/
{
asm("mov r3, #0 ");
asm("cmp r1, #0 ");
asm("movne r3, #1 ");
asm("mov r2, #0 ");
asm("mov r1, #0 ");
asm("stmia r0, {r1,r2,r3} ");
__JUMP(,lr);
}
__NAKED__ EXPORT_C void TRealX::SetNaN()
/**
Sets the value of this extended precision object to 'not a number'.
*/
{
asm("ldr r3, [pc, #__RealIndefiniteExponent-.-8] ");
asm("mov r2, #0xC0000000 ");
asm("mov r1, #0 ");
asm("stmia r0, {r1,r2,r3} ");
__JUMP(,lr);
asm("__RealIndefiniteExponent: ");
asm(".word 0xFFFF0001 ");
}
__NAKED__ EXPORT_C void TRealX::SetInfinite(TBool /*aNegative*/)
/**
Sets the value of this extended precision object to infinity.
@param aNegative ETrue, the value is a negative zero;
EFalse, the value is a positive zero.
*/
{
asm("ldr r3, [pc, #__InfiniteExponent-.-8] ");
asm("cmp r1, #0 ");
asm("orrne r3, r3, #1 ");
asm("mov r2, #0x80000000 ");
asm("mov r1, #0 ");
asm("stmia r0, {r1,r2,r3} ");
__JUMP(,lr);
asm("__InfiniteExponent: ");
asm(".word 0xFFFF0000 ");
}
__NAKED__ EXPORT_C TBool TRealX::IsZero() const
/**
Determines whether the extended precision value is zero.
@return True, if the extended precision value is zero, false, otherwise.
*/
{
asm("ldr r1, [r0, #8] "); // get exponent word
asm("mov r0, #0 "); // default return value is 0
asm("cmp r1, #0x10000 "); // is exponent=0 ?
asm("movcc r0, #1 "); // if so return 1
__JUMP(,lr);
}
__NAKED__ EXPORT_C TBool TRealX::IsNaN() const
/**
Determines whether the extended precision value is 'not a number'.
@return True, if the extended precision value is 'not a number',
false, otherwise.
*/
{
asm("ldmia r0, {r1,r2,r3} ");
asm("mov r0, #0 "); // default return value is 0
asm("cmn r3, #0x10000 "); // check for exponent 65535
asm("bcc 1f "); // branch if not
asm("cmp r2, #0x80000000 "); // check if infinity
asm("cmpeq r1, #0 ");
asm("movne r0, #1 "); // if not, return 1
asm("1: ");
__JUMP(,lr);
}
__NAKED__ EXPORT_C TBool TRealX::IsInfinite() const
/**
Determines whether the extended precision value has a finite value.
@return True, if the extended precision value is finite,
false, if the value is 'not a number' or is infinite,
*/
{
asm("ldmia r0, {r1,r2,r3} ");
asm("mov r0, #0 "); // default return value is 0
asm("cmn r3, #0x10000 "); // check for exponent 65535
asm("bcc 1f "); // branch if not
asm("cmp r2, #0x80000000 "); // check if infinity
asm("cmpeq r1, #0 ");
asm("moveq r0, #1 "); // if it is, return 1
asm("1: ");
__JUMP(,lr);
}
__NAKED__ EXPORT_C TBool TRealX::IsFinite() const
/**
Determines whether the extended precision value has a finite value.
@return True, if the extended precision value is finite,
false, if the value is 'not a number' or is infinite,
*/
{
asm("ldr r1, [r0, #8] "); // get exponent word
asm("mov r0, #0 "); // default return value is 0
asm("cmn r1, #0x10000 "); // is exponent=65535 (infinity or NaN) ?
asm("movcc r0, #1 "); // if not return 1
__JUMP(,lr);
}
#ifndef __EABI_CTORS__
__NAKED__ EXPORT_C TRealX::TRealX(TReal32 /*aReal*/) __SOFTFP
/**
Constructs an extended precision object from
a single precision floating point number.
@param aReal The single precision floating point value.
*/
{
// fall through
}
#endif
__NAKED__ EXPORT_C TRealX& TRealX::operator=(TReal32 /*aReal*/) __SOFTFP
/**
Assigns the specified single precision floating point number to
this extended precision object.
@param aReal The single precision floating point value.
@return A reference to this extended precision object.
*/
{
asm("stmfd sp!, {lr} ");
asm("bl ConvertTReal32ToTRealX ");
asm("stmia r0, {r1,r2,r3} ");
__POPRET("");
}
__NAKED__ EXPORT_C TInt TRealX::Set(TReal32 /*aReal*/) __SOFTFP
/**
Gives this extended precision object a new value taken from
a single precision floating point number.
@param aReal The single precision floating point value.
@return KErrNone, if a valid number;
KErrOverflow, if the number is infinite;
KErrArgument, if not a number.
*/
{
// aReal is in r1 on entry
// sign in bit 31, exponent in 30-23, mantissa (non-integer bits) in 22-0
asm("stmfd sp!, {lr} ");
asm("bl ConvertTReal32ToTRealX ");
asm("stmia r0, {r1,r2,r3} ");
asm("cmn r3, #0x10000 "); // check for infinity or NaN
asm("movcc r0, #0 "); // if neither, return KErrNone
asm("bcc trealx_set_treal32_0 ");
asm("cmp r2, #0x80000000 "); // check for infinity
asm("mvneq r0, #8 "); // if so, return KErrOverflow
asm("mvnne r0, #5 "); // else return KErrArgument
asm("trealx_set_treal32_0: ");
__POPRET("");
// Convert 32-bit real in r1 to TRealX in r1,r2,r3
// r0 unmodified, r1,r2,r3,r12 modified
asm("ConvertTReal32ToTRealX: ");
asm("mov r3, r1, lsr #7 "); // r3 bits 16-31 = TReal32 exponent
asm("ands r3, r3, #0x00FF0000 ");
asm("mov r2, r1, lsl #8 "); // r2 = TReal32 mantissa << 8, bit 31 not yet in
asm("orrne r2, r2, #0x80000000 "); // if not zero/denormal, put in implied integer bit
asm("orr r3, r3, r1, lsr #31 "); // r3 bit 0 = sign bit
asm("mov r1, #0 "); // low word of mantissa = 0
asm("beq ConvertTReal32ToTRealX0 "); // branch if zero/denormal
asm("cmp r3, #0x00FF0000 "); // check for infinity or NaN
asm("orrcs r3, r3, #0xFF000000 "); // if infinity or NaN, exponent = FFFF
asm("addcc r3, r3, #0x7F000000 "); // else exponent = TReal32 exponent + 7F80
asm("addcc r3, r3, #0x00800000 ");
__JUMP(,lr);
asm("ConvertTReal32ToTRealX0: "); // come here if zero or denormal
asm("adds r2, r2, r2 "); // shift mantissa left one more and check if zero
__JUMP(eq,lr);
asm("add r3, r3, #0x7F000000 "); // else exponent = 7F80 (highest denormal exponent)
asm("add r3, r3, #0x00800000 ");
#ifdef __CPU_ARM_HAS_CLZ
CLZ(12,2);
asm("mov r2, r2, lsl r12 ");
asm("sub r3, r3, r12, lsl #16 ");
#else
asm("cmp r2, #0x10000 "); // normalise mantissa, decrementing exponent as needed
asm("movcc r2, r2, lsl #16 ");
asm("subcc r3, r3, #0x100000 ");
asm("cmp r2, #0x1000000 ");
asm("movcc r2, r2, lsl #8 ");
asm("subcc r3, r3, #0x080000 ");
asm("cmp r2, #0x10000000 ");
asm("movcc r2, r2, lsl #4 ");
asm("subcc r3, r3, #0x040000 ");
asm("cmp r2, #0x40000000 ");
asm("movcc r2, r2, lsl #2 ");
asm("subcc r3, r3, #0x020000 ");
asm("cmp r2, #0x80000000 ");
asm("movcc r2, r2, lsl #1 ");
asm("subcc r3, r3, #0x010000 ");
#endif
__JUMP(,lr);
}
#ifndef __EABI_CTORS__
__NAKED__ EXPORT_C TRealX::TRealX(TReal64 /*aReal*/) __SOFTFP
/**
Constructs an extended precision object from
a double precision floating point number.
@param aReal The double precision floating point value.
*/
{
// fall through
}
#endif
__NAKED__ EXPORT_C TRealX& TRealX::operator=(TReal64 /*aReal*/) __SOFTFP
/**
Assigns the specified double precision floating point number to
this extended precision object.
@param aReal The double precision floating point value.
@return A reference to this extended precision object.
*/
{
asm("stmfd sp!, {lr} ");
asm("bl ConvertTReal64ToTRealX ");
asm("stmia r0, {r1,r2,r3} ");
__POPRET("");
}
__NAKED__ EXPORT_C TInt TRealX::Set(TReal64 /*aReal*/) __SOFTFP
/**
Gives this extended precision object a new value taken from
a double precision floating point number.
@param aReal The double precision floating point value.
@return KErrNone, if a valid number;
KErrOverflow, if the number is infinite;
KErrArgument, if not a number.
*/
{
// aReal is in r1,r2 on entry
// sign in bit 31 of r1, exponent in 30-20 of r1
// mantissa (non-integer bits) in 19-0 of r1 (high) and r2 (low)
asm("stmfd sp!, {lr} ");
asm("bl ConvertTReal64ToTRealX ");
asm("stmia r0, {r1,r2,r3} ");
asm("cmn r3, #0x10000 "); // check for infinity or NaN
asm("movcc r0, #0 "); // if neither, return KErrNone
asm("bcc trealx_set_treal64_0 ");
asm("cmp r2, #0x80000000 "); // check for infinity
asm("cmpeq r1, #0 ");
asm("mvneq r0, #8 "); // if so, return KErrOverflow
asm("mvnne r0, #5 "); // else return KErrArgument
asm("trealx_set_treal64_0: ");
__POPRET("");
// convert TReal64 in r1,r2 in GCC and r2 and r3 in RVCT
// if __DOUBLE_WORDS_SWAPPED__ r1=sign,exp,high mant, r2=low mant
// else r1 unused , r2=low mant, r3=sign,exp,high mant (as a result of EABI alignment reqs)
// into TRealX in r1,r2,r3 (r2,r1=mant high,low r3=exp,flag,sign)
// r0 unmodified, r1,r2,r3,r12 modified
asm("ConvertTReal64ToTRealX: ");
#ifdef __DOUBLE_WORDS_SWAPPED__
asm("mov r12, r2 "); // ls word of mantissa into r12
#else
asm("mov r12, r2 "); // ls word of mantissa into r12
asm("mov r1, r3 ");
#endif
asm("mov r3, r1, lsr #20 "); // sign and exp into bottom 12 bits of r3
asm("mov r2, r1, lsl #11 "); // left justify mantissa in r2,r1
asm("mov r3, r3, lsl #16 "); // and into bits 16-27
asm("bics r3, r3, #0x08000000 "); // remove sign, leaving exponent in bits 16-26
asm("orr r2, r2, r12, lsr #21 ");
asm("orrne r2, r2, #0x80000000 "); // if not zero/denormal, put in implied integer bit
asm("orr r3, r3, r1, lsr #31 "); // sign bit into bit 0 of r3
asm("mov r1, r12, lsl #11 ");
asm("beq ConvertTReal64ToTRealX0 "); // branch if zero or denormal
asm("mov r12, r3, lsl #5 "); // exponent into bits 21-31 of r12
asm("cmn r12, #0x00200000 "); // check if exponent=7FF (infinity or NaN)
asm("addcs r3, r3, #0xF8000000 "); // if so, result exponent=FFFF
asm("addcc r3, r3, #0x7C000000 "); // else result exponent = TReal64 exponent + 7C00
__JUMP(,lr);
asm("ConvertTReal64ToTRealX0: "); // come here if zero or denormal
asm("adds r1, r1, r1 "); // shift mantissa left one more bit
asm("adcs r2, r2, r2 ");
asm("cmpeq r1, #0 "); // and test for zero
__JUMP(eq,lr);
asm("add r3, r3, #0x7C000000 "); // else exponent=7C00 (highest denormal exponent)
asm("cmp r2, #0 "); // normalise - first check if r2=0
asm("moveq r2, r1 "); // if so, shift up by 32
asm("moveq r1, #0 ");
asm("subeq r3, r3, #0x200000 "); // and subtract 32 from exponent
#ifdef __CPU_ARM_HAS_CLZ
CLZ(12,2);
asm("mov r2, r2, lsl r12 ");
asm("rsb r12, r12, #32 ");
asm("orr r2, r2, r1, lsr r12 ");
asm("rsb r12, r12, #32 ");
#else
asm("mov r12, #32 "); // 32-number of left-shifts needed to normalise
asm("cmp r2, #0x10000 "); // calculate number required
asm("movcc r2, r2, lsl #16 ");
asm("subcc r12, r12, #16 ");
asm("cmp r2, #0x1000000 ");
asm("movcc r2, r2, lsl #8 ");
asm("subcc r12, r12, #8 ");
asm("cmp r2, #0x10000000 ");
asm("movcc r2, r2, lsl #4 ");
asm("subcc r12, r12, #4 ");
asm("cmp r2, #0x40000000 ");
asm("movcc r2, r2, lsl #2 ");
asm("subcc r12, r12, #2 ");
asm("cmp r2, #0x80000000 ");
asm("movcc r2, r2, lsl #1 ");
asm("subcc r12, r12, #1 "); // r2 is now normalised
asm("orr r2, r2, r1, lsr r12 "); // shift r1 left into r2
asm("rsb r12, r12, #32 ");
#endif
asm("mov r1, r1, lsl r12 ");
asm("sub r3, r3, r12, lsl #16 "); // exponent -= number of left shifts
__JUMP(,lr);
}
__NAKED__ EXPORT_C TRealX::operator TInt() const
/**
Gets the extended precision value as a signed integer value.
The operator returns:
1. zero , if the extended precision value is not a number
2. 0x7FFFFFFF, if the value is positive and too big to fit into a TInt.
3. 0x80000000, if the value is negative and too big to fit into a TInt.
*/
{
asm("ldmia r0, {r1,r2,r3} "); // get value into r1,r2,r3
asm("ConvertTRealXToInt: ");
asm("mov r12, #0x8000 "); // r12=0x801E
asm("orr r12, r12, #0x001E ");
asm("subs r12, r12, r3, lsr #16 "); // r12=801E-exponent
asm("bls ConvertTRealXToInt1 "); // branch if exponent>=801E
asm("cmp r12, #31 "); // test if exponent<7FFF
asm("movhi r0, #0 "); // if so, underflow result to zero
__JUMP(hi,lr);
asm("mov r0, r2, lsr r12 "); // shift mantissa right to form integer
asm("tst r3, #1 "); // check sign bit
asm("rsbne r0, r0, #0 "); // if negative, r0=-r0
__JUMP(,lr);
asm("ConvertTRealXToInt1: ");
asm("cmn r3, #0x10000 "); // check for infinity or NaN
asm("bcc ConvertTRealXToInt2 "); // branch if neither
asm("cmp r2, #0x80000000 "); // check for infinity
asm("cmpeq r1, #0 ");
asm("movne r0, #0 "); // if NaN, return 0
__JUMP(ne,lr);
asm("ConvertTRealXToInt2: ");
asm("mov r0, #0x80000000 "); // return 0x80000000 if -ve overflow, 0x7FFFFFFF if +ve
asm("movs r3, r3, lsr #1 ");
asm("sbc r0, r0, #0 ");
__JUMP(,lr);
}
__NAKED__ EXPORT_C TRealX::operator TUint() const
/**
Returns the extended precision value as an unsigned signed integer value.
The operator returns:
1. zero, if the extended precision value is not a number
2. 0xFFFFFFFF, if the value is positive and too big to fit into a TUint.
3. zero, if the value is negative and too big to fit into a TUint.
*/
{
asm("ldmia r0, {r1,r2,r3} "); // get value into r1,r2,r3
asm("ConvertTRealXToUint: ");
asm("mov r12, #0x8000 "); // r12=0x801E
asm("orr r12, r12, #0x001E ");
asm("subs r12, r12, r3, lsr #16 "); // r12=801E-exponent
asm("bcc ConvertTRealXToUint1 "); // branch if exponent>801E
asm("cmp r12, #31 "); // test if exponent<7FFF
asm("movhi r0, #0 "); // if so, underflow result to zero
__JUMP(hi,lr);
asm("tst r3, #1 "); // check sign bit
asm("moveq r0, r2, lsr r12 "); // if +ve, shift mantissa right to form integer
asm("movne r0, #0 "); // if negative, r0=0
__JUMP(,lr);
asm("ConvertTRealXToUint1: ");
asm("mov r0, #0 "); // r0=0 initially
asm("cmn r3, #0x10000 "); // check for infinity or NaN
asm("bcc ConvertTRealXToUint2 "); // branch if neither
asm("cmp r2, #0x80000000 "); // check for infinity
asm("cmpeq r1, #0 ");
__JUMP(ne,lr);
asm("ConvertTRealXToUint2: ");
asm("movs r3, r3, lsr #1 "); // sign bit into carry
asm("sbc r0, r0, #0 "); // r0=0 if -ve, 0xFFFFFFFF if +ve
__JUMP(,lr);
}
__NAKED__ EXPORT_C TRealX::operator TInt64() const
/**
Returns the extended precision value as a 64 bit integer value.
The operator returns:
1. zero, if the extended precision value is not a number
2. 0x7FFFFFFF FFFFFFFF, if the value is positive and too big to fit
into a TInt64
3. 0x80000000 00000000, if the value is negative and too big to fit
into a TInt.
*/
{
// r0 = this, result in r1:r0
asm("ldmia r0, {r0,r1,r2} "); // get value into r0,r1,r2
asm("ConvertTRealXToInt64: ");
asm("mov r3, #0x8000 "); // r3=0x803E
asm("orr r3, r3, #0x003E ");
asm("subs r3, r3, r2, lsr #16 "); // r3=803E-exponent
asm("bls ConvertTRealXToInt64a "); // branch if exponent>=803E
asm("cmp r3, #63 "); // test if exponent<7FFF
asm("movhi r1, #0 "); // if so, underflow result to zero
asm("movhi r0, #0 ");
__JUMP(hi,lr);
asm("cmp r3, #32 "); // >=32 shifts required?
asm("subcs r3, r3, #32 "); // if so, r3-=32
asm("movcs r0, r1, lsr r3 "); // r1:r0 >>= (r3+32)
asm("movcs r1, #0 ");
asm("movcc r0, r0, lsr r3 "); // else r1:r0>>=r3
asm("rsbcc r3, r3, #32 ");
asm("orrcc r0, r0, r1, lsl r3 ");
asm("rsbcc r3, r3, #32 ");
asm("movcc r1, r1, lsr r3 "); // r1:r0 = absolute integer
asm("tst r2, #1 "); // check sign bit
__JUMP(eq,lr);
asm("rsbs r0, r0, #0 "); // else negate answer
asm("rsc r1, r1, #0 ");
__JUMP(,lr);
asm("ConvertTRealXToInt64a: ");
asm("cmn r2, #0x10000 "); // check for infinity or NaN
asm("bcc ConvertTRealXToInt64b "); // branch if neither
asm("cmp r1, #0x80000000 "); // check for infinity
asm("cmpeq r0, #0 ");
asm("movne r1, #0 "); // if NaN, return 0
asm("movne r0, #0 ");
__JUMP(ne,lr);
asm("ConvertTRealXToInt64b: ");
asm("mov r1, #0x80000000 "); // return KMaxTInt64/KMinTInt64 depending on sign
asm("mov r0, #0 ");
asm("movs r2, r2, lsr #1 ");
asm("sbcs r0, r0, #0 ");
asm("sbc r1, r1, #0 ");
__JUMP(,lr);
}
__NAKED__ EXPORT_C TRealX::operator TReal32() const __SOFTFP
/**
Returns the extended precision value as
a single precision floating point value.
*/
{
asm("ldmia r0, {r1,r2,r3} "); // r1,r2,r3=input value
// Convert TRealX in r1,r2,r3 to TReal32 in r0
asm("ConvertTRealXToTReal32: ");
asm("mov r12, #0x8000 ");
asm("orr r12, r12, #0x007F "); // r12=0x807F
asm("cmp r3, r12, lsl #16 "); // check if exponent>=807F
asm("bcs ConvertTRealXToTReal32a "); // branch if it is
asm("sub r12, r12, #0x00FF "); // r12=0x7F80
asm("rsbs r12, r12, r3, lsr #16 "); // r12=exp in - 7F80 = result exponent if in range
asm("bgt ConvertTRealXToTReal32b "); // branch if normalised result
asm("cmn r12, #23 "); // check for total underflow or zero
asm("movlt r0, r3, lsl #31 "); // in this case, return zero with appropriate sign
__JUMP(lt,lr);
asm("add r12, r12, #31 "); // r12=32-mantissa shift required = 32-(1-r12)
asm("movs r0, r1, lsl r12 "); // r0=lost bits when r2:r1 is shifted
asm("bicne r3, r3, #0x300 "); // if these are not zero, set rounded down flag
asm("orrne r3, r3, #0x100 ");
asm("rsb r0, r12, #32 ");
asm("mov r1, r1, lsr r0 ");
asm("orr r1, r1, r2, lsl r12 ");
asm("mov r2, r2, lsr r0 "); // r2 top 24 bits now give unrounded result mantissa
asm("mov r12, #0 "); // result exponent will be zero
asm("ConvertTRealXToTReal32b: ");
asm("movs r0, r2, lsl #24 "); // top 8 truncated bits into top byte of r0
asm("bpl ConvertTRealXToTReal32c "); // if top bit clear, truncate
asm("cmp r0, #0x80000000 ");
asm("cmpeq r1, #0 "); // compare rounding bits to 1000...
asm("bhi ConvertTRealXToTReal32d "); // if >, round up
asm("movs r0, r3, lsl #23 "); // round up flag into C, round down flag into N
asm("bcs ConvertTRealXToTReal32c "); // if rounded up, truncate
asm("bmi ConvertTRealXToTReal32d "); // if rounded down, round up
asm("tst r2, #0x100 "); // else round to even - test LSB of result mantissa
asm("beq ConvertTRealXToTReal32c "); // if zero, truncate, else round up
asm("ConvertTRealXToTReal32d: "); // come here to round up
asm("adds r2, r2, #0x100 "); // increment the mantissa
asm("movcs r2, #0x80000000 "); // if carry, mantissa=800000
asm("addcs r12, r12, #1 "); // and increment exponent
asm("cmpmi r12, #1 "); // if mantissa normalised, check exponent>0
asm("movmi r12, #1 "); // if normalised and exponent=0, set exponent to 1
asm("ConvertTRealXToTReal32c: "); // come here to truncate
asm("mov r0, r3, lsl #31 "); // r0 bit 31 = sign bit
asm("orr r0, r0, r12, lsl #23 "); // exponent into r0 bits 23-30
asm("bic r2, r2, #0x80000000 "); // remove integer bit from mantissa
asm("orr r0, r0, r2, lsr #8 "); // non-integer mantissa bits into r0 bits 0-22
__JUMP(,lr);
asm("ConvertTRealXToTReal32a: "); // come here if overflow, infinity or NaN
asm("cmn r3, #0x10000 "); // check for infinity or NaN
asm("movcc r2, #0 "); // if not, set mantissa to 0 for infinity result
asm("bic r2, r2, #0x80000000 "); // remove integer bit from mantissa
asm("mov r0, r3, lsl #31 "); // r0 bit 31 = sign bit
asm("orr r0, r0, #0x7F000000 "); // r0 bits 23-30 = FF = exponent
asm("orr r0, r0, #0x00800000 ");
asm("orr r0, r0, r2, lsr #8 "); // r0 bits 0-22 = result mantissa
__JUMP(,lr);
}
__NAKED__ EXPORT_C TRealX::operator TReal64() const __SOFTFP
/**
Returns the extended precision value as
a double precision floating point value.
