Convert Kernelhwsrv package from SFL to EPL
kernel\eka\compsupp is subject to the ARM EABI LICENSE
userlibandfileserver\fatfilenameconversionplugins\unicodeTables is subject to the Unicode license
kernel\eka\kernel\zlib is subject to the zlib license
// Copyright (c) 2005-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32/euser/us_htab.cpp
//
//
#include "us_std.h"
#include <e32hashtab.h>
const TUint KDefaultIndexBits = 4;
const TUint KMaxIndexBits = 28;
extern TUint32 DefaultIntegerHash(const TAny*);
extern TUint32 DefaultStringHash(const TUint8*, TInt);
extern TUint32 DefaultWStringHash(const TUint16*, TInt);
#define _DEBUG_HASH_TABLE
#ifndef _DEBUG
#undef _DEBUG_HASH_TABLE
#endif
#define __PANIC(x) Panic(x)
EXPORT_C RHashTableBase::RHashTableBase(TGeneralHashFunction32 aHash, TGeneralIdentityRelation aId, TInt aElementSize, TInt aKeyOffset)
: iHashFunc(aHash),
iIdFunc(aId),
iIndexBits(TUint8(KDefaultIndexBits)),
iGeneration(EGen0),
iPad0(0),
iElements(0),
iCount(0),
iPad1(0),
iPad2(0)
{
__ASSERT_ALWAYS(aHash!=NULL, __PANIC(EHashTableNoHashFunc));
__ASSERT_ALWAYS(aId!=NULL, __PANIC(EHashTableNoIdentityRelation));
__ASSERT_ALWAYS(aElementSize>0, __PANIC(EHashTableBadElementSize));
__ASSERT_ALWAYS(aKeyOffset==0 || TUint(aKeyOffset-4)<(TUint)Min(252,aElementSize-4), __PANIC(EHashTableBadKeyOffset));
iElementSize = aElementSize;
iKeyOffset = (TUint8)aKeyOffset; // 0 means ptr at offset 4
iEmptyCount = 0;
SetThresholds();
}
void RHashTableBase::SetThresholds()
{
TUint32 max = 1u << iIndexBits;
if (iIndexBits == KMaxIndexBits)
iUpperThreshold = KMaxTUint;
else
iUpperThreshold = (max>>1) + (max>>2); // 3/4 of max
if (iIndexBits == KDefaultIndexBits)
iLowerThreshold = 0;
else
iLowerThreshold = max >> 2; // 1/4 of max
// clean table if <1/8 of entries empty
iCleanThreshold = max>>3;
}
EXPORT_C void RHashTableBase::Close()
{
User::Free(iElements);
new (this) RHashTableBase(iHashFunc, iIdFunc, iElementSize, iKeyOffset);
}
EXPORT_C TInt RHashTableBase::Count() const
{
return (TInt)iCount;
}
EXPORT_C TAny* RHashTableBase::Find(const TAny* aKey, TInt aOffset) const
{
if (!iElements)
return NULL;
TUint32 hash = (*iHashFunc)(aKey);
TUint32 ix = hash >> (32 - iIndexBits); // top bits of hash used as initial index
hash = (hash &~ EStateMask) | iGeneration;
TUint32 mask = (1u << iIndexBits) - 1; // iIndexBits 1's
TUint32 step = (hash >> 1) & mask; // iIndexBits-1 LSBs of hash followed by 1
FOREVER
{
const SElement* e = ElementC(ix);
if (e->iHash==hash && (*iIdFunc)(aKey, GetKey(e)))
{
if (aOffset >= 0)
return ((TUint8*)e) + aOffset;
return *(TAny**)((TUint8*)e - aOffset);
}
if (e->IsEmpty())
break;
ix = (ix + step) & mask;
}
return NULL;
}
EXPORT_C TAny* RHashTableBase::FindL(const TAny* aKey, TInt aOffset) const
{
TAny* p = Find(aKey, aOffset);
if (!p)
User::Leave(KErrNotFound);
return p;
}
TInt RHashTableBase::Insert(const TAny* aKey, TAny*& aElement)
{
TInt r = KErrNone;