*/
{
asm("ldmia r0, {r1,r2,r3} "); // r1,r2,r3=input value
// Convert TRealX in r1,r2,r3 to TReal64 in r0,r1
// if __DOUBLE_WORDS_SWAPPED__ r0=sign,exp,high mant, r1=low mant
// else r0, r1 reversed
asm("ConvertTRealXToTReal64: ");
asm("mov r12, #0x8300 ");
asm("orr r12, r12, #0x00FF "); // r12=0x83FF
asm("cmp r3, r12, lsl #16 "); // check if exponent>=83FF
asm("bcs ConvertTRealXToTReal64a "); // branch if it is
asm("mov r12, #0x7C00 ");
asm("rsbs r12, r12, r3, lsr #16 "); // r12=exp in - 7C00 = result exponent if in range
asm("bgt ConvertTRealXToTReal64b "); // branch if normalised result
asm("cmn r12, #52 "); // check for total underflow or zero
asm("movlt r0, r3, lsl #31 "); // in this case, return zero with appropriate sign
asm("movlt r1, #0 ");
asm("blt ConvertTRealXToTReal64_end ");
asm("adds r12, r12, #31 "); // check if >=32 shifts needed, r12=32-shift count
asm("ble ConvertTRealXToTReal64e "); // branch if >=32 shifts needed
asm("movs r0, r1, lsl r12 "); // r0=lost bits when r2:r1 is shifted
asm("bicne r3, r3, #0x300 "); // if these are not zero, set rounded down flag
asm("orrne r3, r3, #0x100 ");
asm("rsb r0, r12, #32 "); // r0=shift count
asm("mov r1, r1, lsr r0 ");
asm("orr r1, r1, r2, lsl r12 ");
asm("mov r2, r2, lsr r0 "); // r2:r1 top 53 bits = unrounded result mantissa
asm("b ConvertTRealXToTReal64f ");
asm("ConvertTRealXToTReal64e: ");
asm("add r12, r12, #32 "); // r12=64-shift count
asm("cmp r1, #0 "); // r1 bits are all lost - test them
asm("moveqs r0, r2, lsl r12 "); // if zero, test lost bits from r2
asm("bicne r3, r3, #0x300 "); // if lost bits not all zero, set rounded down flag
asm("orrne r3, r3, #0x100 ");
asm("rsb r0, r12, #32 "); // r0=shift count-32
asm("mov r1, r2, lsr r0 "); // shift r2:r1 right
asm("mov r2, #0 ");
asm("ConvertTRealXToTReal64f: ");
asm("mov r12, #0 "); // result exponent will be zero for denormals
asm("ConvertTRealXToTReal64b: ");
asm("movs r0, r1, lsl #21 "); // 11 rounding bits to top of r0
asm("bpl ConvertTRealXToTReal64c "); // if top bit clear, truncate
asm("cmp r0, #0x80000000 "); // compare rounding bits to 10000000000
asm("bhi ConvertTRealXToTReal64d "); // if >, round up
asm("movs r0, r3, lsl #23 "); // round up flag into C, round down flag into N
asm("bcs ConvertTRealXToTReal64c "); // if rounded up, truncate
asm("bmi ConvertTRealXToTReal64d "); // if rounded down, round up
asm("tst r1, #0x800 "); // else round to even - test LSB of result mantissa
asm("beq ConvertTRealXToTReal64c "); // if zero, truncate, else round up
asm("ConvertTRealXToTReal64d: "); // come here to round up
asm("adds r1, r1, #0x800 "); // increment the mantissa
asm("adcs r2, r2, #0 ");
asm("movcs r2, #0x80000000 "); // if carry, mantissa=10000...0
asm("addcs r12, r12, #1 "); // and increment exponent
asm("cmpmi r12, #1 "); // if mantissa normalised, check exponent>0
asm("movmi r12, #1 "); // if normalised and exponent=0, set exponent to 1
asm("ConvertTRealXToTReal64c: "); // come here to truncate
asm("mov r0, r3, lsl #31 "); // r0 bit 31 = sign bit
asm("orr r0, r0, r12, lsl #20 "); // exponent into r0 bits 20-30
asm("bic r2, r2, #0x80000000 "); // remove integer bit from mantissa
asm("orr r0, r0, r2, lsr #11 "); // non-integer mantissa bits into r0 bits 0-19
asm("mov r1, r1, lsr #11 "); // and r1
asm("orr r1, r1, r2, lsl #21 ");
asm("b ConvertTRealXToTReal64_end ");
asm("ConvertTRealXToTReal64a: "); // come here if overflow, infinity or NaN
asm("cmn r3, #0x10000 "); // check for infinity or NaN
asm("movcc r2, #0 "); // if not, set mantissa to 0 for infinity result
asm("movcc r1, #0 ");
asm("bic r2, r2, #0x80000000 "); // remove integer bit from mantissa
asm("mov r0, r3, lsl #31 "); // r0 bit 31 = sign bit
asm("orr r0, r0, #0x7F000000 "); // r0 bits 20-30 = 7FF = exponent
asm("orr r0, r0, #0x00F00000 ");
asm("orr r0, r0, r2, lsr #11 "); // r0 bits 0-19 = result mantissa high bits
asm("mov r1, r1, lsr #11 "); // and r1=result mantissa low bits
asm("orr r1, r1, r2, lsl #21 ");
asm("ConvertTRealXToTReal64_end: ");
#ifndef __DOUBLE_WORDS_SWAPPED__
asm("mov r2, r0 ");
asm("mov r0, r1 ");
asm("mov r1, r2 ");
#endif
__JUMP(,lr);
}
__NAKED__ EXPORT_C TInt TRealX::GetTReal(TReal32& /*aVal*/) const
/**
Extracts the extended precision value as
a single precision floating point value.
@param aVal A reference to a single precision object which contains
the result of the operation.
@return KErrNone, if the operation is successful;
KErrOverflow, if the operation results in overflow;
KErrUnderflow, if the operation results in underflow.
*/
{
asm("stmfd sp!, {r4,lr} ");
asm("mov r4, r1 ");
asm("ldmia r0, {r1,r2,r3} "); // r1,r2,r3=input value
asm("bl TRealXGetTReal32 ");
asm("str r0, [r4] "); // store converted TReal32
asm("mov r0, r12 "); // return value into r0
__POPRET("r4,");
// Convert TRealX in r1,r2,r3 to TReal32 in r0
// Return error code in r12
// r0-r3, r12 modified
asm("TRealXGetTReal32: ");
asm("mov r12, #0x8000 ");
asm("orr r12, r12, #0x007F "); // r12=0x807F
asm("cmp r3, r12, lsl #16 "); // check if exponent>=807F
asm("bcs TRealXGetTReal32a "); // branch if it is
asm("sub r12, r12, #0x00FF "); // r12=0x7F80
asm("rsbs r12, r12, r3, lsr #16 "); // r12=exp in - 7F80 = result exponent if in range
asm("bgt TRealXGetTReal32b "); // branch if normalised result
asm("cmn r12, #23 "); // check for total underflow or zero
asm("bge TRealXGetTReal32e "); // skip if not
asm("mov r0, r3, lsl #31 "); // else return zero with appropriate sign
asm("mov r1, #0 ");
asm("cmp r3, #0x10000 "); // check for zero
asm("movcc r12, #0 "); // if zero return KErrNone
asm("mvncs r12, #9 "); // else return KErrUnderflow
__JUMP(,lr);
asm("TRealXGetTReal32e: ");
asm("add r12, r12, #31 "); // r12=32-mantissa shift required = 32-(1-r12)
asm("movs r0, r1, lsl r12 "); // r0=lost bits when r2:r1 is shifted
asm("bicne r3, r3, #0x300 "); // if these are not zero, set rounded down flag
asm("orrne r3, r3, #0x100 ");
asm("rsb r0, r12, #32 ");
asm("mov r1, r1, lsr r0 ");
asm("orr r1, r1, r2, lsl r12 ");
asm("mov r2, r2, lsr r0 "); // r2 top 24 bits now give unrounded result mantissa
asm("mov r12, #0 "); // result exponent will be zero
asm("TRealXGetTReal32b: ");
asm("movs r0, r2, lsl #24 "); // top 8 truncated bits into top byte of r0
asm("bpl TRealXGetTReal32c "); // if top bit clear, truncate
asm("cmp r0, #0x80000000 ");
asm("cmpeq r1, #0 "); // compare rounding bits to 1000...
asm("bhi TRealXGetTReal32d "); // if >, round up
asm("movs r0, r3, lsl #23 "); // round up flag into C, round down flag into N
asm("bcs TRealXGetTReal32c "); // if rounded up, truncate
asm("bmi TRealXGetTReal32d "); // if rounded down, round up
asm("tst r2, #0x100 "); // else round to even - test LSB of result mantissa
asm("beq TRealXGetTReal32c "); // if zero, truncate, else round up
asm("TRealXGetTReal32d: "); // come here to round up
asm("adds r2, r2, #0x100 "); // increment the mantissa
asm("movcs r2, #0x80000000 "); // if carry, mantissa=800000
asm("addcs r12, r12, #1 "); // and increment exponent
asm("cmpmi r12, #1 "); // if mantissa normalised, check exponent>0
asm("movmi r12, #1 "); // if normalised and exponent=0, set exponent to 1
asm("TRealXGetTReal32c: "); // come here to truncate
asm("mov r0, r3, lsl #31 "); // r0 bit 31 = sign bit
asm("orr r0, r0, r12, lsl #23 "); // exponent into r0 bits 23-30
asm("bic r2, r2, #0x80000000 "); // remove integer bit from mantissa
asm("orr r0, r0, r2, lsr #8 "); // non-integer mantissa bits into r0 bits 0-22
asm("cmp r12, #0xFF "); // check for overflow
asm("mvneq r12, #8 "); // if overflow, return KErrOverflow
__JUMP(eq,lr);
asm("bics r1, r0, #0x80000000 "); // check for underflow
asm("mvneq r12, #9 "); // if underflow return KErrUnderflow
asm("movne r12, #0 "); // else return KErrNone
__JUMP(,lr);
asm("TRealXGetTReal32a: "); // come here if overflow, infinity or NaN
asm("cmn r3, #0x10000 "); // check for infinity or NaN
asm("movcc r2, #0 "); // if not, set mantissa to 0 for infinity result
asm("bic r2, r2, #0x80000000 "); // remove integer bit from mantissa
asm("mov r0, r3, lsl #31 "); // r0 bit 31 = sign bit
asm("orr r0, r0, #0x7F000000 "); // r0 bits 23-30 = FF = exponent
asm("orr r0, r0, #0x00800000 ");
asm("orr r0, r0, r2, lsr #8 "); // r0 bits 0-22 = result mantissa
asm("movs r12, r0, lsl #9 "); // check if result is infinity or NaN
asm("mvneq r12, #8 "); // if infinity return KErrOverflow
asm("mvnne r12, #5 "); // else return KErrArgument
__JUMP(,lr);
}
__NAKED__ EXPORT_C TInt TRealX::GetTReal(TReal64& /*aVal*/) const
/**
Extracts the extended precision value as
a double precision floating point value.
@param aVal A reference to a double precision object which
contains the result of the operation.
@return KErrNone, if the operation is successful;
KErrOverflow, if the operation results in overflow;
KErrUnderflow, if the operation results in underflow.
*/
{
asm("stmfd sp!, {r4,lr} ");
asm("mov r4, r1 ");
asm("ldmia r0, {r1,r2,r3} "); // r1,r2,r3=input value
asm("bl TRealXGetTReal64 ");
asm("stmia r4, {r0,r1} "); // store converted TReal64
asm("mov r0, r12 "); // return value into r0
__POPRET("r4,");
// Convert TRealX in r1,r2,r3 to TReal64 in r0,r1
// Return error code in r12
// r0-r3, r12 modified
asm("TRealXGetTReal64: ");
asm("mov r12, #0x8300 ");
asm("orr r12, r12, #0x00FF "); // r12=0x83FF
asm("cmp r3, r12, lsl #16 "); // check if exponent>=83FF
asm("bcs TRealXGetTReal64a "); // branch if it is
asm("mov r12, #0x7C00 ");
asm("rsbs r12, r12, r3, lsr #16 "); // r12=exp in - 7C00 = result exponent if in range
asm("bgt TRealXGetTReal64b "); // branch if normalised result
asm("cmn r12, #52 "); // check for total underflow or zero
asm("bge TRealXGetTReal64g "); // skip if not
asm("mov r0, r3, lsl #31 "); // else return zero with appropriate sign
asm("mov r1, #0 ");
asm("cmp r3, #0x10000 "); // check for zero
asm("movcc r12, #0 "); // if zero return KErrNone
asm("mvncs r12, #9 "); // else return KErrUnderflow
asm("b TRealXGetTReal64_end ");
asm("TRealXGetTReal64g: ");
asm("adds r12, r12, #31 "); // check if >=32 shifts needed, r12=32-shift count
asm("ble TRealXGetTReal64e "); // branch if >=32 shifts needed
asm("movs r0, r1, lsl r12 "); // r0=lost bits when r2:r1 is shifted
asm("bicne r3, r3, #0x300 "); // if these are not zero, set rounded down flag
asm("orrne r3, r3, #0x100 ");
asm("rsb r0, r12, #32 "); // r0=shift count
asm("mov r1, r1, lsr r0 ");
asm("orr r1, r1, r2, lsl r12 ");
asm("mov r2, r2, lsr r0 "); // r2:r1 top 53 bits = unrounded result mantissa
asm("b TRealXGetTReal64f ");
asm("TRealXGetTReal64e: ");
asm("add r12, r12, #32 "); // r12=64-shift count
asm("cmp r1, #0 "); // r1 bits are all lost - test them
asm("moveqs r0, r2, lsl r12 "); // if zero, test lost bits from r2
asm("bicne r3, r3, #0x300 "); // if lost bits not all zero, set rounded down flag
asm("orrne r3, r3, #0x100 ");
asm("rsb r0, r12, #32 "); // r0=shift count-32
asm("mov r1, r2, lsr r0 "); // shift r2:r1 right
asm("mov r2, #0 ");
asm("TRealXGetTReal64f: ");
asm("mov r12, #0 "); // result exponent will be zero for denormals
asm("TRealXGetTReal64b: ");
asm("movs r0, r1, lsl #21 "); // 11 rounding bits to top of r0
asm("bpl TRealXGetTReal64c "); // if top bit clear, truncate
asm("cmp r0, #0x80000000 "); // compare rounding bits to 10000000000
asm("bhi TRealXGetTReal64d "); // if >, round up
asm("movs r0, r3, lsl #23 "); // round up flag into C, round down flag into N
asm("bcs TRealXGetTReal64c "); // if rounded up, truncate
asm("bmi TRealXGetTReal64d "); // if rounded down, round up
asm("tst r1, #0x800 "); // else round to even - test LSB of result mantissa
asm("beq TRealXGetTReal64c "); // if zero, truncate, else round up
asm("TRealXGetTReal64d: "); // come here to round up
asm("adds r1, r1, #0x800 "); // increment the mantissa
asm("adcs r2, r2, #0 ");
asm("movcs r2, #0x80000000 "); // if carry, mantissa=10000...0
asm("addcs r12, r12, #1 "); // and increment exponent
asm("cmpmi r12, #1 "); // if mantissa normalised, check exponent>0
asm("movmi r12, #1 "); // if normalised and exponent=0, set exponent to 1
asm("TRealXGetTReal64c: "); // come here to truncate
asm("mov r0, r3, lsl #31 "); // r0 bit 31 = sign bit
asm("orr r0, r0, r12, lsl #20 "); // exponent into r0 bits 20-30
asm("bic r2, r2, #0x80000000 "); // remove integer bit from mantissa
asm("orr r0, r0, r2, lsr #11 "); // non-integer mantissa bits into r0 bits 0-19
asm("mov r1, r1, lsr #11 "); // and r1
asm("orr r1, r1, r2, lsl #21 ");
asm("add r12, r12, #1 ");
asm("cmp r12, #0x800 "); // check for overflow
asm("mvneq r12, #8 "); // if overflow, return KErrOverflow
asm("beq TRealXGetTReal64_end ");
asm("bics r12, r0, #0x80000000 "); // check for underflow
asm("cmpeq r1, #0 ");
asm("mvneq r12, #9 "); // if underflow return KErrUnderflow
asm("movne r12, #0 "); // else return KErrNone
asm("b TRealXGetTReal64_end ");
asm("TRealXGetTReal64a: "); // come here if overflow, infinity or NaN
asm("cmn r3, #0x10000 "); // check for infinity or NaN
asm("movcc r2, #0 "); // if not, set mantissa to 0 for infinity result
asm("movcc r1, #0 ");
asm("bic r2, r2, #0x80000000 "); // remove integer bit from mantissa
asm("mov r0, r3, lsl #31 "); // r0 bit 31 = sign bit
asm("orr r0, r0, #0x7F000000 "); // r0 bits 20-30 = 7FF = exponent
asm("orr r0, r0, #0x00F00000 ");
asm("orr r0, r0, r2, lsr #11 "); // r0 bits 0-19 = result mantissa high bits
asm("mov r1, r1, lsr #11 "); // and r1=result mantissa low bits
asm("orr r1, r1, r2, lsl #21 ");
asm("movs r12, r0, lsl #12 "); // check if result is infinity or NaN
asm("cmpeq r1, #0 ");
asm("mvneq r12, #8 "); // if infinity return KErrOverflow
asm("mvnne r12, #5 "); // else return KErrArgument
asm("TRealXGetTReal64_end: ");
#ifndef __DOUBLE_WORDS_SWAPPED__
asm("mov r2, r0 ");
asm("mov r0, r1 ");
asm("mov r1, r2 ");
#endif
__JUMP(,lr);
}
__NAKED__ EXPORT_C TRealX TRealX::operator+() const
/**
Returns this extended precision number unchanged.
Note that this may also be referred to as a unary plus operator.
@return The extended precision number.
*/
{
asm("ldmia r1, {r2,r3,r12} ");
asm("stmia r0, {r2,r3,r12} ");
__JUMP(,lr);
}
__NAKED__ EXPORT_C TRealX TRealX::operator-() const
/**
Negates this extended precision number.
This may also be referred to as a unary minus operator.
@return The negative of the extended precision number.
*/
{
asm("ldmia r1, {r2,r3,r12} ");
asm("eor r12, r12, #1 "); // unary - changes sign bit
asm("stmia r0, {r2,r3,r12} ");
__JUMP(,lr);
}
__NAKED__ EXPORT_C TRealX::TRealXOrder TRealX::Compare(const TRealX& /*aVal*/) const
/**
*/
{
asm("stmfd sp!, {r4,r5,r6,lr} ");
asm("ldmia r1, {r4,r5,r6} ");
asm("ldmia r0, {r1,r2,r3} ");
asm("bl TRealXCompare ");
__POPRET("r4-r6,");
// Compare TRealX in r1,r2,r3 to TRealX in r4,r5,r6
// Return TRealXOrder result in r0
asm("TRealXCompare: ");
asm("cmn r3, #0x10000 "); // check for NaNs/infinity
asm("bcs TRealXCompare1 ");
asm("TRealXCompare6: "); // will come back here if infinity
asm("cmn r6, #0x10000 ");
asm("bcs TRealXCompare2 ");
asm("TRealXCompare7: "); // will come back here if infinity
asm("cmp r3, #0x10000 "); // check for zeros
asm("bcc TRealXCompare3 ");
asm("cmp r6, #0x10000 ");
asm("bcc TRealXCompare4 ");
asm("mov r12, r6, lsl #31 ");
asm("cmp r12, r3, lsl #31 "); // compare signs
asm("movne r0, #4 ");
asm("bne TRealXCompare5 "); // branch if signs different
asm("mov r12, r3, lsr #16 "); // r12=first exponent
asm("cmp r12, r6, lsr #16 "); // compare exponents
asm("cmpeq r2, r5 "); // if equal compare high words of mantissa
asm("cmpeq r1, r4 "); // if equal compare low words of mantissa
asm("moveq r0, #2 "); // if equal return 2
__JUMP(eq,lr);
asm("movhi r0, #4 "); // r0=4 if first exp bigger
asm("movcc r0, #1 "); // else r0=1
asm("TRealXCompare5: ");
asm("tst r3, #1 "); // if signs negative
asm("eorne r0, r0, #5 "); // then switch 1 and 4
__JUMP(,lr);
asm("TRealXCompare3: "); // first operand zero
asm("cmp r6, #0x10000 "); // check if second also zero
asm("movcc r0, #2 "); // if so, return 2
__JUMP(cc,lr);
asm("tst r6, #1 "); // else check sign of operand 2
asm("moveq r0, #1 "); // if +, return 1
asm("movne r0, #4 "); // else return 4
__JUMP(,lr);
asm("TRealXCompare4: "); // second operand zero, first nonzero
asm("tst r3, #1 "); // check sign of operand 1
asm("moveq r0, #4 "); // if +, return 4
asm("movne r0, #1 "); // else return 1
__JUMP(,lr);
asm("TRealXCompare1: "); // first operand NaN or infinity
asm("cmp r2, #0x80000000 "); // check for infinity
asm("cmpeq r1, #0 ");
asm("beq TRealXCompare6 "); // if infinity, can handle normally
asm("mov r0, #8 "); // if NaN, return 8 (unordered)
__JUMP(,lr);
asm("TRealXCompare2: "); // second operand NaN or infinity
asm("cmp r5, #0x80000000 "); // check for infinity
asm("cmpeq r4, #0 ");
asm("beq TRealXCompare7 "); // if infinity, can handle normally
asm("mov r0, #8 "); // if NaN, return 8 (unordered)
__JUMP(,lr);
}
__NAKED__ EXPORT_C TInt TRealX::SubEq(const TRealX& /*aVal*/)
/**
Subtracts an extended precision value from this extended precision number.
@param aVal The extended precision value to be subtracted.
@return KErrNone, if the operation is successful;
KErrOverflow, if the operation results in overflow;
KErrUnderflow, if the operation results in underflow.
*/
{
asm("stmfd sp!, {r0,r4-r8,lr} ");
asm("ldmia r1, {r4,r5,r6} ");
asm("ldmia r0, {r1,r2,r3} ");
asm("bl TRealXSubtract ");
asm("ldmfd sp!, {r0,r4-r8,lr} ");
asm("stmia r0, {r1,r2,r3} ");
asm("mov r0, r12 ");
__JUMP(,lr);
}
__NAKED__ EXPORT_C TInt TRealX::AddEq(const TRealX& /*aVal*/)
/**
Adds an extended precision value to this extended precision number.
@param aVal The extended precision value to be added.
@return KErrNone, if the operation is successful;
KErrOverflow,if the operation results in overflow;
KErrUnderflow, if the operation results in underflow.
*/
{
asm("stmfd sp!, {r0,r4-r8,lr} ");
asm("ldmia r1, {r4,r5,r6} ");
asm("ldmia r0, {r1,r2,r3} ");
asm("bl TRealXAdd ");
asm("ldmfd sp!, {r0,r4-r8,lr} ");
asm("stmia r0, {r1,r2,r3} ");
asm("mov r0, r12 ");
__JUMP(,lr);
// TRealX subtraction r1,r2,r3 - r4,r5,r6 result in r1,r2,r3
// Error code returned in r12
// Registers r0-r8,r12 modified
// NB This function is purely internal to EUSER and therefore IS ONLY EVER CALLED IN ARM MODE.
asm("TRealXSubtract: ");
asm("eor r6, r6, #1 "); // negate second operand and add
// TRealX addition r1,r2,r3 + r4,r5,r6 result in r1,r2,r3
// Error code returned in r12
// Registers r0-r8,r12 modified
// NB This function is purely internal to EUSER and therefore IS ONLY EVER CALLED IN ARM MODE.
// Note: +0 + +0 = +0, -0 + -0 = -0, +0 + -0 = -0 + +0 = +0,
// +/-0 + X = X + +/-0 = X, X + -X = -X + X = +0
asm("TRealXAdd: ");
asm("mov r12, #0 "); // initialise return value to KErrNone
asm("bic r3, r3, #0x300 "); // clear rounding flags
asm("bic r6, r6, #0x300 "); // clear rounding flags
asm("cmn r3, #0x10000 "); // check if first operand is NaN or infinity
asm("bcs TRealXAdd1 "); // branch if it is
asm("cmn r6, #0x10000 "); // check if second operand is NaN or infinity
asm("bcs TRealXAdd2 "); // branch if it is
asm("cmp r6, #0x10000 "); // check if second operand zero
asm("bcc TRealXAdd3a "); // branch if it is
asm("cmp r3, #0x10000 "); // check if first operand zero
asm("bcc TRealXAdd3 "); // branch if it is
asm("mov r7, #0 "); // r7 will be rounding word
asm("mov r0, r3, lsr #16 "); // r0 = first operand exponent
asm("subs r0, r0, r6, lsr #16 "); // r0 = first exponent - second exponent
asm("beq TRealXAdd8 "); // if equal, no mantissa shifting needed
asm("bhi TRealXAdd4 "); // skip if first exponent bigger
asm("rsb r0, r0, #0 "); // need to shift first mantissa right by r0 to align
asm("mov r8, r1 "); // swap the numbers to the one to be shifted is 2nd
asm("mov r1, r4 ");
asm("mov r4, r8 ");
asm("mov r8, r2 ");
asm("mov r2, r5 ");
asm("mov r5, r8 ");
asm("mov r8, r3 ");
asm("mov r3, r6 ");
asm("mov r6, r8 ");
asm("TRealXAdd4: "); // need to shift 2nd mantissa right by r0 to align
asm("cmp r0, #64 "); // more than 64 shifts needed?
asm("bhi TRealXAdd6 "); // if so, smaller number cannot affect larger
asm("cmp r0, #32 ");
asm("bhi TRealXAdd7 "); // branch if shift count>32
asm("rsb r8, r0, #32 ");
asm("mov r7, r4, lsl r8 "); // shift r5:r4 right into r7
asm("mov r4, r4, lsr r0 ");
asm("orr r4, r4, r5, lsl r8 ");
asm("mov r5, r5, lsr r0 ");
asm("b TRealXAdd8 ");
asm("TRealXAdd7: "); // 64 >= shift count > 32
asm("sub r0, r0, #32 ");
asm("rsb r8, r0, #32 ");
asm("movs r7, r4, lsl r8 "); // test bits lost in shift
asm("orrne r6, r6, #0x100 "); // if not all zero, flag 2nd mantissa rounded down
asm("mov r7, r4, lsr r0 "); // shift r5:r4 right into r7 by 32+r0
asm("orr r7, r7, r5, lsl r8 ");
asm("mov r4, r5, lsr r0 ");
asm("mov r5, #0 ");
asm("TRealXAdd8: "); // mantissas are now aligned
asm("mov r8, r3, lsl #31 "); // r8=sign of first operand
asm("cmp r8, r6, lsl #31 "); // compare signs
asm("bne TRealXSub1 "); // if different, need to do a subtraction
asm("adds r1, r1, r4 "); // signs the same - add mantissas
asm("adcs r2, r2, r5 ");
asm("bcc TRealXAdd9 "); // skip if no carry
asm(".word 0xE1B02062 "); // movs r2, r2, rrx shift carry into mantissa
asm(".word 0xE1B01061 "); // movs r1, r1, rrx
asm(".word 0xE1B07067 "); // movs r7, r7, rrx
asm("orrcs r6, r6, #0x100 "); // if 1 shifted out, flag 2nd mantissa rounded down
asm("add r3, r3, #0x10000 "); // increment exponent
asm("TRealXAdd9: ");
asm("cmp r7, #0x80000000 "); // check rounding word
asm("bcc TRealXAdd10 "); // if <0x80000000 round down
asm("bhi TRealXAdd11 "); // if >0x80000000 round up
asm("tst r6, #0x100 "); // if =0x80000000 check if 2nd mantissa rounded down
asm("bne TRealXAdd11 "); // if so, round up
asm("tst r6, #0x200 "); // if =0x80000000 check if 2nd mantissa rounded up
asm("bne TRealXAdd10 "); // if so, round down
asm("tst r1, #1 "); // else round to even - check LSB
asm("beq TRealXAdd10 "); // if zero, round down
asm("TRealXAdd11: "); // come here to round up
asm("adds r1, r1, #1 "); // increment mantissa
asm("adcs r2, r2, #0 ");
asm("movcs r2, #0x80000000 "); // if carry, mantissa = 80000000 00000000
asm("addcs r3, r3, #0x10000 "); // and increment exponent
asm("cmn r3, #0x10000 "); // check overflow
asm("orrcc r3, r3, #0x200 "); // if no overflow, set rounded-up flag ...
__JUMP(cc,lr);
asm("b TRealXAdd12 "); // if overflow, return infinity
asm("TRealXAdd10: "); // come here to round down
asm("cmn r3, #0x10000 "); // check overflow
asm("bcs TRealXAdd12 "); // if overflow, return infinity
asm("cmp r7, #0 "); // if no overflow check if rounding word is zero
asm("orrne r3, r3, #0x100 "); // if not, set rounded-down flag ...
__JUMP(ne,lr);
asm("and r6, r6, #0x300 "); // else transfer 2nd mantissa rounding flags
asm("orr r3, r3, r6 "); // to result
__JUMP(,lr);
asm("TRealXAdd12: "); // come here if overflow - return infinity
asm("mov r2, #0x80000000 ");
asm("mov r1, #0 ");
asm("mvn r12, #8 "); // and return KErrOverflow
__JUMP(,lr);
asm("TRealXSub1: "); // come here if operand signs differ
asm("tst r6, #0x300 "); // check if 2nd mantissa rounded
asm("eorne r6, r6, #0x300 "); // if so, change rounding
asm("rsbs r7, r7, #0 "); // subtract mantissas r2:r1:0 -= r5:r4:r7
asm("sbcs r1, r1, r4 ");
asm("sbcs r2, r2, r5 ");
asm("bcs TRealXSub2 "); // skip if no borrow
asm("tst r6, #0x300 "); // check if 2nd mantissa rounded
asm("eorne r6, r6, #0x300 "); // if so, change rounding
asm("rsbs r7, r7, #0 "); // negate result
asm("rscs r1, r1, #0 ");
asm("rscs r2, r2, #0 ");
asm("eor r3, r3, #1 "); // and change result sign
asm("TRealXSub2: ");
asm("bne TRealXSub3 "); // skip if mantissa top word is not zero
asm("movs r2, r1 "); // else shift up by 32
asm("mov r1, r7 ");
asm("mov r7, #0 ");
asm("bne TRealXSub3a "); // skip if mantissa top word is not zero now
asm("movs r2, r1 "); // else shift up by 32 again
asm("mov r1, #0 ");
asm("moveq r3, #0 "); // if r2 still zero, result is zero - return +0
__JUMP(eq,lr);
asm("subs r3, r3, #0x00400000 "); // else, decrement exponent by 64
asm("bcs TRealXSub3 "); // if no borrow, proceed
asm("b TRealXSub4 "); // if borrow, underflow
asm("TRealXSub3a: "); // needed one 32-bit shift
asm("subs r3, r3, #0x00200000 "); // so decrement exponent by 32
asm("bcc TRealXSub4 "); // if borrow, underflow
asm("TRealXSub3: "); // r2 is now non-zero; still may need up to 31 shifts
#ifdef __CPU_ARM_HAS_CLZ
CLZ(0,2);
asm("mov r2, r2, lsl r0 ");
#else
asm("mov r0, #0 "); // r0 will be shift count
asm("cmp r2, #0x00010000 ");
asm("movcc r2, r2, lsl #16 ");
asm("addcc r0, r0, #16 ");
asm("cmp r2, #0x01000000 ");
asm("movcc r2, r2, lsl #8 ");
asm("addcc r0, r0, #8 ");
asm("cmp r2, #0x10000000 ");
asm("movcc r2, r2, lsl #4 ");
asm("addcc r0, r0, #4 ");
asm("cmp r2, #0x40000000 ");
asm("movcc r2, r2, lsl #2 ");
asm("addcc r0, r0, #2 ");
asm("cmp r2, #0x80000000 ");
asm("movcc r2, r2, lsl #1 ");
asm("addcc r0, r0, #1 ");
#endif
asm("rsb r8, r0, #32 ");
asm("subs r3, r3, r0, lsl #16 "); // subtract shift count from exponent
asm("bcc TRealXSub4 "); // if borrow, underflow
asm("orr r2, r2, r1, lsr r8 "); // else shift mantissa up
asm("mov r1, r1, lsl r0 ");
asm("orr r1, r1, r7, lsr r8 ");
asm("mov r7, r7, lsl r0 ");
asm("cmp r3, #0x10000 "); // check for underflow
asm("bcs TRealXAdd9 "); // if no underflow, branch to round result
asm("TRealXSub4: "); // come here if underflow
asm("and r3, r3, #1 "); // set exponent to zero, leave sign
asm("mov r2, #0 ");
asm("mov r1, #0 ");
asm("mvn r12, #9 "); // return KErrUnderflow
__JUMP(,lr);
asm("TRealXAdd6: "); // come here if exponents differ by more than 64
asm("mov r8, r3, lsl #31 "); // r8=sign of first operand
asm("cmp r8, r6, lsl #31 "); // compare signs
asm("orreq r3, r3, #0x100 "); // if same, result has been rounded down
asm("orrne r3, r3, #0x200 "); // else result has been rounded up
__JUMP(,lr);
asm("TRealXAdd3a: "); // come here if second operand zero
asm("cmp r3, #0x10000 "); // check if first operand also zero
asm("andcc r3, r3, r6 "); // if so, result is negative iff both zeros negative
asm("andcc r3, r3, #1 ");
__JUMP(,lr);
asm("TRealXAdd3: "); // come here if first operand zero, second nonzero
asm("mov r1, r4 "); // return second operand unchanged
asm("mov r2, r5 ");
asm("mov r3, r6 ");
__JUMP(,lr);
asm("TRealXAdd1: "); // come here if first operand NaN or infinity
asm("cmp r2, #0x80000000 "); // check for infinity
asm("cmpeq r1, #0 ");
asm("bne TRealXBinOpNan "); // branch if NaN
asm("cmn r6, #0x10000 "); // check 2nd operand for NaN/infinity
asm("mvncc r12, #8 "); // if neither, return KErrOverflow
__JUMP(cc,lr);
asm("cmp r5, #0x80000000 "); // check 2nd operand for infinity
asm("cmpeq r4, #0 ");
asm("bne TRealXBinOpNan "); // branch if NaN
asm("mov r0, r3, lsl #31 "); // both operands are infinity - check signs
asm("cmp r0, r6, lsl #31 ");
asm("mvneq r12, #8 "); // if same, return KErrOverflow
__JUMP(eq,lr);
// Return 'real indefinite'
asm("TRealXRealIndefinite: ");
asm("ldr r3, [pc, #__RealIndefiniteExponent-.-8] ");
asm("mov r2, #0xC0000000 ");
asm("mov r1, #0 ");
asm("mvn r12, #5 "); // return KErrArgument
__JUMP(,lr);
asm("TRealXAdd2: "); // come here if 2nd operand NaN/infinity, first finite
asm("cmp r5, #0x80000000 "); // check for infinity
asm("cmpeq r4, #0 ");
asm("bne TRealXBinOpNan "); // branch if NaN
asm("mov r1, r4 "); // else return 2nd operand (infinity)
asm("mov r2, r5 ");
asm("mov r3, r6 ");
asm("mvn r12, #8 "); // return KErrOverflow
__JUMP(,lr);
asm("TRealXBinOpNan: "); // generic routine to process NaNs in binary
// operations
asm("cmn r3, #0x10000 "); // check if first operand is NaN
asm("movcc r0, r1 "); // if not, swap the operands
asm("movcc r1, r4 ");
asm("movcc r4, r0 ");
asm("movcc r0, r2 ");
asm("movcc r2, r5 ");
asm("movcc r5, r0 ");
asm("movcc r0, r3 ");
asm("movcc r3, r6 ");
asm("movcc r6, r0 ");
asm("cmn r6, #0x10000 "); // both operands NaNs?
asm("bcc TRealXBinOpNan1 "); // skip if not
asm("cmp r2, r5 "); // if so, compare the significands
asm("cmpeq r1, r4 ");
asm("movcc r1, r4 "); // r1,r2,r3 will get NaN with larger significand
asm("movcc r2, r5 ");
asm("movcc r3, r6 ");
asm("TRealXBinOpNan1: ");
asm("orr r2, r2, #0x40000000 "); // convert an SNaN to a QNaN
asm("mvn r12, #5 "); // return KErrArgument
__JUMP(,lr);
}
__NAKED__ EXPORT_C TInt TRealX::MultEq(const TRealX& /*aVal*/)
/**
Multiplies this extended precision number by an extended precision value.
@param aVal The extended precision value to be used as the multiplier.
@return KErrNone, if the operation is successful;
KErrOverflow, if the operation results in overflow;
KErrUnderflow, if the operation results in underflow
*/
{
// Version for ARM 3M or later
// Uses umull/umlal
asm("stmfd sp!, {r0,r4-r7,lr} ");
asm("ldmia r1, {r4,r5,r6} ");
asm("ldmia r0, {r1,r2,r3} ");
asm("bl TRealXMultiply ");
asm("ldmfd sp!, {r0,r4-r7,lr} ");
asm("stmia r0, {r1,r2,r3} ");
asm("mov r0, r12 ");
__JUMP(,lr);
// TRealX multiplication r1,r2,r3 * r4,r5,r6 result in r1,r2,r3
// Error code returned in r12
// Registers r0-r7,r12 modified
// NB This function is purely internal to EUSER and therefore IS ONLY EVER CALLED IN ARM MODE.
asm("TRealXMultiply: ");
asm("mov r12, #0 "); // initialise return value to KErrNone
asm("bic r3, r3, #0x300 "); // clear rounding flags
asm("tst r6, #1 ");
asm("eorne r3, r3, #1 "); // Exclusive-OR signs
asm("cmn r3, #0x10000 "); // check if first operand is NaN or infinity
asm("bcs TRealXMultiply1 "); // branch if it is
asm("cmn r6, #0x10000 "); // check if second operand is NaN or infinity
asm("bcs TRealXMultiply2 "); // branch if it is
asm("cmp r3, #0x10000 "); // check if first operand zero
__JUMP(cc,lr); // if so, exit
// Multiply mantissas in r2:r1 and r5:r4, result in r2:r1:r12:r7
asm("umull r7, r12, r1, r4 "); // r7:r12=m1.low*m2.low
asm("movs r0, r6, lsr #16 "); // r0=2nd operand exponent
asm("beq TRealXMultiply3 "); // if zero, return zero
asm("mov r6, #0 "); // clear r6 initially
asm("umlal r12, r6, r1, r5 "); // r6:r12:r7=m1.low*m2, r1 no longer needed
asm("add r0, r0, r3, lsr #16 "); // r0=sum of exponents
asm("tst r3, #1 ");
asm("mov r3, #0 "); // clear r3 initially
asm("umlal r6, r3, r2, r5 "); // r3:r6:r12:r7=m2.low*m1+m2.high*m1.high<<64
// r1,r5 no longer required
asm("orrne lr, lr, #1 "); // save sign in bottom bit of lr
asm("sub r0, r0, #0x7F00 ");
asm("sub r0, r0, #0x00FE "); // r0 now contains result exponent
asm("umull r1, r5, r2, r4 "); // r5:r1=m2.high*m1.low
asm("adds r12, r12, r1 "); // shift left by 32 and add to give final result
asm("adcs r1, r6, r5 ");
asm("adcs r2, r3, #0 "); // final result now in r2:r1:r12:r7
// set flags on final value of r2 (ms word of result)
// normalise the result mantissa
asm("bmi TRealXMultiply4 "); // skip if already normalised
asm("adds r7, r7, r7 "); // else shift left (will only ever need one shift)
asm("adcs r12, r12, r12 ");
asm("adcs r1, r1, r1 ");
asm("adcs r2, r2, r2 ");
asm("sub r0, r0, #1 "); // and decrement exponent by one
// round the result mantissa
asm("TRealXMultiply4: ");
asm("and r3, lr, #1 "); // result sign bit back into r3
asm("orrs r4, r7, r12 "); // check for exact result
asm("beq TRealXMultiply5 "); // skip if exact
asm("cmp r12, #0x80000000 "); // compare bottom 64 bits to 80000000 00000000
asm("cmpeq r7, #0 ");
asm("moveqs r4, r1, lsr #1 "); // if exactly equal, set carry=lsb of result
// so we round up if lsb=1
asm("orrcc r3, r3, #0x100 "); // if rounding down, set rounded-down flag
asm("orrcs r3, r3, #0x200 "); // if rounding up, set rounded-up flag
asm("adcs r1, r1, #0 "); // increment mantissa if necessary
asm("adcs r2, r2, #0 ");
asm("movcs r2, #0x80000000 "); // if carry, set mantissa to 80000000 00000000
asm("addcs r0, r0, #1 "); // and increment result exponent
// check for overflow or underflow and assemble final result
asm("TRealXMultiply5: ");
asm("add r4, r0, #1 "); // need to add 1 to get usable threshold
asm("cmp r4, #0x10000 "); // check if exponent >= 0xFFFF
asm("bge TRealXMultiply6 "); // if so, overflow
asm("cmp r0, #0 "); // check for underflow
asm("orrgt r3, r3, r0, lsl #16 "); // if no underflow, result exponent into r3, ...
asm("movgt r12, #0 "); // ... return KErrNone ...
asm("bicgt pc, lr, #3 ");
// underflow
asm("mvn r12, #9 "); // return KErrUnderflow
asm("bic pc, lr, #3 ");
// overflow
asm("TRealXMultiply6: ");
asm("bic r3, r3, #0x0000FF00 "); // clear rounding flags
asm("orr r3, r3, #0xFF000000 "); // make exponent FFFF for infinity
asm("orr r3, r3, #0x00FF0000 ");
asm("mov r2, #0x80000000 "); // mantissa = 80000000 00000000
asm("mov r1, #0 ");
asm("mvn r12, #8 "); // return KErrOverflow
asm("bic pc, lr, #3 ");
// come here if second operand zero
asm("TRealXMultiply3: ");
asm("mov r1, #0 ");
asm("mov r2, #0 ");
asm("and r3, r3, #1 "); // zero exponent, keep xor sign
asm("mov r12, #0 "); // return KErrNone
asm("bic pc, lr, #3 ");
// First operand NaN or infinity
asm("TRealXMultiply1: ");
asm("cmp r2, #0x80000000 "); // check for infinity
asm("cmpeq r1, #0 ");
asm("bne TRealXBinOpNan "); // branch if NaN
asm("cmn r6, #0x10000 "); // check 2nd operand for NaN/infinity
asm("bcs TRealXMultiply1a "); // branch if it is
asm("cmp r6, #0x10000 "); // else check if second operand zero
asm("mvncs r12, #8 "); // if not, return infinity and KErrOverflow
asm("biccs pc, lr, #3 ");
asm("b TRealXRealIndefinite "); // else return 'real indefinite'
asm("TRealXMultiply1a: ");
asm("cmp r5, #0x80000000 "); // check 2nd operand for infinity
asm("cmpeq r4, #0 ");
asm("bne TRealXBinOpNan "); // branch if NaN
asm("mvn r12, #8 "); // else (infinity), return KErrOverflow
asm("bic pc, lr, #3 ");
// Second operand NaN or infinity, first operand finite
asm("TRealXMultiply2: ");
asm("cmp r5, #0x80000000 "); // check for infinity
asm("cmpeq r4, #0 ");
asm("bne TRealXBinOpNan "); // branch if NaN
asm("cmp r3, #0x10000 "); // if infinity, check if first operand zero
asm("bcc TRealXRealIndefinite "); // if it is, return 'real indefinite'
asm("orr r3, r3, #0xFF000000 "); // else return infinity with xor sign
asm("orr r3, r3, #0x00FF0000 ");
asm("mov r2, #0x80000000 ");
asm("mov r1, #0 ");
asm("mvn r12, #8 "); // return KErrOverflow
asm("bic pc, lr, #3 ");
}
__NAKED__ EXPORT_C TInt TRealX::DivEq(const TRealX& /*aVal*/)
/**
Divides this extended precision number by an extended precision value.