TUint32 max = 1u << iIndexBits;
if (!iElements)
{
iElements = User::AllocZ(max * iElementSize);
if (!iElements)
return KErrNoMemory;
iEmptyCount = max;
}
else if (iCount > iUpperThreshold)
{
r = ExpandTable(iIndexBits+1);
if (iEmptyCount>1)
r = KErrNone; // doesn't matter if expand fails unless there is only one empty slot left
max = 1u << iIndexBits;
}
else if (iEmptyCount < iCleanThreshold)
ReformTable(iIndexBits);
TUint32 hash = (*iHashFunc)(aKey);
TUint32 ix = hash >> (32 - iIndexBits);
TUint32 mask = max - 1;
hash = (hash &~ EStateMask) | iGeneration;
TUint32 step = (hash >> 1) & mask; // iIndexBits-1 LSBs of hash followed by 1
SElement* e = 0;
SElement* d = 0;
FOREVER
{
e = Element(ix);
if (e->IsEmpty())
break;
if (e->IsDeleted())
{
if (!d)
d = e;
}
else if (e->iHash==hash && (*iIdFunc)(aKey, GetKey(e)))
{
aElement = e;
return KErrNone; // duplicate so always succeed
}
ix = (ix + step) & mask;
}
if (d)
e = d; // if we can reuse a deleted slot, always succeed
else
{
if (r!=KErrNone)
return r; // new slot needed - if we failed to expand, fail the request here
--iEmptyCount;
}
e->iHash = hash;
aElement = e;
++iCount;
return KErrNone;
}
EXPORT_C TInt RHashTableBase::PtrInsert(const TAny* aKey, const TAny* aValue)
{
const TAny** e;
TInt r = Insert(aKey, (TAny*&)e);
if (r==KErrNone)
{
e[1] = aKey;
if (iElementSize>=12)
e[2] = aValue;
}
return r;
}
EXPORT_C void RHashTableBase::PtrInsertL(const TAny* aKey, const TAny* aValue)
{
const TAny** e;
User::LeaveIfError(Insert(aKey, (TAny*&)e));
e[1] = aKey;
if (iElementSize>=12)
e[2] = aValue;
}
EXPORT_C TInt RHashTableBase::ValueInsert(const TAny* aKey, TInt aKeySize, const TAny* aValue, TInt aValueOffset, TInt aValueSize)
{
TUint8* e;
TInt r = Insert(aKey, (TAny*&)e);
if (r==KErrNone)
{
memcpy(e+iKeyOffset, aKey, aKeySize);
if (aValue)
memcpy(e+aValueOffset, aValue, aValueSize);
}
return r;
}
EXPORT_C void RHashTableBase::ValueInsertL(const TAny* aKey, TInt aKeySize, const TAny* aValue, TInt aValueOffset, TInt aValueSize)
{
TUint8* e;
User::LeaveIfError(Insert(aKey, (TAny*&)e));
memcpy(e+iKeyOffset, aKey, aKeySize);
if (aValue)
memcpy(e+aValueOffset, aValue, aValueSize);
}
EXPORT_C TInt RHashTableBase::Remove(const TAny* aKey)
{
SElement* e = (SElement*)Find(aKey);
if (!e)
return KErrNotFound;
e->SetDeleted();
if (--iCount == 0)
{
Close();
return KErrNone;
}
if (iCount < iLowerThreshold)
ShrinkTable();
return KErrNone;
}
void RHashTableBase::ReformTable(TUint aNewIndexBits)
{
if (!iElements)
return;
TUint32 max = 1u << iIndexBits;
TUint32 newmax = 1u << aNewIndexBits;
TUint32 newmask = newmax - 1;
TUint32 ix = 0;
TUint32 newsh = 32 - aNewIndexBits;
iGeneration ^= 1; // change generation so we know which entries have been updated
for (; ix < max; ++ix)
{
SElement* e = Element(ix);
if (e->IsEmpty())
continue; // skip empty entries
if (e->IsDeleted())
{
e->SetEmpty(); // mark deleted entries as empty
continue;
}