@param aVal The extended precision value to be used as the divisor.
@return KErrNone, if the operation is successful;
KErrOverflow, if the operation results in overflow;
KErrUnderflow, if the operation results in underflow;
KErrDivideByZero, if the divisor is zero.
*/
{
asm("stmfd sp!, {r0,r4-r9,lr} ");
asm("ldmia r1, {r4,r5,r6} ");
asm("ldmia r0, {r1,r2,r3} ");
asm("bl TRealXDivide ");
asm("ldmfd sp!, {r0,r4-r9,lr} ");
asm("stmia r0, {r1,r2,r3} ");
asm("mov r0, r12 ");
__JUMP(,lr);
// TRealX division r1,r2,r3 / r4,r5,r6 result in r1,r2,r3
// Error code returned in r12
// Registers r0-r9,r12 modified
// NB This function is purely internal to EUSER and therefore IS ONLY EVER CALLED IN ARM MODE.
asm("TRealXDivide: ");
asm("mov r12, #0 "); // initialise return value to KErrNone
asm("bic r3, r3, #0x300 "); // clear rounding flags
asm("tst r6, #1 ");
asm("eorne r3, r3, #1 "); // Exclusive-OR signs
asm("cmn r3, #0x10000 "); // check if dividend is NaN or infinity
asm("bcs TRealXDivide1 "); // branch if it is
asm("cmn r6, #0x10000 "); // check if divisor is NaN or infinity
asm("bcs TRealXDivide2 "); // branch if it is
asm("cmp r6, #0x10000 "); // check if divisor zero
asm("bcc TRealXDivide3 "); // branch if it is
asm("cmp r3, #0x10000 "); // check if dividend zero
__JUMP(cc,lr); // if zero, exit
asm("tst r3, #1 ");
asm("orrne lr, lr, #1 "); // save sign in bottom bit of lr
// calculate result exponent
asm("mov r0, r3, lsr #16 "); // r0=dividend exponent
asm("sub r0, r0, r6, lsr #16 "); // r0=dividend exponent - divisor exponent
asm("add r0, r0, #0x7F00 ");
asm("add r0, r0, #0x00FF "); // r0 now contains result exponent
asm("mov r6, r1 "); // move dividend into r6,r7,r8
asm("mov r7, r2 ");
asm("mov r8, #0 "); // use r8 to hold extra bit shifted up
// r2:r1 will hold result mantissa
asm("mov r2, #1 "); // we will make sure first bit is 1
asm("cmp r7, r5 "); // compare dividend mantissa to divisor mantissa
asm("cmpeq r6, r4 ");
asm("bcs TRealXDivide4 "); // branch if dividend >= divisor
asm("adds r6, r6, r6 "); // else shift dividend left one
asm("adcs r7, r7, r7 "); // ignore carry here
asm("sub r0, r0, #1 "); // decrement result exponent by one
asm("TRealXDivide4: ");
asm("subs r6, r6, r4 "); // subtract divisor from dividend
asm("sbcs r7, r7, r5 ");
// Main mantissa division code
// First calculate the top 32 bits of the result
// Top bit is 1, do 10 lots of 3 bits the one more bit
asm("mov r12, #10 ");
asm("TRealXDivide5: ");
asm("adds r6, r6, r6 "); // shift accumulator left by one
asm("adcs r7, r7, r7 ");
asm("adcs r8, r8, r8 ");
asm("subs r9, r6, r4 "); // subtract divisor from accumulator, result in r9,r3
asm("sbcs r3, r7, r5 ");
asm("movccs r8, r8, lsr #1 "); // if borrow, check for carry from shift
asm("movcs r6, r9 "); // if no borrow, replace accumulator with result
asm("movcs r7, r3 ");
asm("adcs r2, r2, r2 "); // shift in new result bit
asm("adds r6, r6, r6 "); // shift accumulator left by one
asm("adcs r7, r7, r7 ");
asm("adcs r8, r8, r8 ");
asm("subs r9, r6, r4 "); // subtract divisor from accumulator, result in r9,r3
asm("sbcs r3, r7, r5 ");
asm("movccs r8, r8, lsr #1 "); // if borrow, check for carry from shift
asm("movcs r6, r9 "); // if no borrow, replace accumulator with result
asm("movcs r7, r3 ");
asm("adcs r2, r2, r2 "); // shift in new result bit
asm("adds r6, r6, r6 "); // shift accumulator left by one
asm("adcs r7, r7, r7 ");
asm("adcs r8, r8, r8 ");
asm("subs r9, r6, r4 "); // subtract divisor from accumulator, result in r9,r3
asm("sbcs r3, r7, r5 ");
asm("movccs r8, r8, lsr #1 "); // if borrow, check for carry from shift
asm("movcs r6, r9 "); // if no borrow, replace accumulator with result
asm("movcs r7, r3 ");
asm("adcs r2, r2, r2 "); // shift in new result bit
asm("subs r12, r12, #1 ");
asm("bne TRealXDivide5 "); // iterate the loop
asm("adds r6, r6, r6 "); // shift accumulator left by one
asm("adcs r7, r7, r7 ");
asm("adcs r8, r8, r8 ");
asm("subs r9, r6, r4 "); // subtract divisor from accumulator, result in r9,r3
asm("sbcs r3, r7, r5 ");
asm("movccs r8, r8, lsr #1 "); // if borrow, check for carry from shift
asm("movcs r6, r9 "); // if no borrow, replace accumulator with result
asm("movcs r7, r3 ");
asm("adcs r2, r2, r2 "); // shift in new result bit - now have 32 bits
// Now calculate the bottom 32 bits of the result
// Do 8 lots of 4 bits
asm("mov r12, #8 ");
asm("TRealXDivide5a: ");
asm("adds r6, r6, r6 "); // shift accumulator left by one
asm("adcs r7, r7, r7 ");
asm("adcs r8, r8, r8 ");
asm("subs r9, r6, r4 "); // subtract divisor from accumulator, result in r9,r3
asm("sbcs r3, r7, r5 ");
asm("movccs r8, r8, lsr #1 "); // if borrow, check for carry from shift
asm("movcs r6, r9 "); // if no borrow, replace accumulator with result
asm("movcs r7, r3 ");
asm("adcs r1, r1, r1 "); // shift in new result bit
asm("adds r6, r6, r6 "); // shift accumulator left by one
asm("adcs r7, r7, r7 ");
asm("adcs r8, r8, r8 ");
asm("subs r9, r6, r4 "); // subtract divisor from accumulator, result in r9,r3
asm("sbcs r3, r7, r5 ");
asm("movccs r8, r8, lsr #1 "); // if borrow, check for carry from shift
asm("movcs r6, r9 "); // if no borrow, replace accumulator with result
asm("movcs r7, r3 ");
asm("adcs r1, r1, r1 "); // shift in new result bit
asm("adds r6, r6, r6 "); // shift accumulator left by one
asm("adcs r7, r7, r7 ");
asm("adcs r8, r8, r8 ");
asm("subs r9, r6, r4 "); // subtract divisor from accumulator, result in r9,r3
asm("sbcs r3, r7, r5 ");
asm("movccs r8, r8, lsr #1 "); // if borrow, check for carry from shift
asm("movcs r6, r9 "); // if no borrow, replace accumulator with result
asm("movcs r7, r3 ");
asm("adcs r1, r1, r1 "); // shift in new result bit
asm("adds r6, r6, r6 "); // shift accumulator left by one
asm("adcs r7, r7, r7 ");
asm("adcs r8, r8, r8 ");
asm("subs r9, r6, r4 "); // subtract divisor from accumulator, result in r9,r3
asm("sbcs r3, r7, r5 ");
asm("movccs r8, r8, lsr #1 "); // if borrow, check for carry from shift
asm("movcs r6, r9 "); // if no borrow, replace accumulator with result
asm("movcs r7, r3 ");
asm("adcs r1, r1, r1 "); // shift in new result bit
asm("subs r12, r12, #1 ");
asm("bne TRealXDivide5a "); // iterate the loop
// r2:r1 now contains a 64-bit normalised mantissa
// need to do rounding now
asm("and r3, lr, #1 "); // result sign back into r3
asm("orrs r9, r6, r7 "); // check if accumulator zero
asm("beq TRealXDivide6 "); // if it is, result is exact, else generate next bit
asm("adds r6, r6, r6 "); // shift accumulator left by one
asm("adcs r7, r7, r7 ");
asm("adcs r8, r8, r8 ");
asm("subs r6, r6, r4 "); // subtract divisor from accumulator
asm("sbcs r7, r7, r5 ");
asm("movccs r8, r8, lsr #1 "); // if borrow, check for carry from shift
asm("orrcc r3, r3, #0x100 "); // if borrow, round down and set round-down flag
asm("bcc TRealXDivide6 ");
asm("orrs r9, r6, r7 "); // if no borrow, check if exactly half-way
asm("moveqs r9, r1, lsr #1 "); // if exactly half-way, round to even
asm("orrcc r3, r3, #0x100 "); // if C=0, round result down and set round-down flag
asm("bcc TRealXDivide6 ");
asm("orr r3, r3, #0x200 "); // else set round-up flag
asm("adds r1, r1, #1 "); // and round mantissa up
asm("adcs r2, r2, #0 ");
asm("movcs r2, #0x80000000 "); // if carry, mantissa = 80000000 00000000
asm("addcs r0, r0, #1 "); // and increment exponent
// check for overflow or underflow and assemble final result
asm("TRealXDivide6: ");
asm("add r4, r0, #1 "); // need to add 1 to get usable threshold
asm("cmp r4, #0x10000 "); // check if exponent >= 0xFFFF
asm("bge TRealXMultiply6 "); // if so, overflow
asm("cmp r0, #0 "); // check for underflow
asm("orrgt r3, r3, r0, lsl #16 "); // if no underflow, result exponent into r3, ...
asm("movgt r12, #0 "); // ... return KErrNone ...
asm("bicgt pc, lr, #3 ");
// underflow
asm("and r3, r3, #1 "); // set exponent=0, keep sign
asm("mvn r12, #9 "); // return KErrUnderflow
asm("bic pc, lr, #3 ");
// come here if divisor is zero, dividend finite
asm("TRealXDivide3: ");
asm("cmp r3, #0x10000 "); // check if dividend also zero
asm("bcc TRealXRealIndefinite "); // if so, return 'real indefinite'
asm("orr r3, r3, #0xFF000000 "); // else return infinity with xor sign
asm("orr r3, r3, #0x00FF0000 ");
asm("mov r2, #0x80000000 ");
asm("mov r1, #0 ");
asm("mvn r12, #40 "); // return KErrDivideByZero
asm("bic pc, lr, #3 ");
// Dividend is NaN or infinity
asm("TRealXDivide1: ");
asm("cmp r2, #0x80000000 "); // check for infinity
asm("cmpeq r1, #0 ");
asm("bne TRealXBinOpNan "); // branch if NaN
asm("cmn r6, #0x10000 "); // check 2nd operand for NaN/infinity
asm("mvncc r12, #8 "); // if not, return KErrOverflow
asm("biccc pc, lr, #3 ");
// Dividend=infinity, divisor=NaN or infinity
asm("cmp r5, #0x80000000 "); // check 2nd operand for infinity
asm("cmpeq r4, #0 ");
asm("bne TRealXBinOpNan "); // branch if NaN
asm("b TRealXRealIndefinite "); // else return 'real indefinite'
// Divisor is NaN or infinity, dividend finite
asm("TRealXDivide2: ");
asm("cmp r5, #0x80000000 "); // check for infinity
asm("cmpeq r4, #0 ");
asm("bne TRealXBinOpNan "); // branch if NaN
asm("and r3, r3, #1 "); // else return zero with xor sign
asm("bic pc, lr, #3 ");
}
__NAKED__ EXPORT_C TInt TRealX::ModEq(const TRealX& /*aVal*/)
/**
Modulo-divides this extended precision number by an extended precision value.
@param aVal The extended precision value to be used as the divisor.
@return KErrNone, if the operation is successful;
KErrTotalLossOfPrecision, if precision is lost;
KErrUnderflow, if the operation results in underflow.
*/
{
asm("stmfd sp!, {r0,r4-r7,lr} ");
asm("ldmia r1, {r4,r5,r6} ");
asm("ldmia r0, {r1,r2,r3} ");
asm("bl TRealXModulo ");
asm("ldmfd sp!, {r0,r4-r7,lr} ");
asm("stmia r0, {r1,r2,r3} ");
asm("mov r0, r12 ");
__JUMP(,lr);
// TRealX remainder r1,r2,r3 % r4,r5,r6 result in r1,r2,r3
// Error code returned in r12
// Registers r0-r7,r12 modified
// NB This function is purely internal to EUSER and therefore IS ONLY EVER CALLED IN ARM MODE.
asm("TRealXModulo: ");
asm("mov r12, #0 "); // initialise return value to KErrNone
asm("cmn r3, #0x10000 "); // check if dividend is NaN or infinity
asm("bcs TRealXModulo1 "); // branch if it is
asm("cmn r6, #0x10000 "); // check if divisor is NaN or infinity
asm("bcs TRealXModulo2 "); // branch if it is
asm("cmp r6, #0x10000 "); // check if divisor zero
asm("bcc TRealXRealIndefinite "); // if it is, return 'real indefinite'
asm("mov r0, r3, lsr #16 "); // r0=dividend exponent
asm("subs r0, r0, r6, lsr #16 "); // r0=dividend exponent-divisor exponent
__JUMP(lt,lr);
asm("cmp r0, #64 "); // check if difference >= 64 bits
asm("bcs TRealXModuloLp "); // if so, underflow
asm("b TRealXModulo4 "); // skip left shift on first iteration
asm("TRealXModulo3: ");
asm("adds r1, r1, r1 "); // shift dividend mantissa left one bit
asm("adcs r2, r2, r2 ");
asm("bcs TRealXModulo5 "); // if one shifted out, override comparison
asm("TRealXModulo4: ");
asm("cmp r2, r5 "); // compare dividend to divisor
asm("cmpeq r1, r4 ");
asm("bcc TRealXModulo6 "); // if dividend<divisor, skip
asm("TRealXModulo5: ");
asm("subs r1, r1, r4 "); // if dividend>=divisor, dividend-=divisor
asm("sbcs r2, r2, r5 ");
asm("TRealXModulo6: ");
asm("subs r0, r0, #1 "); // decrement loop count
asm("bpl TRealXModulo3 "); // if more bits to do, loop
asm("orrs r0, r1, r2 "); // test for exact zero result
asm("andeq r3, r3, #1 "); // if so, return zero with same sign as dividend
__JUMP(eq,lr);
asm("and r7, r3, #1 "); // dividend sign bit into r7
asm("mov r3, r6, lsr #16 "); // r3 lower 16 bits=result exponent=divisor exponent
asm("cmp r2, #0 "); // test if upper 32 bits zero
asm("moveq r2, r1 "); // if so, shift left by 32
asm("moveq r1, #0 ");
asm("subeqs r3, r3, #32 "); // and subtract 32 from exponent
asm("bls TRealXModuloUnderflow "); // if borrow from exponent or exponent 0, underflow
asm("mov r0, #32 "); // r0 will hold 32-number of shifts to normalise
asm("cmp r2, #0x00010000 "); // normalise
asm("movcc r2, r2, lsl #16 ");
asm("subcc r0, r0, #16 ");
asm("cmp r2, #0x01000000 ");
asm("movcc r2, r2, lsl #8 ");
asm("subcc r0, r0, #8 ");
asm("cmp r2, #0x10000000 ");
asm("movcc r2, r2, lsl #4 ");
asm("subcc r0, r0, #4 ");
asm("cmp r2, #0x40000000 ");
asm("movcc r2, r2, lsl #2 ");
asm("subcc r0, r0, #2 ");
asm("cmp r2, #0x80000000 ");
asm("movcc r2, r2, lsl #1 "); // top bit of r2 is now set
asm("subcc r0, r0, #1 ");
asm("orr r2, r2, r1, lsr r0 "); // top bits of r1 into bottom bits of r2
asm("rsb r0, r0, #32 "); // r0=number of shifts to normalise
asm("mov r1, r1, lsl r0 "); // shift r1 left - mantissa now normalised
asm("subs r3, r3, r0 "); // subtract r0 from exponent
asm("bls TRealXModuloUnderflow "); // if borrow from exponent or exponent 0, underflow
asm("orr r3, r7, r3, lsl #16 "); // else r3=result exponent and sign
__JUMP(,lr);
// dividend=NaN or infinity
asm("TRealXModulo1: ");
asm("cmp r2, #0x80000000 "); // check for infinity
asm("cmpeq r1, #0 ");
asm("bne TRealXBinOpNan "); // branch if NaN
asm("cmn r6, #0x10000 "); // check 2nd operand for NaN/infinity
asm("bcc TRealXRealIndefinite "); // infinity%finite - return 'real indefinite'
asm("cmp r5, #0x80000000 "); // check if divisor=infinity
asm("cmpeq r4, #0 ");
asm("bne TRealXBinOpNan "); // branch if NaN
asm("b TRealXRealIndefinite "); // else infinity%infinity - return 'real indefinite'
// divisor=NaN or infinity, dividend finite
asm("TRealXModulo2: ");
asm("cmp r5, #0x80000000 "); // check for infinity
asm("cmpeq r4, #0 ");
asm("bne TRealXBinOpNan "); // branch if NaN
__JUMP(,lr);
asm("TRealXModuloLp: ");
asm("mvn r12, #%a0" : : "i" ((TInt)~KErrTotalLossOfPrecision));
asm("mov r1, #0 ");
asm("mov r2, #0 ");
asm("and r3, r3, #1 ");
__JUMP(,lr);
asm("TRealXModuloUnderflow: ");
asm("mvn r12, #%a0" : : "i" ((TInt)~KErrUnderflow));
asm("mov r1, #0 ");
asm("mov r2, #0 ");
asm("and r3, r3, #1 ");
__JUMP(,lr);
}
__NAKED__ EXPORT_C TInt TRealX::Add(TRealX& /*aResult*/,const TRealX& /*aVal*/) const
/**
Adds an extended precision value to this extended precision number.
@param aResult On return, a reference to an extended precision object
containing the result of the operation.
@param aVal The extended precision value to be added.
@return KErrNone, if the operation is successful;
KErrOverflow, if the operation results in overflow;
KErrUnderflow, if the operation results in underflow.
*/
{
// r0=this, r1=&aResult, r2=&aVal
asm("stmfd sp!, {r1,r4-r8,lr} ");
asm("ldmia r2, {r4,r5,r6} ");
asm("ldmia r0, {r1,r2,r3} ");
asm("bl TRealXAdd ");
asm("ldmfd sp!, {lr} "); // lr=&aResult
asm("stmia lr, {r1,r2,r3} ");
asm("mov r0, r12 "); // return value into r0
__POPRET("r4-r8,");
}
__NAKED__ EXPORT_C TInt TRealX::Sub(TRealX& /*aResult*/,const TRealX& /*aVal*/) const
/**
Subtracts an extended precision value from this extended precision number.
@param aResult On return, a reference to an extended precision object
containing the result of the operation.
@param aVal The extended precision value to be subtracted.
@return KErrNone, if the operation is successful;
KErrOverflow, if the operation results in overflow;
KErrUnderflow, if the operation results in underflow.
*/
{
// r0=this, r1=&aResult, r2=&aVal
asm("stmfd sp!, {r1,r4-r8,lr} ");
asm("ldmia r2, {r4,r5,r6} ");
asm("ldmia r0, {r1,r2,r3} ");
asm("bl TRealXSubtract ");
asm("ldmfd sp!, {lr} "); // lr=&aResult
asm("stmia lr, {r1,r2,r3} ");
asm("mov r0, r12 "); // return value into r0
__POPRET("r4-r8,");
}
__NAKED__ EXPORT_C TInt TRealX::Mult(TRealX& /*aResult*/,const TRealX& /*aVal*/) const
/**
Multiplies this extended precision number by an extended precision value.
@param aResult On return, a reference to an extended precision object
containing the result of the operation.
@param aVal The extended precision value to be used as the multiplier.
@return KErrNone, if the operation is successful;
KErrOverflow, if the operation results in overflow;
KErrUnderflow, if the operation results in underflow.
*/
{
// r0=this, r1=&aResult, r2=&aVal
asm("stmfd sp!, {r1,r4-r7,lr} ");
asm("ldmia r2, {r4,r5,r6} ");
asm("ldmia r0, {r1,r2,r3} ");
asm("bl TRealXMultiply ");
asm("ldmfd sp!, {lr} "); // lr=&aResult
asm("stmia lr, {r1,r2,r3} ");
asm("mov r0, r12 "); // return value into r0
__POPRET("r4-r7,");
}
__NAKED__ EXPORT_C TInt TRealX::Div(TRealX& /*aResult*/,const TRealX& /*aVal*/) const
/**
Divides this extended precision number by an extended precision value.
@param aResult On return, a reference to an extended precision object
containing the result of the operation.
@param aVal The extended precision value to be used as the divisor.
@return KErrNone, if the operation is successful;
KErrOverflow, if the operation results in overflow;
KErrUnderflow, if the operation results in underflow;
KErrDivideByZero, if the divisor is zero.
*/
{
// r0=this, r1=&aResult, r2=&aVal
asm("stmfd sp!, {r1,r4-r9,lr} ");
asm("ldmia r2, {r4,r5,r6} ");
asm("ldmia r0, {r1,r2,r3} ");
asm("bl TRealXDivide ");
asm("ldmfd sp!, {lr} "); // lr=&aResult
asm("stmia lr, {r1,r2,r3} ");
asm("mov r0, r12 "); // return value into r0
__POPRET("r4-r9,");
}
__NAKED__ EXPORT_C TInt TRealX::Mod(TRealX& /*aResult*/,const TRealX& /*aVal*/) const
/**
Modulo-divides this extended precision number by an extended precision value.
@param aResult On return, a reference to an extended precision object
containing the result of the operation.
@param aVal The extended precision value to be used as the divisor.
@return KErrNone, if the operation is successful;
KErrTotalLossOfPrecision, if precision is lost;
KErrUnderflow, if the operation results in underflow.
*/
{
// r0=this, r1=&aResult, r2=&aVal
asm("stmfd sp!, {r1,r4-r7,lr} ");
asm("ldmia r2, {r4,r5,r6} ");
asm("ldmia r0, {r1,r2,r3} ");
asm("bl TRealXModulo ");
asm("ldmfd sp!, {lr} "); // lr=&aResult
asm("stmia lr, {r1,r2,r3} ");
asm("mov r0, r12 "); // return value into r0
__POPRET("r4-r7,");
}
extern void PanicOverUnderflowDividebyZero(const TInt aErr);
__NAKED__ EXPORT_C const TRealX& TRealX::operator+=(const TRealX& /*aVal*/)
/**
Adds an extended precision value to this extended precision number.
@param aVal The extended precision value to be added.
@return A reference to this object.
@panic MATHX KErrOverflow if the operation results in overflow.
@panic MATHX KErrUnderflow if the operation results in underflow.
*/
{
asm("stmfd sp!, {r0,r4-r8,lr} ");
asm("ldmia r1, {r4,r5,r6} ");
asm("ldmia r0, {r1,r2,r3} ");
asm("bl TRealXAdd ");
asm("ldmfd sp!, {r0,r4-r8,lr} ");
asm("stmia r0, {r1,r2,r3} ");
asm("cmp r12, #0 "); // check the error code
__JUMP(eq,lr);
asm("mov r0, r12 ");
asm("b " CSM_Z30PanicOverUnderflowDividebyZeroi); // else panic
}
__NAKED__ EXPORT_C const TRealX& TRealX::operator-=(const TRealX& /*aVal*/)
/**
Subtracts an extended precision value from this extended precision number.
@param aVal The extended precision value to be subtracted.
@return A reference to this object.
@panic MATHX KErrOverflow if the operation results in overflow.
@panic MATHX KErrUnderflow if the operation results in underflow.
*/
{
asm("stmfd sp!, {r0,r4-r8,lr} ");
asm("ldmia r1, {r4,r5,r6} ");
asm("ldmia r0, {r1,r2,r3} ");
asm("bl TRealXSubtract ");
asm("ldmfd sp!, {r0,r4-r8,lr} ");
asm("stmia r0, {r1,r2,r3} ");
asm("cmp r12, #0 "); // check the error code
__JUMP(eq,lr);
asm("mov r0, r12 ");
asm("b " CSM_Z30PanicOverUnderflowDividebyZeroi); // else panic
}
__NAKED__ EXPORT_C const TRealX& TRealX::operator*=(const TRealX& /*aVal*/)
/**
Multiplies this extended precision number by an extended precision value.
@param aVal The extended precision value to be subtracted.
@return A reference to this object.
@panic MATHX KErrOverflow if the operation results in overflow.
@panic MATHX KErrUnderflow if the operation results in underflow.
*/
{
asm("stmfd sp!, {r0,r4-r7,lr} ");
asm("ldmia r1, {r4,r5,r6} ");
asm("ldmia r0, {r1,r2,r3} ");
asm("bl TRealXMultiply ");
asm("ldmfd sp!, {r0,r4-r7,lr} ");
asm("stmia r0, {r1,r2,r3} ");
asm("cmp r12, #0 "); // check the error code
__JUMP(eq,lr);
asm("mov r0, r12 ");
asm("b " CSM_Z30PanicOverUnderflowDividebyZeroi); // else panic
}
__NAKED__ EXPORT_C const TRealX& TRealX::operator/=(const TRealX& /*aVal*/)
/**
Divides this extended precision number by an extended precision value.
@param aVal The extended precision value to be used as the divisor.
@return A reference to this object.
@panic MATHX KErrOverflow if the operation results in overflow.
@panic MATHX KErrUnderflow if the operation results in underflow.
@panic MATHX KErrDivideByZero if the divisor is zero.
*/
{
asm("stmfd sp!, {r0,r4-r9,lr} ");
asm("ldmia r1, {r4,r5,r6} ");
asm("ldmia r0, {r1,r2,r3} ");
asm("bl TRealXDivide ");
asm("ldmfd sp!, {r0,r4-r9,lr} ");
asm("stmia r0, {r1,r2,r3} ");
asm("cmp r12, #0 "); // check the error code
__JUMP(eq,lr);
asm("mov r0, r12 ");
asm("b " CSM_Z30PanicOverUnderflowDividebyZeroi); // else panic
}
__NAKED__ EXPORT_C const TRealX& TRealX::operator%=(const TRealX& /*aVal*/)
/**
Modulo-divides this extended precision number by an extended precision value.
@param aVal The extended precision value to be used as the divisor.
@return A reference to this object.
@panic MATHX KErrTotalLossOfPrecision panic if precision is lost.
@panic MATHX KErrUnderflow if the operation results in underflow.
*/
{
asm("stmfd sp!, {r0,r4-r7,lr} ");
asm("ldmia r1, {r4,r5,r6} ");
asm("ldmia r0, {r1,r2,r3} ");
asm("bl TRealXModulo ");
asm("ldmfd sp!, {r0,r4-r7,lr} ");
asm("stmia r0, {r1,r2,r3} ");
asm("cmp r12, #0 "); // check the error code
asm("cmpne r12, #%a0" : : "i" ((TInt)KErrTotalLossOfPrecision));
__JUMP(eq,lr);
asm("mov r0, r12 ");
asm("b " CSM_Z30PanicOverUnderflowDividebyZeroi); // else panic
}
__NAKED__ EXPORT_C TRealX& TRealX::operator++()
/**
Increments this extended precision number by one,
and then returns a reference to it.
This is also referred to as a prefix operator.
@return A reference to this object.
@panic MATHX KErrOverflow if the operation results in overflow.
@panic MATHX KErrUnderflow if the operation results in underflow.
*/
{
// pre-increment
asm("stmfd sp!, {r0,r4-r8,lr} ");
asm("ldmia r0, {r1,r2,r3} ");
asm("add r4, pc, #__TRealXOne-.-8 ");
asm("ldmia r4, {r4,r5,r6} "); // r4,r5,r6=1.0
asm("bl TRealXAdd ");
asm("ldmfd sp!, {r0,r4-r8,lr} ");
asm("stmia r0, {r1,r2,r3} ");
asm("cmp r12, #0 "); // check the error code
__JUMP(eq,lr);
asm("mov r0, r12 ");
asm("b " CSM_Z30PanicOverUnderflowDividebyZeroi); // else panic
asm("__TRealXOne: ");
asm(".word 0x00000000 ");
asm(".word 0x80000000 ");
asm(".word 0x7FFF0000 ");
}
__NAKED__ EXPORT_C TRealX TRealX::operator++(TInt)
/**
Returns this extended precision number before incrementing it by one.
This is also referred to as a postfix operator.
@return A reference to this object.
@panic MATHX KErrOverflow if the operation results in overflow.
@panic MATHX KErrUnderflow if the operation results in underflow.
*/
{
// post-increment
// r0=address of return value, r1=this
asm("stmfd sp!, {r0,r1,r4-r8,lr} ");
asm("ldmia r1, {r1,r2,r3} ");
asm("stmia r0, {r1,r2,r3} "); // store old value
asm("add r4, pc, #__TRealXOne-.-8 ");
asm("ldmia r4, {r4,r5,r6} "); // r4,r5,r6=1.0
asm("bl TRealXAdd ");
asm("ldmfd sp!, {r0,lr} "); // restore r0, lr=this
asm("stmia lr, {r1,r2,r3} "); // store incremented value
asm("ldmfd sp!, {r4-r8,lr} ");
asm("cmp r12, #0 "); // check the error code
__JUMP(eq,lr);
asm("mov r0, r12 ");
asm("b " CSM_Z30PanicOverUnderflowDividebyZeroi); // else panic
}
__NAKED__ EXPORT_C TRealX& TRealX::operator--()
/**
Decrements this extended precision number by one,
and then returns a reference to it.
This is also referred to as a prefix operator.
@return A reference to this object.
@panic MATHX KErrOverflow if the operation results in overflow.
@panic MATHX KErrUnderflow if the operation results in underflow.
*/
{
// pre-decrement
asm("stmfd sp!, {r0,r4-r8,lr} ");
asm("ldmia r0, {r1,r2,r3} ");
asm("add r4, pc, #__TRealXOne-.-8 ");
asm("ldmia r4, {r4,r5,r6} "); // r4,r5,r6=1.0
asm("bl TRealXSubtract ");
asm("ldmfd sp!, {r0,r4-r8,lr} ");
asm("stmia r0, {r1,r2,r3} ");
asm("cmp r12, #0 "); // check the error code
__JUMP(eq,lr);
asm("mov r0, r12 ");
asm("b " CSM_Z30PanicOverUnderflowDividebyZeroi); // else panic
}
__NAKED__ EXPORT_C TRealX TRealX::operator--(TInt)
/**
Returns this extended precision number before decrementing it by one.
This is also referred to as a postfix operator.
@return A reference to this object.
@panic MATHX KErrOverflow if the operation results in overflow.
@panic MATHX KErrUnderflow if the operation results in underflow.
*/
{
// post-decrement
// r0=address of return value, r1=this
asm("stmfd sp!, {r0,r1,r4-r8,lr} ");
asm("ldmia r1, {r1,r2,r3} ");
asm("stmia r0, {r1,r2,r3} "); // store old value
asm("add r4, pc, #__TRealXOne-.-8 ");
asm("ldmia r4, {r4,r5,r6} "); // r4,r5,r6=1.0
asm("bl TRealXSubtract ");
asm("ldmfd sp!, {r0,lr} "); // restore r0, lr=this
asm("stmia lr, {r1,r2,r3} "); // store decremented value
asm("ldmfd sp!, {r4-r8,lr} ");
asm("cmp r12, #0 "); // check the error code
__JUMP(eq,lr);
asm("mov r0, r12 ");
asm("b " CSM_Z30PanicOverUnderflowDividebyZeroi); // else panic
}
__NAKED__ EXPORT_C TRealX TRealX::operator+(const TRealX& /*aVal*/) const
/**
Adds an extended precision value to this extended precision number.
@param aVal The extended precision value to be added.
@return An extended precision object containing the result.
@panic MATHX KErrOverflow if the operation results in overflow.
@panic MATHX KErrUnderflow if the operation results in underflow.
*/
{
// r0=address of return value, r1=this, r2=&aVal
asm("stmfd sp!, {r0,r4-r8,lr} ");
asm("ldmia r2, {r4,r5,r6} ");
asm("ldmia r1, {r1,r2,r3} ");
asm("bl TRealXAdd ");
asm("ldmfd sp!, {r0,r4-r8,lr} ");
asm("stmia r0, {r1,r2,r3} ");
asm("cmp r12, #0 "); // check the error code
__JUMP(eq,lr);
asm("mov r0, r12 ");
asm("b " CSM_Z30PanicOverUnderflowDividebyZeroi); // else panic
}
__NAKED__ EXPORT_C TRealX TRealX::operator-(const TRealX& /*aVal*/) const
/**
Subtracts an extended precision value from this extended precision number.
@param aVal The extended precision value to be subtracted.
@return An extended precision object containing the result.
@panic MATHX KErrOverflow if the operation results in overflow.
@panic MATHX KErrUnderflow if the operation results in underflow.
*/
{
// r0=address of return value, r1=this, r2=&aVal
asm("stmfd sp!, {r0,r4-r8,lr} ");
asm("ldmia r2, {r4,r5,r6} ");
asm("ldmia r1, {r1,r2,r3} ");
asm("bl TRealXSubtract ");
asm("ldmfd sp!, {r0,r4-r8,lr} ");
asm("stmia r0, {r1,r2,r3} ");
asm("cmp r12, #0 "); // check the error code
__JUMP(eq,lr);
asm("mov r0, r12 ");
asm("b " CSM_Z30PanicOverUnderflowDividebyZeroi); // else panic
}
__NAKED__ EXPORT_C TRealX TRealX::operator*(const TRealX& /*aVal*/) const
/**
Multiplies this extended precision number by an extended precision value.
@param aVal The extended precision value to be used as the multiplier.
@return An extended precision object containing the result.
@panic MATHX KErrOverflow if the operation results in overflow.
@panic MATHX KErrUnderflow if the operation results in underflow.
*/
{
// r0=address of return value, r1=this, r2=&aVal
asm("stmfd sp!, {r0,r4-r7,lr} ");
asm("ldmia r2, {r4,r5,r6} ");
asm("ldmia r1, {r1,r2,r3} ");
asm("bl TRealXMultiply ");
asm("ldmfd sp!, {r0,r4-r7,lr} ");
asm("stmia r0, {r1,r2,r3} ");
asm("cmp r12, #0 "); // check the error code
__JUMP(eq,lr);
asm("mov r0, r12 ");
asm("b " CSM_Z30PanicOverUnderflowDividebyZeroi); // else panic
}
__NAKED__ EXPORT_C TRealX TRealX::operator/(const TRealX& /*aVal*/) const
/**
Divides this extended precision number by an extended precision value.
@param aVal The extended precision value to be used as the divisor.
@return An extended precision object containing the result.
@panic MATHX KErrOverflow if the operation results in overflow.
@panic MATHX KErrUnderflow if the operation results in underflow.
@panic MATHX KErrDivideByZero if the divisor is zero.
*/
{
// r0=address of return value, r1=this, r2=&aVal
asm("stmfd sp!, {r0,r4-r9,lr} ");
asm("ldmia r2, {r4,r5,r6} ");
asm("ldmia r1, {r1,r2,r3} ");
asm("bl TRealXDivide ");
asm("ldmfd sp!, {r0,r4-r9,lr} ");
asm("stmia r0, {r1,r2,r3} ");
asm("cmp r12, #0 "); // check the error code
__JUMP(eq,lr);
asm("mov r0, r12 ");
asm("b " CSM_Z30PanicOverUnderflowDividebyZeroi); // else panic
}
__NAKED__ EXPORT_C TRealX TRealX::operator%(const TRealX& /*aVal*/) const
/**
Modulo-divides this extended precision number by an extended precision value.
@param aVal The extended precision value to be used as the divisor.
@return An extended precision object containing the result.
@panic MATHX KErrTotalLossOfPrecision if precision is lost.
@panic MATHX KErrUnderflow if the operation results in underflow.
*/
{
// r0=address of return value, r1=this, r2=&aVal
asm("stmfd sp!, {r0,r4-r7,lr} ");
asm("ldmia r2, {r4,r5,r6} ");
asm("ldmia r1, {r1,r2,r3} ");
asm("bl TRealXModulo ");
asm("ldmfd sp!, {r0,r4-r7,lr} ");
asm("stmia r0, {r1,r2,r3} ");
asm("cmp r12, #0 "); // check the error code
asm("cmpne r12, #%a0" : : "i" ((TInt)KErrTotalLossOfPrecision));
__JUMP(eq,lr);
asm("mov r0, r12 ");
asm("b " CSM_Z30PanicOverUnderflowDividebyZeroi); // else panic
}
#ifdef __REALS_MACHINE_CODED__
__NAKED__ EXPORT_C TInt Math::Sqrt( TReal &/*aDest*/, const TReal &/*aSrc*/ )
/**
Calculates the square root of a number.
@param aDest A reference containing the result.
@param aSrc The number whose square-root is required.
@return KErrNone if successful, otherwise another of
the system-wide error codes.
*/
{
// r0=address of aDest, r1=address of aSrc
#ifdef __USE_VFP_MATH
VFP_FLDD(CC_AL,0,1,0);
VFP_FSQRTD(,0,0);
VFP_FMRRD(CC_AL,3,2,0);
asm("bic r1, r2, #0x80000000 "); // remove sign bit
asm("cmn r1, #0x00100000 "); // check if exp=7FF
asm("movpl r1, #0 "); // if not return KErrNone
asm("bpl donesqrt ");
asm("movs r1, r1, lsl #12 "); // if exp=7FF, check mantissa
asm("cmpeq r3, #0 ");
asm("moveq r1, #-9 "); // if exp=7FF, mant=0, return KErrOverflow
asm("mvnne r2, #0x80000000 "); // else set NaN
asm("mvnne r3, #0 ");
asm("movne r1, #-6 "); // and return KErrArgument
asm("donesqrt: ");
#ifdef __DOUBLE_WORDS_SWAPPED__
asm("stmia r0, {r2,r3} "); // store the result
#else
asm("str r2, [r0, #4] ");
asm("str r3, [r0, #0] ");
#endif
asm("mov r0, r1 ");
__JUMP(,lr);
#else // __USE_VFP_MATH
asm("stmfd sp!, {r4-r10,lr} ");
#ifdef __DOUBLE_WORDS_SWAPPED__
asm("ldmia r1, {r3,r4} "); // low mant into r4, sign:exp:high mant into r3
#else
asm("ldr r3, [r1, #4] ");
asm("ldr r4, [r1, #0] ");
#endif
asm("bic r5, r3, #0xFF000000 ");
asm("bic r5, r5, #0x00F00000 "); // high word of mantissa into r5
asm("mov r2, r3, lsr #20 ");
asm("bics r2, r2, #0x800 "); // exponent now in r2
asm("beq fastsqrt1 "); // branch if exponent zero (zero or denormal)
asm("mov r6, #0xFF ");
asm("orr r6, r6, #0x700 ");
asm("cmp r2, r6 "); // check for infinity or NaN
asm("beq fastsqrt2 "); // branch if infinity or NaN
asm("movs r3, r3 "); // test sign
asm("bmi fastsqrtn "); // branch if negative
asm("sub r2, r2, #0xFF "); // unbias the exponent
asm("sub r2, r2, #0x300 "); //
asm("fastsqrtd1: ");
asm("mov r1, #0x40000000 "); // value for comparison
asm("mov r3, #27 "); // loop counter (number of bits/2)
asm("movs r2, r2, asr #1 "); // divide exponent by 2, LSB into CF
asm("movcs r7, r5, lsl #11 "); // mantissa into r6,r7 with MSB in MSB of r7
asm("orrcs r7, r7, r4, lsr #21 ");
asm("movcs r6, r4, lsl #11 ");
asm("movcs r4, #0 "); // r4, r5 will hold result mantissa
asm("orrcs r7, r7, #0x80000000 "); // if exponent odd, restore MSB of mantissa
asm("movcc r7, r5, lsl #12 "); // mantissa into r6,r7 with MSB in MSB of r7
asm("orrcc r7, r7, r4, lsr #20 "); // if exponent even, shift mantissa left an extra
asm("movcc r6, r4, lsl #12 "); // place, lose top bit, and
asm("movcc r4, #1 "); // set MSB of result, and
asm("mov r5, #0 "); // r4, r5 will hold result mantissa
asm("mov r8, #0 "); // r8, r9 will be comparison accumulator
asm("mov r9, #0 ");
asm("bcc fastsqrt4 "); // if exponent even, calculate one less bit
// as result MSB already known
// Main mantissa square-root loop
asm("fastsqrt3: "); // START OF MAIN LOOP
asm("subs r10, r7, r1 "); // subtract result:01 from acc:mant
asm("sbcs r12, r8, r4 "); // result into r14:r12:r10
asm("sbcs r14, r9, r5 ");
asm("movcs r7, r10 "); // if no borrow replace accumulator with result
asm("movcs r8, r12 ");
asm("movcs r9, r14 ");
asm("adcs r4, r4, r4 "); // shift result left one, putting in next bit
asm("adcs r5, r5, r5 ");
asm("mov r9, r9, lsl #2 "); // shift acc:mant left by 2 bits
asm("orr r9, r9, r8, lsr #30 ");
asm("mov r8, r8, lsl #2 ");
asm("orr r8, r8, r7, lsr #30 ");
asm("mov r7, r7, lsl #2 ");
asm("orr r7, r7, r6, lsr #30 ");
asm("mov r6, r6, lsl #2 ");
asm("fastsqrt4: "); // Come in here if we need to do one less iteration
asm("subs r10, r7, r1 "); // subtract result:01 from acc:mant
asm("sbcs r12, r8, r4 "); // result into r14:r12:r10
asm("sbcs r14, r9, r5 ");
asm("movcs r7, r10 "); // if no borrow replace accumulator with result
asm("movcs r8, r12 ");
asm("movcs r9, r14 ");
asm("adcs r4, r4, r4 "); // shift result left one, putting in next bit
asm("adcs r5, r5, r5 ");
asm("mov r9, r9, lsl #2 "); // shift acc:mant left by 2 bits
asm("orr r9, r9, r8, lsr #30 ");
asm("mov r8, r8, lsl #2 ");
asm("orr r8, r8, r7, lsr #30 ");
asm("mov r7, r7, lsl #2 ");
asm("orr r7, r7, r6, lsr #30 ");
asm("mov r6, r6, lsl #2 ");
asm("subs r3, r3, #1 "); // decrement loop counter
asm("bne fastsqrt3 "); // do necessary number of iterations
asm("movs r4, r4, lsr #1 "); // shift result mantissa right 1 place
asm("orr r4, r4, r5, lsl #31 "); // LSB (=rounding bit) into carry
asm("mov r5, r5, lsr #1 ");
asm("adcs r4, r4, #0 "); // round the mantissa to 53 bits
asm("adcs r5, r5, #0 ");
asm("cmp r5, #0x00200000 "); // check for mantissa overflow
asm("addeq r2, r2, #1 "); // if so, increment exponent - can never overflow
asm("bic r5, r5, #0x00300000 "); // remove top bit of mantissa - it is implicit
asm("add r2, r2, #0xFF "); // re-bias the exponent
asm("add r3, r2, #0x300 "); // and move into r3
asm("orr r3, r5, r3, lsl #20 "); // r3 now contains exponent + top of mantissa
asm("fastsqrt_ok: ");
#ifdef __DOUBLE_WORDS_SWAPPED__
asm("stmia r0, {r3,r4} "); // store the result
#else
asm("str r3, [r0, #4] ");
asm("str r4, [r0, #0] ");
#endif
asm("mov r0, #0 "); // error code KErrNone
__POPRET("r4-r10,");
asm("fastsqrt1: ");
asm("orrs r6, r5, r4 "); // exponent zero - test mantissa
asm("beq fastsqrt_ok "); // if zero, return 0
asm("movs r3, r3 "); // denormal - test sign
asm("bmi fastsqrtn "); // branch out if negative
asm("sub r2, r2, #0xFE "); // unbias the exponent
asm("sub r2, r2, #0x300 "); //
asm("fastsqrtd: ");
asm("adds r4, r4, r4 "); // shift mantissa left
asm("adcs r5, r5, r5 ");
asm("sub r2, r2, #1 "); // and decrement exponent
asm("tst r5, #0x00100000 "); // test if normalised
asm("beq fastsqrtd "); // loop until normalised
asm("b fastsqrtd1 "); // now treat as a normalised number
asm("fastsqrt2: "); // get here if infinity or NaN
asm("orrs r6, r5, r4 "); // if mantissa zero, infinity
asm("bne fastsqrtnan "); // branch if not - must be NaN
asm("movs r3, r3 "); // test sign of infinity
asm("bmi fastsqrtn "); // branch if -ve
#ifdef __DOUBLE_WORDS_SWAPPED__
asm("stmia r0, {r3,r4} "); // store the result
#else
asm("str r3, [r0, #4] ");
asm("str r4, [r0, #0] ");
#endif
asm("mov r0, #-9 "); // return KErrOverflow
asm("b fastsqrt_end ");
asm("fastsqrtn: "); // get here if negative or QNaN operand
asm("mov r3, #0xFF000000 "); // generate "real indefinite" QNaN
asm("orr r3, r3, #0x00F80000 "); // sign=1, exp=7FF, mantissa = 1000...0
asm("mov r4, #0 ");
asm("fastsqrtxa: ");
#ifdef __DOUBLE_WORDS_SWAPPED__
asm("stmia r0, {r3,r4} "); // store the result
#else
asm("str r3, [r0, #4] ");
asm("str r4, [r0, #0] ");
#endif
asm("mov r0, #-6 "); // return KErrArgument
asm("fastsqrt_end: ");
__POPRET("r4-r10,");
asm("fastsqrtnan: "); // operand is a NaN
asm("tst r5, #0x00080000 "); // test MSB of mantissa
asm("bne fastsqrtn "); // if set it is a QNaN - so return "real indefinite"
asm("bic r3, r3, #0x00080000 "); // else convert SNaN to QNaN
asm("b fastsqrtxa "); // and return KErrArgument
#endif // __USE_VFP_MATH
}
__NAKED__ EXPORT_C TReal Math::Poly(TReal /*aX*/,const SPoly* /*aPoly*/) __SOFTFP
/**
Evaluates the polynomial:
{a[n]X^n + a[n-1]X^(n-1) + ... + a[2]X^2 + a[1]X^1 + a[0]}.