if ((e->iHash & EStateMask) == iGeneration) // entry has been processed so leave it alone
continue;
TUint32 pos = e->iHash >> newsh;
if (pos == ix)
{
e->iHash ^= 1; // entry is in first position for its hash so leave it there
continue;
}
TUint32 step = (e->iHash >> 1) & newmask;
FOREVER
{
SElement* d = Element(pos);
if (d->IsEmptyOrDeleted())
{
memcpy(d, e, iElementSize);
d->iHash &= ~EStateMask;
d->iHash |= iGeneration; // mark it as processed
e->SetEmpty(); // remove old entry
break;
}
if ((d->iHash & EStateMask) != iGeneration)
{
if (pos == ix)
{
e->iHash ^= 1; // entry is already in correct position so leave it there
break;
}
if ((d->iHash >> newsh) == pos)
{
// candidate for replacement is in correct position so leave it and look elsewhere
d->iHash ^= 1;
}
else
{
Mem::Swap(d, e, iElementSize); // switch entries
d->iHash ^= 1; // mark entry as processed
--ix; // process current position again
break;
}
}
pos = (pos + step) & newmask;
}
}
iIndexBits = (TUint8)aNewIndexBits;
iEmptyCount = newmax - iCount;
SetThresholds();
#ifdef _DEBUG_HASH_TABLE
VerifyReform();
#endif
}
#ifdef _DEBUG_HASH_TABLE
void RHashTableBase::VerifyReform()
{
TUint32 dcount;
ConsistencyCheck(&dcount);
__ASSERT_ALWAYS(dcount==0, __PANIC(EHashTableDeletedEntryAfterReform));
}
#endif
EXPORT_C void RHashTableBase::ConsistencyCheck(TUint32* aDeleted, TUint32* aComparisons, TUint32 aChainLimit, TUint32* aChainInfo)
{
#ifdef _DEBUG_HASH_TABLE
TUint32 count = 0;
TUint32 dcount = 0;
TUint32 ecount = 0;
TUint32 max = 1u << iIndexBits;
TUint32 mask = max - 1;
TUint32 sh = 32 - iIndexBits;
TUint32 ix = 0;
TUint32 cmp = 0;
if (aChainInfo)
memclr(aChainInfo, aChainLimit*sizeof(TUint32));
if (iElements)
{
for (ix = 0; ix < max; ++ix)
{
SElement* e = Element(ix);
if (e->IsEmpty())
{
++ecount;
continue;
}
if (e->IsDeleted())
{
++dcount;
continue;
}
++count;
__ASSERT_ALWAYS((e->iHash & EStateMask) == iGeneration, __PANIC(EHashTableBadGeneration));
TUint32 hash = (*iHashFunc)(GetKey(e));
hash = (hash &~ EStateMask) | iGeneration;
__ASSERT_ALWAYS(e->iHash == hash, __PANIC(EHashTableBadHash));
TUint32 pos = hash >> sh;
TUint32 step = (hash >> 1) & mask;
SElement* f = 0;
TUint32 cl = 0;
FOREVER
{
f = Element(pos);
if (f->IsEmpty())
{
f = 0;
break;
}
++cl;
if (!f->IsDeleted() && f->iHash==hash)
{
++cmp;
if (e==f || (*iIdFunc)(GetKey(e), GetKey(f)))
break;
}
pos = (pos + step) & mask;
}
__ASSERT_ALWAYS(e==f, __PANIC(EHashTableEntryLost));
if (aChainInfo && cl<aChainLimit)
++aChainInfo[cl];
}
}
if (aDeleted)
*aDeleted = dcount;
if (aComparisons)
*aComparisons = cmp;
__ASSERT_ALWAYS(iCount==count, __PANIC(EHashTableCountWrong));
__ASSERT_ALWAYS(iEmptyCount==ecount, __PANIC(EHashTableEmptyCountWrong));
#else
if (aDeleted)
*aDeleted = KMaxTUint;
if (aComparisons)
*aComparisons = KMaxTUint;
if (aChainInfo)
memclr(aChainInfo, aChainLimit*sizeof(TUint32));
#endif
}
void RHashTableBase::ShrinkTable()
{
ReformTable(iIndexBits - 1);