@param aX The value of the x-variable
@param aPoly A pointer to the structure containing the set of coefficients
in the order: a[0], a[1], ..., a[n-1], a[n].
@return The result of the evaluation.
*/
//
// Evaluate a power series in x for a P_POLY coefficient table.
// Changed to use TRealX throughout the calculation
//
{
// On entry r0,r1=aX, r2=aPoly
asm("stmfd sp!, {r4-r11,lr} ");
asm("mov r11, r2 ");
asm("ldr r10, [r11], #4 "); // r10=number of coefficients, r11=first coeff addr
asm("add r11, r11, r10, lsl #3 "); // r11=address of last coefficient+8
asm("mov r2, r1 "); // aX into r1,r2
asm("mov r1, r0 ");
asm("bl ConvertTReal64ToTRealX "); // convert to TRealX in r1,r2,r3
asm("mov r4, r1 "); // move into r4,r5,r6
asm("mov r5, r2 ");
asm("mov r6, r3 ");
asm("ldmdb r11!, {r1,r2} "); // last coefficient into r1,r2
asm("bl ConvertTReal64ToTRealX "); // convert to TRealX in r1,r2,r3
asm("subs r10, r10, #1 ");
asm("beq polynomial0 "); // if no more coefficients, exit
asm("polynomial1: ");
asm("stmfd sp!, {r4,r5,r6} "); // save value of aX
asm("bl TRealXMultiply "); // r *= aX
asm("mov r4, r1 "); // move result into r4,r5,r6
asm("mov r5, r2 ");
asm("mov r6, r3 ");
asm("ldmdb r11!, {r1,r2} "); // next coefficient into r1,r2
asm("bl ConvertTReal64ToTRealX "); // convert to TRealX in r1,r2,r3
asm("bl TRealXAdd "); // r += *--pR
asm("ldmfd sp!, {r4,r5,r6} "); // aX back into r4,r5,r6
asm("subs r10, r10, #1 "); // iterate until all coefficients processed
asm("bne polynomial1 ");
asm("polynomial0: "); // result now in r1,r2,r3
asm("bl ConvertTRealXToTReal64 "); // convert back to TReal64
__POPRET("r4-r11,");
}
__NAKED__ EXPORT_C void Math::PolyX(TRealX& /*aY*/,const TRealX& /*aX*/,TInt /*aDeg*/,const TRealX* /*aCoef*/)
/**
Evaluates the polynomial:
{a[n]X^n + a[n-1]X^(n-1) + ... + a[2]X^2 + a[1]X^1 + a[0]}.
@param aY A reference containing the result.
@param aX The value of the x-variable.
@param aDeg The degree of the polynomial (the highest power of x
which is present).
@param aCoef A pointer to a contiguous set of TRealX values containing
the coefficients.
They must be in the order: a[0], a[1], ..., a[n-1], a[n].
*/
//
// Evaluate a polynomial with TRealX argument, coefficients and result
//
{
// On entry r0=&aY, r1=&aX, r2=aDeg, r3=aCoef
asm("stmfd sp!, {r0,r4-r11,lr} ");
asm("add r11, r3, r2, lsl #3 "); // r11=address of last coefficient
asm("add r11, r11, r2, lsl #2 ");
asm("mov r9, r1 "); // r9=address of argument
asm("movs r10, r2 "); // r10=number of coefficients-1
asm("ldmia r11, {r1,r2,r3} "); // last coefficient into r1,r2,r3
asm("beq polyx0 "); // if no more coefficients, exit
asm("polyx1: ");
asm("ldmia r9, {r4,r5,r6} "); // aX into r4,r5,r6
asm("bl TRealXMultiply "); // result *= aX
asm("ldmdb r11!, {r4,r5,r6} "); // next coefficient into r4,r5,r6
asm("bl TRealXAdd "); // result += next coeff
asm("subs r10, r10, #1 "); // iterate until all coefficients processed
asm("bne polyx1 ");
asm("polyx0: "); // result now in r1,r2,r3
asm("ldmfd sp!, {r0,r4-r11,lr} "); // restore registers, including destination address in r0
asm("stmia r0, {r1,r2,r3} "); // store result
__JUMP(,lr);
}
#ifndef __USE_VFP_MATH
__NAKED__ EXPORT_C TInt Math::Int(TReal& /*aTrg*/, const TReal& /*aSrc*/)
/**
Calculates the integer part of a number.
The integer part is that before a decimal point.
Truncation is toward zero, so that
int(2.4)=2, int(2)=2, int(-1)=-1, int(-1.4)=-1, int(-1.999)=-1.
@param aTrg A reference containing the result.
@param aSrc The number whose integer part is required.
@return KErrNone if successful, otherwise another of
the system-wide error codes.
*/
//
// Write the integer part of aSrc to the TReal at aTrg
// Negative numbers are rounded towards zero.
//
{
// r0=&aTrg, r1=&aSrc, return value in r0
asm("stmfd sp!, {lr} ");
asm("mov r12, r0 "); // r12=&aTrg
#ifdef __DOUBLE_WORDS_SWAPPED__
asm("ldmia r1, {r0,r1} "); // input value into r0,r1
#else
asm("ldr r0, [r1, #4] ");
asm("ldr r1, [r1, #0] ");
#endif
asm("bl TReal64Int ");
#ifdef __DOUBLE_WORDS_SWAPPED__
asm("stmia r12, {r0,r1} "); // store result
#else
asm("str r0, [r12, #4] ");
asm("str r1, [r12, #0] ");
#endif
asm("bic r0, r0, #0x80000000 "); // remove sign bit
asm("cmn r0, #0x00100000 "); // check for NaN or infinity
asm("movpl r0, #0 "); // if neither, return KErrNone
asm("bpl math_int_0 ");
asm("movs r0, r0, lsl #12 "); // check for infinity
asm("cmpeq r1, #0 ");
asm("mvneq r0, #8 "); // if infinity return KErrOverflow
asm("mvnne r0, #5 "); // else return KErrArgument
asm("math_int_0: ");
__POPRET("");
// Take integer part of TReal64 in r0,r1
// Infinity and NaNs are unaffected
// r0-r3 modified
asm("TReal64Int: ");
asm("mov r2, r0, lsr #20 ");
asm("bic r2, r2, #0x800 "); // r2=exponent
asm("mov r3, #0x300 ");
asm("orr r3, r3, #0xFF "); // r3=0x3FF
asm("subs r2, r2, r3 "); // r2=exponent-3FF=number of integer bits-1
asm("ble TReal64Int1 "); // branch if <=1 integer bits
asm("cmp r2, #52 ");
__JUMP(ge,lr);
asm("cmp r2, #20 ");
asm("bgt TReal64Int2 "); // jump if >21 integer bits (r0 will be unaffected)
asm("rsb r2, r2, #20 "); // r2=number of bits to clear at bottom end of r0
asm("mov r0, r0, lsr r2 "); // clear them
asm("mov r0, r0, lsl r2 ");
asm("mov r1, #0 "); // clear r1
__JUMP(,lr);
asm("TReal64Int2: ");
asm("rsb r2, r2, #52 "); // r2=number of bits to clear at bottom end of r1
asm("mov r1, r1, lsr r2 "); // clear them
asm("mov r1, r1, lsl r2 ");
__JUMP(,lr);
asm("TReal64Int1: "); // result is either 0 or 1
asm("mov r1, #0 "); // lower mantissa bits of result will be zero
asm("moveq r0, r0, lsr #20 "); // if result is 1, clear mantissa but leave exponent
asm("moveq r0, r0, lsl #20 ");
asm("andlt r0, r0, #0x80000000 "); // if result is 0, clear mantissa and exponent
__JUMP(,lr);
}
__NAKED__ EXPORT_C TInt Math::Int(TInt16& /*aTrg*/, const TReal& /*aSrc*/)
/**
Calculates the integer part of a number.
The integer part is that before a decimal point.
Truncation is toward zero, so that:
int(2.4)=2, int(2)=2, int(-1)=-1, int(-1.4)=-1, int(-1.999)=-1.
This function is suitable when the result is known to be small enough
for a 16-bit signed integer.
@param aTrg A reference containing the result.
@param aSrc The number whose integer part is required.
@return KErrNone if successful, otherwise another of
the system-wide error codes.
*/
//
// If the integer part of aSrc is in the range -32768 to +32767
// inclusive, write the integer part to the TInt16 at aTrg
// Negative numbers are rounded towards zero.
// If an overflow or underflow occurs, aTrg is set to the max/min value
//
{
// r0=&aTrg, r1=&aSrc
asm("stmfd sp!, {lr} ");
asm("mov r3, r0 "); // r3=&aTrg
#ifdef __DOUBLE_WORDS_SWAPPED__
asm("ldmia r1, {r0,r1} "); // input value into r0,r1
#else
asm("ldr r0, [r1, #4] ");
asm("ldr r1, [r1, #0] ");
#endif
asm("bl TReal64GetTInt "); // do the conversion
asm("cmp r0, #0x8000 "); // limit answer to TInt16 range
asm("movge r0, #0x7F00 ");
asm("orrge r0, r0, #0xFF ");
asm("mvnge r12, #8 "); // set error code if limiting occurred
asm("cmn r0, #0x8000 ");
asm("movlt r0, #0x8000 ");
asm("mvnlt r12, #9 "); // set error code if limiting occurred
asm("mov r1, r0, lsr #8 "); // top byte of answer into r1
asm("strb r0, [r3] "); // store result in aTrg
asm("strb r1, [r3, #1] ");
asm("mov r0, r12 "); // return error code in r0
__POPRET("");
}
__NAKED__ EXPORT_C TInt Math::Int(TInt32& /*aTrg*/, const TReal& /*aSrc*/)
/**
Calculates the integer part of a number.
The integer part is that before a decimal point.
Truncation is toward zero, so that
int(2.4)=2, int(2)=2, int(-1)=-1, int(-1.4)=-1, int(-1.999)=-1.
This function is suitable when the result is known to be small enough
for a 32-bit signed integer.
@param aTrg A reference containing the result.
@param aSrc The number whose integer part is required.
@return KErrNone if successful, otherwise another of
the system-wide error codes.
*/
//
// If the integer part of the float is in the range -2147483648 to +2147483647
// inclusive, write the integer part to the TInt32 at aTrg
// Negative numbers are rounded towards zero.
// If an overflow or underflow occurs, aTrg is set to the max/min value
//
{
// r0=&aTrg, r1=&aSrc
asm("stmfd sp!, {lr} ");
asm("mov r3, r0 "); // r3=&aTrg
#ifdef __DOUBLE_WORDS_SWAPPED__
asm("ldmia r1, {r0,r1} "); // input value into r0,r1
#else
asm("ldr r0, [r1, #4] ");
asm("ldr r1, [r1, #0] ");
#endif
asm("bl TReal64GetTInt "); // do the conversion
asm("str r0, [r3] "); // store result in aTrg
asm("mov r0, r12 "); // return error code in r0
__POPRET("");
// Convert double in r0,r1 to int in r0
// Return error code in r12
// Registers r0,r1,r2,r12 modified
asm("TReal64GetTInt: ");
asm("mov r2, r0, lsr #20 ");
asm("bic r2, r2, #0x800 "); // r1=exponent
asm("add r12, r2, #1 ");
asm("cmp r12, #0x800 "); // check for NaN
asm("bne TReal64GetTInt1 ");
asm("movs r12, r0, lsl #12 "); // exponent=FF, check mantissa
asm("cmpeq r1, #0 ");
asm("movne r0, #0 "); // if non-zero, input is a NaN so return 0
asm("mvnne r12, #5 "); // and return KErrArgument
__JUMP(ne,lr);
asm("TReal64GetTInt1: ");
asm("mov r12, #0x400 ");
asm("orr r12, r12, #0x1E "); // r12=0x41E (exponent of 2^31)
asm("subs r2, r12, r2 "); // r2=number of shifts to produce integer
asm("mov r12, #0 "); // set return code to KErrNone
asm("ble TReal64GetTInt2 "); // if <=0, saturate result
asm("cmp r2, #31 "); // check if more than 31 shifts needed
asm("movhi r0, #0 "); // if so, underflow result to 0
__JUMP(hi,lr);
asm("cmp r0, #0 "); // check sign bit
asm("orr r0, r0, #0x00100000 "); // set implicit integer bit
asm("mov r0, r0, lsl #11 "); // shift mantissa up so MSB is in MSB of r0
asm("orr r0, r0, r1, lsr #21 "); // put in bits from r1
asm("mov r0, r0, lsr r2 "); // r0=absolute integer
asm("rsbmi r0, r0, #0 "); // if negative, negate
__JUMP(,lr);
asm("TReal64GetTInt2: ");
asm("blt TReal64GetTInt3 "); // if exponent>0x41E, definitely an overflow
asm("cmp r0, #0 "); // check sign bit
asm("bpl TReal64GetTInt3 "); // if positive, definitely an overflow
asm("orr r0, r0, #0x00100000 "); // set implicit integer bit
asm("mov r0, r0, lsl #11 "); // shift mantissa up so MSB is in MSB of r0
asm("orr r0, r0, r1, lsr #21 "); // put in bits from r1
asm("cmp r0, #0x80000000 "); // check if value is = -2^31
__JUMP(eq,lr);
asm("TReal64GetTInt3: ");
asm("cmp r0, #0 "); // check sign
asm("mov r0, #0x80000000 ");
asm("subpl r0, r0, #1 "); // if -ve return 80000000, if +ve return 7FFFFFFF
asm("mvnpl r12, #8 "); // if +ve return KErrOverflow
asm("mvnmi r12, #9 "); // if -ve return KErrUnderflow
__JUMP(,lr);
}
#endif // __USE_VFP_MATH
__NAKED__ EXPORT_C TBool Math::IsZero(const TReal& /*aVal*/)
/**
Determines whether a value is zero.
@param aVal A reference to the value to be checked.
@return True, if aVal is zero; false, otherwise.
*/
{
#ifdef __DOUBLE_WORDS_SWAPPED__
asm("ldmia r0, {r1,r2} "); // input value into r0,r1
#else
asm("ldr r2, [r0, #0] ");
asm("ldr r1, [r0, #4] ");
#endif
asm("TReal64IsZero: ");
asm("mov r0, #0 "); // default return value is 0
asm("bics r1, r1, #0x80000000 "); // remove sign bit
asm("cmpeq r2, #0 "); // and check both exponent and mantissa are zero
asm("moveq r0, #1 "); // return 1 if zero
__JUMP(,lr);
}
__NAKED__ EXPORT_C TBool Math::IsNaN(const TReal& /*aVal*/)
/**
Determines whether a value is not a number.
@param aVal A reference to the value to be checked.
@return True, if aVal is not a number; false, otherwise.
*/
{
#ifdef __DOUBLE_WORDS_SWAPPED__
asm("ldmia r0, {r1,r2} "); // input value into r0,r1
#else
asm("ldr r2, [r0, #0] ");
asm("ldr r1, [r0, #4] ");
#endif
asm("TReal64IsNaN: ");
asm("mov r0, #0 "); // default return value is 0
asm("bic r1, r1, #0x80000000 "); // remove sign bit
asm("cmn r1, #0x00100000 "); // check if exponent=7FF
__JUMP(pl,lr);
asm("movs r1, r1, lsl #12 "); // exponent=7FF, check mantissa
asm("cmpeq r2, #0 ");
asm("movne r0, #1 "); // if mantissa nonzero, return 1
__JUMP(,lr);
}
__NAKED__ EXPORT_C TBool Math::IsInfinite(const TReal& /*aVal*/)
/**
Determines whether a value is infinite.
@param aVal A reference to the value to be checked.
@return True, if aVal is infinite; false, otherwise.
*/
{
#ifdef __DOUBLE_WORDS_SWAPPED__
asm("ldmia r0, {r1,r2} "); // input value into r0,r1
#else
asm("ldr r2, [r0, #0] ");
asm("ldr r1, [r0, #4] ");
#endif
asm("TReal64IsInfinite: ");
asm("mov r0, #0 "); // default return value is 0
asm("mov r3, #0x00200000 "); // r3 == - (0x7ff00000 << 1)
asm("cmp r2, #0 ");
asm("cmneq r3, r1, lsl #1 "); // check exp=7FF && mant=0
asm("moveq r0, #1 "); // if so, return 1
__JUMP(,lr);
}
__NAKED__ EXPORT_C TBool Math::IsFinite(const TReal& /*aVal*/)
/**
Determines whether a value is finite.
In this context, a value is finite if it is a valid number and
is not infinite.
@param aVal A reference to the value to be checked.
@return True, if aVal is finite; false, otherwise.
*/
{
#ifdef __DOUBLE_WORDS_SWAPPED__
asm("ldr r1, [r0, #0] "); // only need exponent - get it into r0
#else
asm("ldr r1, [r0, #4] "); // only need exponent - get it into r0
#endif
asm("TReal64IsFinite: ");
asm("mov r0, #0 "); // default return value is 0
asm("bic r1, r1, #0x80000000 "); // remove sign bit
asm("cmn r1, #0x00100000 "); // check if exponent=7FF
asm("movpl r0, #1 "); // else return 1
__JUMP(,lr);
}
__NAKED__ EXPORT_C void Math::SetZero(TReal& /*aVal*/, TInt /*aSign*/)
//
// Constructs zeros, assuming default sign is positive
//
{
asm("cmp r1, #0 "); // test aSign
asm("movne r1, #0x80000000 "); // if nonzero, set sign bit
asm("mov r2, #0 "); // mantissa=0
#ifdef __DOUBLE_WORDS_SWAPPED__
asm("stmia r0, {r1,r2} ");
#else
asm("str r2, [r0, #0] ");
asm("str r1, [r0, #4] ");
#endif
__JUMP(,lr);
}
__NAKED__ EXPORT_C void Math::SetNaN(TReal& /*aVal*/)
//
// Constructs NaN (+ve sign for Java)
//
{
#ifdef __DOUBLE_WORDS_SWAPPED__
asm("mvn r1, #0x80000000 "); // r1=7FFFFFFF
asm("mvn r2, #0 "); // r2=FFFFFFFF
#else
asm("mvn r2, #0x80000000 "); // r2=7FFFFFFF
asm("mvn r1, #0 "); // r1=FFFFFFFF
#endif
asm("stmia r0, {r1,r2} ");
__JUMP(,lr);
}
__NAKED__ EXPORT_C void Math::SetInfinite(TReal& /*aVal*/, TInt /*aSign*/)
//
// Constructs infinities
//
{
asm("cmp r1, #0 "); // test aSign
asm("movne r1, #0x80000000 "); // if nonzero, set sign bit
asm("orr r1, r1, #0x70000000 "); // set exponent to 7FF
asm("orr r1, r1, #0x0FF00000 ");
asm("mov r2, #0 "); // mantissa=0
#ifdef __DOUBLE_WORDS_SWAPPED__
asm("stmia r0, {r1,r2} ");
#else
asm("str r2, [r0, #0] ");
asm("str r1, [r0, #4] ");
#endif
__JUMP(,lr);
}
#ifndef __USE_VFP_MATH
__NAKED__ EXPORT_C TInt Math::Frac(TReal& /*aTrg*/, const TReal& /*aSrc*/)
/**
Calculates the fractional part of a number.
The fractional part is that after a decimal point.
Truncation is toward zero, so that
Frac(2.4)=0.4, Frac(2)=0, Frac(-1)=0, Frac(-1.4)=0.4.
@param aTrg A reference containing the result.
@param aSrc The number whose fractional part is required.
@return KErrNone if successful, otherwise another of
the system-wide error codes.
*/
{
// on entry r0=aTrg, r1=&Src
// on exit r0=return code
#ifdef __DOUBLE_WORDS_SWAPPED__
asm("ldmia r1, {r1,r2} "); // r1,r2=aSrc
#else
asm("ldr r2, [r1, #0] ");
asm("ldr r1, [r1, #4] ");
#endif
asm("and r3, r1, #0x80000000 ");
asm("str r3, [sp, #-4]! "); // save sign
asm("mov r3, r1, lsr #20 ");
asm("bic r3, r3, #0x800 "); // r3=exponent of aSrc
asm("mov r12, #0x300 ");
asm("orr r12, r12, #0xFE "); // r12=0x3FE
asm("subs r3, r3, r12 "); // r3=exponent of aSrc-0x3FE=number of integer bits
asm("ble MathFrac0 "); // if <=0, return aSrc unaltered
asm("cmp r3, #53 ");
asm("bge MathFrac1 "); // if >=53 integer bits, there is no fractional part
asm("mov r1, r1, lsl #11 "); // left-justify mantissa in r1,r2
asm("orr r1, r1, r2, lsr #21 ");
asm("mov r2, r2, lsl #11 ");
asm("cmp r3, #32 "); // check for >=32 integer bits
asm("bge MathFrac2 ");
asm("rsb r12, r3, #32 ");
asm("mov r1, r1, lsl r3 "); // shift mantissa left by number of integer bits
asm("orrs r1, r1, r2, lsr r12 ");
asm("mov r2, r2, lsl r3 ");
asm("mov r3, #0x300 "); // r3 holds exponent = 0x3FE initially
asm("orr r3, r3, #0xFE ");
asm("beq MathFrac3 "); // branch if >=32 shifts to normalise
#ifdef __CPU_ARM_HAS_CLZ
CLZ(12,1);
asm("mov r1, r1, lsl r12 ");
asm("rsb r12, r12, #32 ");
asm("orr r1, r1, r2, lsr r12 ");
asm("rsb r12, r12, #32 ");
#else
asm("mov r12, #32 "); // else r12=32-number of shifts needed
asm("cmp r1, #0x10000 "); // calculate shift count
asm("movcc r1, r1, lsl #16 ");
asm("subcc r12, r12, #16 ");
asm("cmp r1, #0x1000000 ");
asm("movcc r1, r1, lsl #8 ");
asm("subcc r12, r12, #8 ");
asm("cmp r1, #0x10000000 ");
asm("movcc r1, r1, lsl #4 ");
asm("subcc r12, r12, #4 ");
asm("cmp r1, #0x40000000 ");
asm("movcc r1, r1, lsl #2 ");
asm("subcc r12, r12, #2 ");
asm("cmp r1, #0x80000000 ");
asm("movcc r1, r1, lsl #1 ");
asm("subcc r12, r12, #1 ");
asm("orr r1, r1, r2, lsr r12 "); // normalise
asm("rsb r12, r12, #32 "); // r12=shift count
#endif
asm("mov r2, r2, lsl r12 ");
asm("sub r3, r3, r12 "); // exponent-=shift count
asm("b MathFrac4 "); // branch to assemble and store result
// come here if >=32 shifts to normalise
asm("MathFrac3: ");
asm("sub r3, r3, #32 "); // decrement exponent by 32
asm("movs r1, r2 "); // shift left by 32, set Z if result zero
asm("mov r2, #0 ");
asm("bne MathFrac6 "); // if result nonzero, normalise
asm("beq MathFrac5 "); // branch if result zero
// come here if >=32 integer bits
asm("MathFrac2: ");
asm("sub r3, r3, #32 ");
asm("movs r1, r2, lsl r3 "); // shift left by number of integer bits, set Z if result zero
asm("mov r2, #0 ");
asm("mov r3, #0x300 "); // r3 holds exponent = 0x3FE initially
asm("orr r3, r3, #0xFE ");
asm("beq MathFrac5 "); // branch if result zero
asm("MathFrac6: ");
asm("cmp r1, #0x10000 "); // else normalise
asm("movcc r1, r1, lsl #16 ");
asm("subcc r3, r3, #16 ");
asm("cmp r1, #0x1000000 ");
asm("movcc r1, r1, lsl #8 ");
asm("subcc r3, r3, #8 ");
asm("cmp r1, #0x10000000 ");
asm("movcc r1, r1, lsl #4 ");
asm("subcc r3, r3, #4 ");
asm("cmp r1, #0x40000000 ");
asm("movcc r1, r1, lsl #2 ");
asm("subcc r3, r3, #2 ");
asm("cmp r1, #0x80000000 ");
asm("movcc r1, r1, lsl #1 ");
asm("subcc r3, r3, #1 ");
// come here to assemble and store result
asm("MathFrac4: ");
asm("bic r1, r1, #0x80000000 "); // remove integer bit
asm("mov r2, r2, lsr #11 "); // shift mantissa right by 11
asm("orr r2, r2, r1, lsl #21 ");
asm("mov r1, r1, lsr #11 ");
asm("ldr r12, [sp] ");
asm("orr r1, r1, r3, lsl #20 "); // exponent into r1 bits 20-30
asm("orr r1, r1, r12 "); // sign bit into r1 bit 31
// come here to return source unaltered
asm("MathFrac0: ");
asm("add sp, sp, #4 ");
asm("MathFrac_ok: ");
#ifdef __DOUBLE_WORDS_SWAPPED__
asm("stmia r0, {r1,r2} "); // store result
#else
asm("str r2, [r0, #0] ");
asm("str r1, [r0, #4] ");
#endif
asm("mov r0, #0 "); // return KErrNone
__JUMP(,lr);
// come here if infinity, NaN or >=53 integer bits
asm("MathFrac1: ");
asm("cmp r3, #0x400 "); // check for infinity/NaN
asm("bhi MathFrac7 "); // branch if so
// come here to return zero
asm("MathFrac5: ");
asm("ldr r1, [sp], #4 "); // r1 bit 31=sign, rest zero
asm("mov r2, #0 ");
asm("b MathFrac_ok ");
// come here if infinity/NaN
asm("MathFrac7: ");
asm("movs r12, r1, lsl #12 "); // check for infinity
asm("cmpeq r2, #0 ");
asm("bne MathFrac8 "); // branch if NaN
asm("ldr r1, [sp], #4 "); // r1 bit 31=sign, rest zero
asm("mov r2, #0 ");
#ifdef __DOUBLE_WORDS_SWAPPED__
asm("stmia r0, {r1,r2} "); // store zero result
#else
asm("str r2, [r0, #0] ");
asm("str r1, [r0, #4] ");
#endif
asm("mvn r0, #8 "); // return KErrOverflow
__JUMP(,lr);
asm("MathFrac8: "); // NaN
asm("add sp, sp, #4 ");
#ifdef __DOUBLE_WORDS_SWAPPED__
asm("stmia r0, {r1,r2} "); // store NaN unchanged
#else
asm("str r2, [r0, #0] ");
asm("str r1, [r0, #4] ");
#endif
asm("mvn r0, #5 "); // return KErrArgument
__JUMP(,lr);
}
#endif // __USE_VFP_MATH
#endif
#ifdef __REALS_MACHINE_CODED__
#ifndef __ARMCC__
extern "C" {
extern "C" void __math_exception(TInt aErrType);
__NAKED__ EXPORT_C TReal32 __addsf3(TReal32 /*a1*/, TReal32 /*a2*/)
//
// Add two floats
//
{
// a1 is in r0, a2 in r1 on entry; return with answer in r0
asm("stmfd sp!, {r4-r8,lr} ");
asm("bl ConvertTReal32ToTRealX "); // convert a2 to TRealX in r1,r2,r3
asm("mov r4, r1 "); // move into r4,r5,r6
asm("mov r5, r2 ");
asm("mov r6, r3 ");
asm("mov r1, r0 "); // a1 into r1
asm("bl ConvertTReal32ToTRealX "); // convert a1 to TRealX in r1,r2,r3
asm("bl TRealXAdd "); // add a1+a2, result in r1,r2,r3
asm("bl TRealXGetTReal32 "); // convert result to TReal32 in r0, error code in r12
asm("cmp r12, #0 "); // check error code
__CPOPRET(eq,"r4-r8,");
asm("stmfd sp!, {r0} "); // save result
asm("mov r0, r12 "); // error code into r0
asm("bl __math_exception "); // raise exception
__POPRET("r0,r4-r8,");
}
__NAKED__ EXPORT_C TReal64 __adddf3(TReal64 /*a1*/, TReal64 /*a2*/)
//
// Add two doubles
//
{
// a1 is in r0,r1 a2 in r2,r3 on entry; return with answer in r0,r1
asm("stmfd sp!, {r4-r8,lr} ");
asm("mov r7, r2 "); // save a2
asm("mov r8, r3 ");
asm("mov r2, r1 "); // a1 into r1,r2
asm("mov r1, r0 ");
asm("bl ConvertTReal64ToTRealX "); // convert a1 to TRealX in r1,r2,r3
asm("mov r4, r1 "); // move into r4,r5,r6
asm("mov r5, r2 ");
asm("mov r6, r3 ");
asm("mov r1, r7 "); // a2 into r1,r2
asm("mov r2, r8 ");
asm("bl ConvertTReal64ToTRealX "); // convert a2 to TRealX in r1,r2,r3
asm("bl TRealXAdd "); // add a1+a2, result in r1,r2,r3
asm("bl TRealXGetTReal64 "); // convert result to TReal64 in r0,r1 error code in r12
asm("cmp r12, #0 "); // check error code
__CPOPRET(eq,"r4-r8,");
asm("stmfd sp!, {r0,r1} "); // save result
asm("mov r0, r12 "); // error code into r0
asm("bl __math_exception "); // raise exception
__POPRET("r0,r1,r4-r8,");
}
__NAKED__ EXPORT_C TReal32 __subsf3(TReal32 /*a1*/, TReal32 /*a2*/)
//
// Subtract two floats
//
{
// a1 is in r0, a2 in r1 on entry; return with answer in r0
asm("stmfd sp!, {r4-r8,lr} ");
asm("bl ConvertTReal32ToTRealX "); // convert a2 to TRealX in r1,r2,r3
asm("mov r4, r1 "); // move into r4,r5,r6
asm("mov r5, r2 ");
asm("mov r6, r3 ");
asm("mov r1, r0 "); // a1 into r1
asm("bl ConvertTReal32ToTRealX "); // convert a1 to TRealX in r1,r2,r3
asm("bl TRealXSubtract "); // subtract a1-a2, result in r1,r2,r3
asm("bl TRealXGetTReal32 "); // convert result to TReal32 in r0, error code in r12
asm("cmp r12, #0 "); // check error code
__CPOPRET(eq,"r4-r8,");
asm("stmfd sp!, {r0} "); // save result
asm("mov r0, r12 "); // error code into r0
asm("bl __math_exception "); // raise exception
__POPRET("r0,r4-r8,");
}
__NAKED__ EXPORT_C TReal64 __subdf3(TReal64 /*a1*/, TReal64 /*a2*/)
//
// Subtract two doubles
//
{
// a1 is in r0,r1 a2 in r2,r3 on entry; return with answer in r0,r1
asm("stmfd sp!, {r4-r8,lr} ");
asm("mov r7, r0 "); // save a1
asm("mov r8, r1 ");
asm("mov r1, r2 "); // a2 into r1,r2
asm("mov r2, r3 ");
asm("bl ConvertTReal64ToTRealX "); // convert a2 to TRealX in r1,r2,r3
asm("mov r4, r1 "); // move into r4,r5,r6
asm("mov r5, r2 ");
asm("mov r6, r3 ");
asm("mov r1, r7 "); // a1 into r1,r2
asm("mov r2, r8 ");
asm("bl ConvertTReal64ToTRealX "); // convert a1 to TRealX in r1,r2,r3
asm("bl TRealXSubtract "); // subtract a1-a2, result in r1,r2,r3
asm("bl TRealXGetTReal64 "); // convert result to TReal64 in r0,r1 error code in r12
asm("cmp r12, #0 "); // check error code
__CPOPRET(eq,"r4-r8,");
asm("stmfd sp!, {r0,r1} "); // save result
asm("mov r0, r12 "); // error code into r0
asm("bl __math_exception "); // raise exception
__POPRET("r0,r1,r4-r8,");
}
__NAKED__ EXPORT_C TInt __cmpsf3(TReal32 /*a1*/, TReal32 /*a2*/)
//
// Compare two floats
//
{
// a1 in r0, a2 in r1 on entry
asm("stmfd sp!, {lr} ");
asm("bl CompareTReal32 "); // compare the two numbers
asm("mov r0, r0, lsl #28 ");
asm("msr cpsr_flg, r0 "); // N=unordered, Z=(a1>a2), C=(a1=a2), V=(a1<a2)
asm("mov r0, #0 ");
asm("mvnvs r0, #0 "); // if a1<a2 r0=-1
asm("moveq r0, #1 "); // if a1>a2 r0=+1
__POPRET("");
// Compare two TReal32s in r0, r1.
// Return 1 if r0<r1, 2 if r0=r1, 4 if r0>r1, 8 if unordered
// Registers r0,r1,r12 modified
asm("CompareTReal32: ");
asm("mov r12, r0, lsr #23 ");
asm("and r12, r12, #0xFF "); // r12=r0 exponent
asm("cmp r12, #0xFF "); // check if r0 is a NaN
asm("bne CompareTReal32a ");
asm("movs r12, r0, lsl #9 "); // exponent=FF, check mantissa
asm("movne r0, #8 "); // if not zero, r0 is a NaN so result is unordered
__JUMP(ne,lr);
asm("CompareTReal32a: ");
asm("mov r12, r1, lsr #23 ");
asm("and r12, r12, #0xFF "); // r12=r1 exponent
asm("cmp r12, #0xFF "); // check if r1 is a NaN
asm("bne CompareTReal32b ");
asm("movs r12, r1, lsl #9 "); // exponent=FF, check mantissa
asm("movne r0, #8 "); // if not zero, r1 is a NaN so result is unordered
__JUMP(ne,lr);
asm("CompareTReal32b: ");
asm("bics r12, r0, #0x80000000 "); // check if r0=0 (can be +0 or -0)
asm("moveq r0, #0 "); // if it is, make it +0
asm("bics r12, r1, #0x80000000 "); // check if r1=0 (can be +0 or -0)
asm("moveq r1, #0 "); // if it is, make it +0
asm("teq r0, r1 "); // test if signs different
asm("bmi CompareTReal32c "); // branch if different
asm("cmp r0, r1 "); // if same, check exponents + mantissas
asm("moveq r0, #2 "); // if equal, return 2
__JUMP(eq,lr);
asm("movhi r0, #4 "); // if r0>r1, r0=4
asm("movcc r0, #1 "); // if r0<r1, r0=1
asm("cmp r1, #0 "); // check signs
asm("eormi r0, r0, #5 "); // if negative, switch 1 and 4
__JUMP(,lr);
asm("CompareTReal32c: "); // come here if signs different
asm("cmp r0, #0 "); // check sign of r0
asm("movpl r0, #4 "); // if r0 nonnegative, then r0 is greater so return 4
asm("movmi r0, #1 "); // if r0 negative, return 1
__JUMP(,lr);
}
__NAKED__ EXPORT_C TInt __cmpdf3(TReal64 /*a1*/,TReal64 /*a2*/)
//
// Compare two doubles
//
{
// a1 in r0,r1, a2 in r2,r3 on entry
asm("stmfd sp!, {lr} ");
asm("bl CompareTReal64 "); // compare the two numbers
asm("mov r0, r0, lsl #28 ");
asm("msr cpsr_flg, r0 "); // N=unordered, Z=(a1>a2), C=(a1=a2), V=(a1<a2)
asm("mov r0, #0 ");
asm("mvnvs r0, #0 "); // if a1<a2 r0=-1
asm("moveq r0, #1 "); // if a1>a2 r0=+1
__POPRET("");
// Compare two TReal64s in r0,r1 and r2,r3.
// Return 1 if r0,r1<r2,r3
// Return 2 if r0,r1=r2,r3
// Return 4 if r0,r1>r2,r3
// Return 8 if unordered
// Registers r0,r1,r12 modified
asm("CompareTReal64: ");
#ifndef __DOUBLE_WORDS_SWAPPED__
asm("mov r12, r0 ");
asm("mov r0, r1 ");
asm("mov r1, r12 ");
asm("mov r12, r2 ");
asm("mov r2, r3 ");
asm("mov r3, r12 ");
#endif
asm("mov r12, r0, lsr #20 ");
asm("bic r12, r12, #0x800 "); // r12=first operand exponent
asm("add r12, r12, #1 "); // add 1 to get usable compare value
asm("cmp r12, #0x800 "); // check if first operand is a NaN
asm("bne CompareTReal64a ");
asm("movs r12, r0, lsl #12 "); // exponent=7FF, check mantissa
asm("cmpeq r1, #0 ");
asm("movne r0, #8 "); // if not zero, 1st op is a NaN so result is unordered
__JUMP(ne,lr);
asm("CompareTReal64a: ");
asm("mov r12, r2, lsr #20 ");
asm("bic r12, r12, #0x800 "); // r12=second operand exponent
asm("add r12, r12, #1 "); // add 1 to get usable compare value
asm("cmp r12, #0x800 "); // check if second operand is a NaN
asm("bne CompareTReal64b ");
asm("movs r12, r2, lsl #12 "); // exponent=7FF, check mantissa
asm("cmpeq r3, #0 ");
asm("movne r0, #8 "); // if not zero, 2nd op is a NaN so result is unordered
__JUMP(ne,lr);
asm("CompareTReal64b: ");
asm("bics r12, r0, #0x80000000 "); // check if first operand is zero (can be +0 or -0)
asm("cmpeq r1, #0 ");
asm("moveq r0, #0 "); // if it is, make it +0
asm("bics r12, r2, #0x80000000 "); // check if second operand is zero (can be +0 or -0)
asm("cmpeq r3, #0 ");
asm("moveq r2, #0 "); // if it is, make it +0
asm("teq r0, r2 "); // test if signs different
asm("bmi CompareTReal64c "); // branch if different
asm("cmp r0, r2 "); // if same, check exponents + mantissas
asm("cmpeq r1, r3 ");
asm("moveq r0, #2 "); // if equal, return 2
__JUMP(eq,lr);
asm("movhi r0, #4 "); // if 1st operand > 2nd operand, r0=4
asm("movcc r0, #1 "); // if 1st operand < 2nd operand, r0=1
asm("cmp r2, #0 "); // check signs
asm("eormi r0, r0, #5 "); // if negative, switch 1 and 4
__JUMP(,lr);
asm("CompareTReal64c: "); // come here if signs different
asm("cmp r0, #0 "); // check sign of r0
asm("movpl r0, #4 "); // if first operand nonnegative, return 4
asm("movmi r0, #1 "); // if first operand negative, return 1
__JUMP(,lr);
}
__NAKED__ EXPORT_C TInt __eqsf2(TReal32 /*a1*/, TReal32 /*a2*/)
//
// Compare if two floats are equal
//
{
// a1 in r0, a2 in r1 on entry
asm("stmfd sp!, {lr} ");
asm("bl CompareTReal32 "); // compare the two numbers
asm("tst r0, #2 ");
asm("movne r0, #0 "); // if ordered and equal return 0
asm("moveq r0, #1 "); // else return 1
__POPRET("");
}
__NAKED__ EXPORT_C TInt __eqdf2(TReal64 /*a1*/, TReal64 /*a2*/)
//
// Compare if two doubles are equal
//
{
// a1 in r0,r1, a2 in r2,r3 on entry
asm("stmfd sp!, {lr} ");
asm("bl CompareTReal64 "); // compare the two numbers
asm("tst r0, #2 ");
asm("movne r0, #0 "); // if ordered and equal return 0
asm("moveq r0, #1 "); // else return 1
__POPRET("");
}
__NAKED__ EXPORT_C TInt __nesf2(TReal32 /*a1*/, TReal32 /*a2*/)
//
// Compare if two floats are not equal
//
{
// a1 in r0, a2 in r1 on entry
asm("stmfd sp!, {lr} ");
asm("bl CompareTReal32 "); // compare the two numbers
asm("tst r0, #5 "); // test if ordered and unequal
asm("moveq r0, #0 "); // if equal or unordered return 0
asm("movne r0, #1 "); // if ordered and unequal return 1
__POPRET("");
}
__NAKED__ EXPORT_C TInt __nedf2(TReal64 /*a1*/, TReal64 /*a2*/)
//
// Compare if two doubles are not equal
//
{
// a1 in r0,r1, a2 in r2,r3 on entry
asm("stmfd sp!, {lr} ");
asm("bl CompareTReal64 "); // compare the two numbers
asm("tst r0, #5 "); // test if ordered and unequal
asm("moveq r0, #0 "); // if equal or unordered return 0
asm("movne r0, #1 "); // if ordered and unequal return 1
__POPRET("");
}
__NAKED__ EXPORT_C TInt __gtsf2(TReal32 /*a1*/, TReal32 /*a2*/)
//
// Compare if one float is greater than another
//
{
// a1 in r0, a2 in r1 on entry
asm("stmfd sp!, {lr} ");
asm("bl CompareTReal32 "); // compare the two numbers
asm("tst r0, #4 "); // test if ordered and a1>a2
asm("movne r0, #1 "); // if ordered and a1>a2 return +1
asm("mvneq r0, #0 "); // else return -1
__POPRET("");
}
__NAKED__ EXPORT_C TInt __gtdf2(TReal64 /*a1*/, TReal64 /*a2*/)
//
// Compare if one double is greater than another
//
{
// a1 in r0,r1, a2 in r2,r3 on entry
asm("stmfd sp!, {lr} ");
asm("bl CompareTReal64 "); // compare the two numbers
asm("tst r0, #4 "); // test if ordered and a1>a2
asm("movne r0, #1 "); // if ordered and a1>a2 return +1
asm("mvneq r0, #0 "); // else return -1
__POPRET("");
}
__NAKED__ EXPORT_C TInt __gesf2(TReal32 /*a1*/, TReal32 /*a2*/)
//
// Compare if one float is greater than or equal to another
//
{
// a1 in r0, a2 in r1 on entry
asm("stmfd sp!, {lr} ");
asm("bl CompareTReal32 "); // compare the two numbers
asm("tst r0, #6 "); // test if ordered and a1>=a2
asm("movne r0, #1 "); // if ordered and a1>=a2 return +1
asm("mvneq r0, #0 "); // else return -1
__POPRET("");
}
__NAKED__ EXPORT_C TInt __gedf2(TReal64 /*a1*/, TReal64 /*a2*/)
//
// Compare if one double is greater than or equal to another
//
{
// a1 in r0,r1, a2 in r2,r3 on entry
asm("stmfd sp!, {lr} ");
asm("bl CompareTReal64 "); // compare the two numbers
asm("tst r0, #6 "); // test if ordered and a1>=a2
asm("movne r0, #1 "); // if ordered and a1>=a2 return +1
asm("mvneq r0, #0 "); // else return -1
__POPRET("");
}
__NAKED__ EXPORT_C TInt __ltsf2(TReal32 /*a1*/, TReal32 /*a2*/)
//
// Compare if one float is less than another
//
{
// a1 in r0, a2 in r1 on entry
asm("stmfd sp!, {lr} ");
asm("bl CompareTReal32 "); // compare the two numbers
asm("tst r0, #1 "); // test if ordered and a1<a2
asm("mvnne r0, #0 "); // if ordered and a1<a2 return -1
asm("moveq r0, #1 "); // else return +1
__POPRET("");
}
__NAKED__ EXPORT_C TInt __ltdf2(TReal64 /*a1*/, TReal64 /*a2*/)
//
// Compare if one double is less than another
//
{
// a1 in r0,r1, a2 in r2,r3 on entry
asm("stmfd sp!, {lr} ");