TUint32 max = 1u << iIndexBits;
iElements = User::ReAlloc(iElements, max * iElementSize);
}
TInt RHashTableBase::ExpandTable(TInt aNewIndexBits)
{
TUint32 newmax = 1u << aNewIndexBits;
if (!iElements)
{
iElements = User::AllocZ(newmax * iElementSize);
if (!iElements)
return KErrNoMemory;
iIndexBits = (TUint8)aNewIndexBits;
iEmptyCount = newmax;
SetThresholds();
return KErrNone;
}
TUint32 max = 1u << iIndexBits;
TAny* p = User::ReAlloc(iElements, newmax * iElementSize);
if (!p)
return KErrNoMemory;
iElements = p;
memclr(Element(max), (newmax-max)*iElementSize);
ReformTable(aNewIndexBits);
return KErrNone;
}
EXPORT_C TInt RHashTableBase::Reserve(TInt aCount)
{
__ASSERT_ALWAYS((TUint)aCount<0x40000000u, __PANIC(EHashTableBadReserveCount));
TInt new_ixb = iIndexBits;
TUint grow_threshold = iUpperThreshold;
while (TUint(aCount) > grow_threshold)
{
grow_threshold <<= 1;
++new_ixb;
}
// Expand the table if it isn't large enough to fit aCount elements in it
// or if the table hasn't yet been created, create it with ExpandTable
if (new_ixb > TInt(iIndexBits) || !iElements)
{
return ExpandTable(new_ixb);
}
return KErrNone;
}
EXPORT_C void RHashTableBase::ReserveL(TInt aCount)
{
User::LeaveIfError(Reserve(aCount));
}
EXPORT_C THashTableIterBase::THashTableIterBase(const RHashTableBase& aTable)
: iTbl(aTable), iIndex(-1), iPad1(0), iPad2(0)
{
}
EXPORT_C void THashTableIterBase::Reset()
{
iIndex = -1;
}
EXPORT_C const TAny* THashTableIterBase::Next(TInt aOffset)
{
TInt max = 1 << iTbl.iIndexBits;
if (!iTbl.iElements)
return NULL;
__ASSERT_DEBUG(iIndex>=-1 && iIndex<=max, __PANIC(EHashTableIterNextBadIndex));
if (iIndex < max)
++iIndex;
for(; iIndex < max; ++iIndex)
{
const RHashTableBase::SElement* e = iTbl.ElementC(iIndex);
if (!e->IsEmptyOrDeleted())
{
if (aOffset >= 0)
return (TUint8*)e + aOffset;
return *(const TAny**)((TUint8*)e - aOffset);
}
}
return NULL;
}
EXPORT_C const TAny* THashTableIterBase::Current(TInt aOffset) const
{
TInt max = 1 << iTbl.iIndexBits;
if (!iTbl.iElements || iIndex<0 || iIndex>=max)
return NULL;
const RHashTableBase::SElement* e = iTbl.ElementC(iIndex);
__ASSERT_DEBUG(!e->IsEmptyOrDeleted(), __PANIC(EHashTableIterCurrentBadIndex));
if (aOffset >= 0)
return (TUint8*)e + aOffset;
return *(const TAny**)((TUint8*)e - aOffset);
}
EXPORT_C void THashTableIterBase::RemoveCurrent()
{
TInt max = 1 << iTbl.iIndexBits;
if (!iTbl.iElements || iIndex<0 || iIndex>=max)
return;
RHashTableBase& tbl = (RHashTableBase&)iTbl;
RHashTableBase::SElement* e = tbl.Element(iIndex);
__ASSERT_DEBUG(!e->IsEmptyOrDeleted(), __PANIC(EHashTableIterCurrentBadIndex));
// mark entry as deleted but don't shrink the array since that will mess up the iteration
e->SetDeleted();
if (--tbl.iCount == 0)
{
memclr(tbl.iElements, max * tbl.iElementSize);
tbl.iEmptyCount = max;
tbl.iGeneration = RHashTableBase::EGen0;
}
}
/**
@publishedAll
@released
Calculate a 32 bit hash from an 8 bit descriptor.