asm("bl CompareTReal64 "); // compare the two numbers
asm("tst r0, #1 "); // test if ordered and a1<a2
asm("mvnne r0, #0 "); // if ordered and a1<a2 return -1
asm("moveq r0, #1 "); // else return +1
__POPRET("");
}
__NAKED__ EXPORT_C TInt __lesf2(TReal32 /*a1*/, TReal32 /*a2*/)
//
// Compare if one float is less than or equal to another
//
{
// a1 in r0, a2 in r1 on entry
asm("stmfd sp!, {lr} ");
asm("bl CompareTReal32 "); // compare the two numbers
asm("tst r0, #3 "); // test if ordered and a1<=a2
asm("mvnne r0, #0 "); // if ordered and a1<=a2 return -1
asm("moveq r0, #1 "); // else return +1
__POPRET("");
}
__NAKED__ EXPORT_C TInt __ledf2(TReal64 /*a1*/, TReal64 /*a2*/)
//
// Compare if one double is less than or equal to another
//
{
// a1 in r0,r1, a2 in r2,r3 on entry
asm("stmfd sp!, {lr} ");
asm("bl CompareTReal64 "); // compare the two numbers
asm("tst r0, #3 "); // test if ordered and a1<=a2
asm("mvnne r0, #0 "); // if ordered and a1<=a2 return -1
asm("moveq r0, #1 "); // else return +1
__POPRET("");
}
__NAKED__ EXPORT_C TReal32 __mulsf3(TReal32 /*a1*/,TReal32 /*a2*/)
//
// Multiply two floats
//
{
// a1 is in r0, a2 in r1 on entry; return with answer in r0
asm("stmfd sp!, {r4-r7,lr} ");
asm("bl ConvertTReal32ToTRealX "); // convert a2 to TRealX in r1,r2,r3
asm("mov r4, r1 "); // move into r4,r5,r6
asm("mov r5, r2 ");
asm("mov r6, r3 ");
asm("mov r1, r0 "); // a1 into r1
asm("bl ConvertTReal32ToTRealX "); // convert a1 to TRealX in r1,r2,r3
asm("bl TRealXMultiply "); // multiply a1*a2, result in r1,r2,r3
asm("bl TRealXGetTReal32 "); // convert result to TReal32 in r0, error code in r12
asm("cmp r12, #0 "); // check error code
__CPOPRET(eq,"r4-r7,");
asm("stmfd sp!, {r0} "); // save result
asm("mov r0, r12 "); // error code into r0
asm("bl __math_exception "); // raise exception
__POPRET("r0,r4-r7,");
}
__NAKED__ EXPORT_C TReal64 __muldf3(TReal64 /*a1*/, TReal64 /*a2*/)
//
// Multiply two doubles
//
{
// a1 is in r0,r1 a2 in r2,r3 on entry; return with answer in r0,r1
asm("stmfd sp!, {r4-r8,lr} ");
asm("mov r7, r2 "); // save a2
asm("mov r8, r3 ");
asm("mov r2, r1 "); // a1 into r1,r2
asm("mov r1, r0 ");
asm("bl ConvertTReal64ToTRealX "); // convert a1 to TRealX in r1,r2,r3
asm("mov r4, r1 "); // move into r4,r5,r6
asm("mov r5, r2 ");
asm("mov r6, r3 ");
asm("mov r1, r7 "); // a2 into r1,r2
asm("mov r2, r8 ");
asm("bl ConvertTReal64ToTRealX "); // convert a2 to TRealX in r1,r2,r3
asm("bl TRealXMultiply "); // multiply a1*a2, result in r1,r2,r3
asm("bl TRealXGetTReal64 "); // convert result to TReal64 in r0,r1 error code in r12
asm("cmp r12, #0 "); // check error code
__CPOPRET(eq,"r4-r8,");
asm("stmfd sp!, {r0,r1} "); // save result
asm("mov r0, r12 "); // error code into r0
asm("bl __math_exception "); // raise exception
__POPRET("r0,r1,r4-r8,");
}
__NAKED__ EXPORT_C TReal32 __divsf3(TReal32 /*a1*/, TReal32 /*a2*/)
//
// Divide two floats
//
{
// a1 is in r0, a2 in r1 on entry; return with answer in r0
asm("stmfd sp!, {r4-r9,lr} ");
asm("bl ConvertTReal32ToTRealX "); // convert a2 to TRealX in r1,r2,r3
asm("mov r4, r1 "); // move into r4,r5,r6
asm("mov r5, r2 ");
asm("mov r6, r3 ");
asm("mov r1, r0 "); // a1 into r1
asm("bl ConvertTReal32ToTRealX "); // convert a1 to TRealX in r1,r2,r3
asm("bl TRealXDivide "); // divide a1/a2, result in r1,r2,r3 error code in r12
asm("mov r9, r12 "); // save error code in case it's division by zero
asm("bl TRealXGetTReal32 "); // convert result to TReal32 in r0, error code in r12
asm("cmn r9, #41 "); // check for KErrDivideByZero
asm("moveq r12, r9 ");
asm("cmp r12, #0 "); // check error code
__CPOPRET(eq,"r4-r9,");
asm("stmfd sp!, {r0} "); // save result
asm("mov r0, r12 "); // error code into r0
asm("bl __math_exception "); // raise exception
__POPRET("r0,r4-r9,");
}
__NAKED__ EXPORT_C TReal64 __divdf3(TReal64 /*a1*/, TReal64 /*a2*/)
//
// Divide two doubles
//
{
// a1 is in r0,r1 a2 in r2,r3 on entry; return with answer in r0,r1
asm("stmfd sp!, {r4-r9,lr} ");
asm("mov r7, r0 "); // save a1
asm("mov r8, r1 ");
asm("mov r1, r2 "); // a2 into r1,r2
asm("mov r2, r3 ");
asm("bl ConvertTReal64ToTRealX "); // convert a2 to TRealX in r1,r2,r3
asm("mov r4, r1 "); // move into r4,r5,r6
asm("mov r5, r2 ");
asm("mov r6, r3 ");
asm("mov r1, r7 "); // a1 into r1,r2
asm("mov r2, r8 ");
asm("bl ConvertTReal64ToTRealX "); // convert a1 to TRealX in r1,r2,r3
asm("bl TRealXDivide "); // divide a1/a2, result in r1,r2,r3
asm("mov r9, r12 "); // save error code in case it's division by zero
asm("bl TRealXGetTReal64 "); // convert result to TReal64 in r0,r1 error code in r12
asm("cmn r9, #41 "); // check for KErrDivideByZero
asm("moveq r12, r9 ");
asm("cmp r12, #0 "); // check error code
__CPOPRET(eq,"r4-r9,");
asm("stmfd sp!, {r0,r1} "); // save result
asm("mov r0, r12 "); // error code into r0
asm("bl __math_exception "); // raise exception
__POPRET("r0,r1,r4-r9,");
}
__NAKED__ EXPORT_C TReal32 __negsf2(TReal32 /*a1*/)
//
// Negate a float
//
{
// a1 in r0 on entry, return value in r0
asm("eor r0, r0, #0x80000000 "); // change sign bit
__JUMP(,lr);
}
__NAKED__ EXPORT_C TReal64 __negdf2(TReal64 /*a1*/)
//
// Negate a double
//
{
// a1 in r0,r1 on entry, return value in r0,r1
asm("eor r0, r0, #0x80000000 "); // change sign bit
__JUMP(,lr);
}
__NAKED__ EXPORT_C TReal32 __floatsisf(TInt /*a1*/)
//
// Convert int to float
//
{
// a1 in r0 on entry, return value in r0
asm("cmp r0, #0 "); // test for zero or negative
__JUMP(eq,lr);
asm("and ip, r0, #0x80000000 "); // ip=bit 31 of r0 (sign bit)
asm("rsbmi r0, r0, #0 "); // if negative, negate it
asm("mov r2, #0x9E "); // r2=0x9E=exponent of 2^31
asm("cmp r0, #0x00010000 "); // normalise integer, adjusting exponent
asm("movcc r0, r0, lsl #16 ");
asm("subcc r2, r2, #16 ");
asm("cmp r0, #0x01000000 ");
asm("movcc r0, r0, lsl #8 ");
asm("subcc r2, r2, #8 ");
asm("cmp r0, #0x10000000 ");
asm("movcc r0, r0, lsl #4 ");
asm("subcc r2, r2, #4 ");
asm("cmp r0, #0x40000000 ");
asm("movcc r0, r0, lsl #2 ");
asm("subcc r2, r2, #2 ");
asm("cmp r0, #0x80000000 ");
asm("movcc r0, r0, lsl #1 ");
asm("subcc r2, r2, #1 ");
asm("and r1, r0, #0xFF "); // r1=bottom 8 bits=rounding bits
asm("cmp r1, #0x80 "); // check if we need to round up (carry=1 if we do)
asm("moveqs r1, r0, lsr #9 "); // if bottom 8 bits=0x80, set carry=LSB of mantissa
asm("addcss r0, r0, #0x100 "); // round up if necessary
asm("addcs r2, r2, #1 "); // if carry, increment exponent
asm("bic r0, r0, #0x80000000 "); // remove top bit (integer bit of mantissa implicit)
asm("mov r0, r0, lsr #8 "); // mantissa into r0 bits 0-22
asm("orr r0, r0, r2, lsl #23 "); // exponent into r0 bits 23-30
asm("orr r0, r0, ip "); // sign bit into r0 bit 31
__JUMP(,lr);
}
__NAKED__ EXPORT_C TReal64 __floatsidf(TInt /*a1*/)
//
// Convert int to double
//
{
// a1 in r0 on entry, return value in r0,r1
asm("cmp r0, #0 "); // test for zero or negative
asm("moveq r1, #0 "); // if zero, return 0
__JUMP(eq,lr);
asm("and ip, r0, #0x80000000 "); // ip=bit 31 of r0 (sign bit)
asm("rsbmi r0, r0, #0 "); // if negative, negate it
asm("mov r2, #0x400 "); // r2=0x41E=exponent of 2^31
asm("orr r2, r2, #0x1E ");
asm("cmp r0, #0x00010000 "); // normalise integer, adjusting exponent
asm("movcc r0, r0, lsl #16 ");
asm("subcc r2, r2, #16 ");
asm("cmp r0, #0x01000000 ");
asm("movcc r0, r0, lsl #8 ");
asm("subcc r2, r2, #8 ");
asm("cmp r0, #0x10000000 ");
asm("movcc r0, r0, lsl #4 ");
asm("subcc r2, r2, #4 ");
asm("cmp r0, #0x40000000 ");
asm("movcc r0, r0, lsl #2 ");
asm("subcc r2, r2, #2 ");
asm("cmp r0, #0x80000000 ");
asm("movcc r0, r0, lsl #1 ");
asm("subcc r2, r2, #1 ");
asm("bic r0, r0, #0x80000000 "); // remove top bit (integer bit of mantissa implicit)
asm("mov r1, r0, lsl #21 "); // low 11 bits of mantissa into r1
asm("mov r0, r0, lsr #11 "); // high 20 bits of mantissa into r0 bits 0-19
asm("orr r0, r0, r2, lsl #20 "); // exponent into r0 bits 20-30
asm("orr r0, r0, ip "); // sign bit into r0 bit 31
#ifndef __DOUBLE_WORDS_SWAPPED__
asm("mov ip, r0 ");
asm("mov r0, r1 ");
asm("mov r1, ip ");
#endif
__JUMP(,lr);
}
__NAKED__ EXPORT_C TInt __fixsfsi(TReal32 /*a1*/)
//
// Convert float to int
//
{
// a1 in r0 on entry, return value in r0
asm("mov r1, r0, lsr #23 ");
asm("and r1, r1, #0xFF "); // r1=exponent of a1
asm("cmp r1, #0xFF "); // check for NaN
asm("bne fixsfsi1 ");
asm("movs r2, r0, lsl #9 "); // exponent=FF, check mantissa
asm("movne r0, #0 "); // if non-zero, a1 is a NaN so return 0
__JUMP(ne,lr);
asm("fixsfsi1: ");
asm("rsbs r1, r1, #0x9E "); // r1=number of shifts to produce integer
asm("ble fixsfsi2 "); // if <=0, saturate result
asm("cmp r0, #0 "); // check sign bit
asm("orr r0, r0, #0x00800000 "); // set implicit integer bit
asm("mov r0, r0, lsl #8 "); // shift mantissa up so MSB is in MSB of r0
asm("mov r0, r0, lsr r1 "); // r0=absolute integer
asm("rsbmi r0, r0, #0 "); // if negative, negate
__JUMP(,lr);
asm("fixsfsi2: ");
asm("cmp r0, #0 "); // check sign
asm("mov r0, #0x80000000 ");
asm("subpl r0, r0, #1 "); // if -ve return 80000000, if +ve return 7FFFFFFF
__JUMP(,lr);
}
__NAKED__ EXPORT_C TInt __fixdfsi(TReal64 /*a1*/)
//
// Convert double to int
//
{
// a1 in r0,r1 on entry, return value in r0
#ifndef __DOUBLE_WORDS_SWAPPED__
asm("mov r2, r0 ");
asm("mov r0, r1 ");
asm("mov r1, r2 ");
#endif
asm("mov r2, r0, lsr #20 ");
asm("bic r2, r2, #0x800 "); // r1=exponent of a1
asm("add r3, r2, #1 ");
asm("cmp r3, #0x800 "); // check for NaN
asm("bne fixdfsi1 ");
asm("movs r3, r0, lsl #12 "); // exponent=FF, check mantissa
asm("cmpeq r1, #0 ");
asm("movne r0, #0 "); // if non-zero, a1 is a NaN so return 0
__JUMP(ne,lr);
asm("fixdfsi1: ");
asm("mov r3, #0x400 ");
asm("orr r3, r3, #0x1E "); // r3=0x41E (exponent of 2^31)
asm("subs r2, r3, r2 "); // r2=number of shifts to produce integer
asm("ble fixdfsi2 "); // if <=0, saturate result
asm("cmp r2, #31 "); // check if more than 31 shifts needed
asm("movhi r0, #0 "); // if so, underflow result to 0
__JUMP(hi,lr);
asm("cmp r0, #0 "); // check sign bit
asm("orr r0, r0, #0x00100000 "); // set implicit integer bit
asm("mov r0, r0, lsl #11 "); // shift mantissa up so MSB is in MSB of r0
asm("orr r0, r0, r1, lsr #21 "); // put in bits from r1
asm("mov r0, r0, lsr r2 "); // r0=absolute integer
asm("rsbmi r0, r0, #0 "); // if negative, negate
__JUMP(,lr);
asm("fixdfsi2: ");
asm("cmp r0, #0 "); // check sign
asm("mov r0, #0x80000000 ");
asm("subpl r0, r0, #1 "); // if -ve return 80000000, if +ve return 7FFFFFFF
__JUMP(,lr);
}
__NAKED__ EXPORT_C TReal64 __extendsfdf2(TReal32 /*a1*/)
//
// Convert a float to a double
//
{
// a1 in r0, return in r0,r1
asm("mov r3, r0, lsr #3 ");
asm("ands r3, r3, #0x0FF00000 "); // r3 bits 20-27 hold exponent, Z=1 if zero/denormal
asm("mov r1, r0, lsl #9 "); // r1 = TReal32 mantissa << 9
asm("and r0, r0, #0x80000000 "); // leave only sign bit in r0
asm("beq extendsfdf2a "); // branch if zero/denormal
asm("cmp r3, #0x0FF00000 "); // check for infinity or NaN
asm("orrcs r3, r3, #0x70000000 "); // if infinity or NaN, exponent = 7FF
asm("addcc r3, r3, #0x38000000 "); // else exponent = TReal32 exponent + 380
asm("orr r0, r0, r1, lsr #12 "); // top 20 mantissa bits into r0 bits 0-19
asm("mov r1, r1, lsl #20 "); // remaining mantissa bits in r1 bits 29-31
asm("orr r0, r0, r3 "); // exponent into r0 bits 20-30
asm("b 0f ");
asm("extendsfdf2a: "); // come here if zero or denormal
asm("cmp r1, #0 "); // check for zero
asm("beq 0f ");
asm("mov r3, #0x38000000 "); // else exponent = 380 (highest denormal exponent)
asm("cmp r1, #0x10000 "); // normalise mantissa, decrementing exponent as needed
asm("movcc r1, r1, lsl #16 ");
asm("subcc r3, r3, #0x01000000 ");
asm("cmp r1, #0x1000000 ");
asm("movcc r1, r1, lsl #8 ");
asm("subcc r3, r3, #0x00800000 ");
asm("cmp r1, #0x10000000 ");
asm("movcc r1, r1, lsl #4 ");
asm("subcc r3, r3, #0x00400000 ");
asm("cmp r1, #0x40000000 ");
asm("movcc r1, r1, lsl #2 ");
asm("subcc r3, r3, #0x00200000 ");
asm("cmp r1, #0x80000000 ");
asm("movcc r1, r1, lsl #1 ");
asm("subcc r3, r3, #0x00100000 ");
asm("add r1, r1, r1 "); // shift mantissa left one more to remove integer bit
asm("orr r0, r0, r1, lsr #12 "); // top 20 mantissa bits into r0 bits 0-19
asm("mov r1, r1, lsl #20 "); // remaining mantissa bits in r1 bits 29-31
asm("orr r0, r0, r3 "); // exponent into r0 bits 20-30
asm("0: ");
#ifndef __DOUBLE_WORDS_SWAPPED__
asm("mov r3, r0 ");
asm("mov r0, r1 ");
asm("mov r1, r3 ");
#endif
__JUMP(,lr);
}
__NAKED__ EXPORT_C TReal32 __truncdfsf2(TReal64 /*a1*/)
//
// Convert a double to a float
// Raises an exception if conversion results in an error
//
{
asm("stmfd sp!, {lr} ");
asm("bl TReal64GetTReal32 "); // do the conversion
asm("cmp r12, #0 "); // check error code
__CPOPRET(eq,"");
asm("stmfd sp!, {r0} "); // else save result
asm("mov r0, r12 "); // error code into r0
asm("bl __math_exception "); // raise exception
__POPRET("r0,");
// Convert TReal64 in r0,r1 to TReal32 in r0
// Return error code in r12
// r0-r3, r12 modified
// NB This function is purely internal to EUSER and therefore IS ONLY EVER CALLED IN ARM MODE.
asm("TReal64GetTReal32: ");
#ifndef __DOUBLE_WORDS_SWAPPED__
asm("mov r2, r0 ");
asm("mov r0, r1 ");
asm("mov r1, r2 ");
#endif
asm("mov r12, r0, lsr #20 ");
asm("bic r12, r12, #0x800 "); // r12=a1 exponent
asm("sub r12, r12, #0x380 "); // r12=exp in - 380 = result exponent if in range
asm("cmp r12, #0xFF "); // check if input exponent too big for TReal32
asm("bge TReal64GetTReal32a "); // branch if it is
asm("mov r2, r0, lsl #11 "); // left justify mantissa in r2:r1
asm("orr r2, r2, r1, lsr #21 ");
asm("mov r1, r1, lsl #11 ");
asm("orr r2, r2, #0x80000000 "); // set implied integer bit in mantissa
asm("cmp r12, #0 ");
asm("bgt TReal64GetTReal32b "); // branch if normalised result
asm("cmn r12, #23 "); // check for total underflow or zero
asm("bge TReal64GetTReal32e "); // skip if not
asm("bics r2, r0, #0x80000000 "); // check if input value zero
asm("cmpeq r1, #0 ");
asm("moveq r12, #0 "); // if zero return KErrNone
asm("mvnne r12, #9 "); // else return KErrUnderflow
asm("and r0, r0, #0x80000000 "); // return zero of appropriate sign
asm("mov r1, #0 ");
__JUMP(,lr);
asm("TReal64GetTReal32e: "); // result will be a denormal
asm("add r12, r12, #31 "); // r12=32-mantissa shift required = 32-(1-r12)
asm("movs r3, r1, lsl r12 "); // r3=lost bits when r2:r1 is shifted
asm("orrne lr, lr, #1 "); // if these are not zero, set rounded down flag
asm("rsb r3, r12, #32 ");
asm("mov r1, r1, lsr r3 ");
asm("orr r1, r1, r2, lsl r12 ");
asm("mov r2, r2, lsr r3 "); // r2 top 24 bits now give unrounded result mantissa
asm("mov r12, #0 "); // result exponent will be zero
asm("TReal64GetTReal32b: ");
asm("movs r3, r2, lsl #24 "); // top 8 truncated bits into top byte of r3
asm("bpl TReal64GetTReal32c "); // if top bit clear, truncate
asm("cmp r3, #0x80000000 ");
asm("cmpeq r1, #0 "); // compare rounding bits to 1000...
asm("bhi TReal64GetTReal32d "); // if >, round up
asm("tst lr, #1 "); // check rounded-down flag
asm("bne TReal64GetTReal32d "); // if rounded down, round up
asm("tst r2, #0x100 "); // else round to even - test LSB of result mantissa
asm("beq TReal64GetTReal32c "); // if zero, truncate, else round up
asm("TReal64GetTReal32d: "); // come here to round up
asm("adds r2, r2, #0x100 "); // increment the mantissa
asm("movcs r2, #0x80000000 "); // if carry, mantissa=800000
asm("addcs r12, r12, #1 "); // and increment exponent
asm("cmpmi r12, #1 "); // if mantissa normalised, check exponent>0
asm("movmi r12, #1 "); // if normalised and exponent=0, set exponent to 1
asm("TReal64GetTReal32c: "); // come here to truncate
asm("and r0, r0, #0x80000000 "); // leave only sign bit in r0
asm("orr r0, r0, r12, lsl #23 "); // exponent into r0 bits 23-30
asm("bic r2, r2, #0x80000000 "); // remove integer bit from mantissa
asm("orr r0, r0, r2, lsr #8 "); // non-integer mantissa bits into r0 bits 0-22
asm("cmp r12, #0xFF "); // check for overflow
asm("mvneq r12, #8 "); // if overflow, return KErrOverflow
asm("biceq pc, lr, #3 ");
asm("bics r1, r0, #0x80000000 "); // check for underflow
asm("mvneq r12, #9 "); // if underflow return KErrUnderflow
asm("movne r12, #0 "); // else return KErrNone
asm("bic pc, lr, #3 ");
asm("TReal64GetTReal32a: "); // come here if overflow, infinity or NaN
asm("add r3, r12, #1 ");
asm("cmp r3, #0x480 "); // check for infinity or NaN
asm("movne r1, #0 "); // if not, set mantissa to 0 for infinity result
asm("movne r0, r0, lsr #20 ");
asm("movne r0, r0, lsl #20 ");
asm("mov r1, r1, lsr #29 "); // assemble 23 bit mantissa in r1
asm("orr r1, r1, r0, lsl #3 ");
asm("bic r1, r1, #0xFF000000 ");
asm("and r0, r0, #0x80000000 "); // leave only sign in r0
asm("orr r0, r0, #0x7F000000 "); // r0 bits 23-30 = FF = exponent
asm("orr r0, r0, #0x00800000 ");
asm("orr r0, r0, r1 "); // r0 bits 0-22 = result mantissa
asm("movs r12, r0, lsl #9 "); // check if result is infinity or NaN
asm("mvneq r12, #8 "); // if infinity return KErrOverflow
asm("mvnne r12, #5 "); // else return KErrArgument
asm("bic pc, lr, #3 ");
}
} // end of extern "C" declaration
#endif
#endif