@param aDes The descriptor to be hashed.
@return The calculated 32 bit hash value.
*/
EXPORT_C TUint32 DefaultHash::Des8(const TDesC8& aDes)
{
return DefaultStringHash(aDes.Ptr(), aDes.Length());
}
/**
@publishedAll
@released
Calculate a 32 bit hash from a 16 bit descriptor.
@param aDes The descriptor to be hashed.
@return The calculated 32 bit hash value.
*/
EXPORT_C TUint32 DefaultHash::Des16(const TDesC16& aDes)
{
return DefaultWStringHash(aDes.Ptr(), aDes.Size());
}
/**
@publishedAll
@released
Calculate a 32 bit hash from a TInt pointer.
@param aPtr The TInt pointer to be hashed.
@return The calculated 32 bit hash value.
*/
EXPORT_C TUint32 DefaultHash::IntegerPtr(TInt* const& aPtr)
{
return Integer((TInt)aPtr);
}
/**
@publishedAll
@released
Calculate a 32 bit hash from a TDesC8 pointer.
@param aPtr The TDesC8 pointer to be hashed.
@return The calculated 32 bit hash value.
*/
EXPORT_C TUint32 DefaultHash::Des8Ptr(TDesC8* const& aPtr)
{
return Integer((TInt)aPtr);
}
/**
@publishedAll
@released
Calculate a 32 bit hash from a TDesC16 pointer.
@param aPtr The TDesC16 pointer to be hashed.
@return The calculated 32 bit hash value.
*/
EXPORT_C TUint32 DefaultHash::Des16Ptr(TDesC16* const& aPtr)
{
return Integer((TInt)aPtr);
}
/**
@publishedAll
@released
Compare two integers for equality.
@param aA The first integer to be compared
@param aB The second integer to be compared
@return ETrue if the arguments are equal, EFalse otherwise.
*/
EXPORT_C TBool DefaultIdentity::Integer(const TInt& aA, const TInt& aB)
{
return aA == aB;
}
/**
@publishedAll
@released
Compare two 8 bit descriptors for exact binary equality.
@param aA The first integer to be compared
@param aB The second integer to be compared
@return ETrue if the arguments are identical, EFalse otherwise.
*/
EXPORT_C TBool DefaultIdentity::Des8(const TDesC8& aA, const TDesC8& aB)
{
return aA == aB;
}
/**
@publishedAll
@released
Compare two 16 bit descriptors for exact binary equality.
@param aA The first integer to be compared
@param aB The second integer to be compared
@return ETrue if the arguments are identical, EFalse otherwise.
*/
EXPORT_C TBool DefaultIdentity::Des16(const TDesC16& aA, const TDesC16& aB)
{
return aA == aB;
}
/**
@publishedAll
@released
Compare two TInt pointers for equality.
@param aA The first pointer to be compared
@param aB The second pointer to be compared
@return ETrue if the arguments are equal, EFalse otherwise.
*/
EXPORT_C TBool DefaultIdentity::IntegerPtr(TInt* const& aA,TInt* const& aB)
{
return aA == aB;
}
/**
@publishedAll
@released
Compare two TDesC8 pointers for equality.
@param aA The first pointer to be compared
@param aB The second pointer to be compared
@return ETrue if the arguments are equal, EFalse otherwise.
*/
EXPORT_C TBool DefaultIdentity::Des8Ptr(TDesC8* const& aA,TDesC8* const& aB)
{
return aA == aB;
}
/**
@publishedAll
@released
Compare two TDesC16 pointers for equality.
@param aA The first pointer to be compared
@param aB The second pointer to be compared
@return ETrue if the arguments are equal, EFalse otherwise.
*/
EXPORT_C TBool DefaultIdentity::Des16Ptr(TDesC16* const& aA,TDesC16* const& aB)
{
return aA == aB;
}