Convert Kernelhwsrv package from SFL to EPL
kernel\eka\compsupp is subject to the ARM EABI LICENSE
userlibandfileserver\fatfilenameconversionplugins\unicodeTables is subject to the Unicode license
kernel\eka\kernel\zlib is subject to the zlib license
// Copyright (c) 2007-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32\include\nkernsmp\nkern.h
//
// WARNING: This file contains some APIs which are internal and are subject
// to change without notice. Such APIs should therefore not be used
// outside the Kernel and Hardware Services package.
//
#ifndef __NKERN_H__
#define __NKERN_H__
#ifdef __STANDALONE_NANOKERNEL__
#undef __IN_KERNEL__
#define __IN_KERNEL__
#endif
#include <e32const.h>
#include <nklib.h>
#include <nk_event.h>
#include <dfcs.h>
#include <nk_trace.h>
#include <e32atomics.h>
extern "C" {
/** @internalComponent */
IMPORT_C void NKFault(const char* file, TInt line);
/** @internalComponent */
void NKIdle(TInt aStage);
}
/**
@publishedPartner
@released
*/
#define FAULT() NKFault(__FILE__,__LINE__)
#ifdef _DEBUG
/**
@publishedPartner
@released
*/
#define __NK_ASSERT_DEBUG(c) ((void) ((c)||(FAULT(),0)) )
#else
#define __NK_ASSERT_DEBUG(c)
#endif
/**
@publishedPartner
@released
*/
#define __NK_ASSERT_ALWAYS(c) ((void) ((c)||(FAULT(),0)) )
/**
@publishedPartner
@released
*/
const TInt KNumPriorities=64;
const TInt KMaxCpus=8;
class NSchedulable;
class NThread;
class NThreadGroup;
/** Spin lock
Used for protecting a code fragment against both interrupts and concurrent
execution on another processor.
List of spin locks in the nanokernel, in deadlock-prevention order:
A NEventHandler::TiedLock (preemption)
B NFastMutex spin locks (preemption)
C Thread spin locks (preemption)
D Thread group spin locks (preemption)
E Per-CPU ready list lock (preemption)
a Idle DFC list lock (interrupts)
b Per-CPU exogenous IDFC queue lock (interrupts)
c NTimerQ spin lock (interrupts)
d Generic IPI list locks (interrupts)
e NIrq spin locks (interrupts)
f Per-CPU event handler list lock (interrupts)
z BTrace lock (interrupts)
z must be minimum since BTrace can appear anywhere
interrupt-disabling spinlocks must be lower than preemption-disabling ones
Nestings which actually occur are:
A > C
B > C > D > E
c > f
Nothing (except possibly z) nested inside a, b, d, f
e is held while calling HW-poking functions (which might use other spinlocks)
@publishedPartner
@prototype
*/
class TSpinLock
{
public:
enum TOrder
{
// Bit 7 of order clear for locks used with interrupts disabled
EOrderGenericIrqLow0 =0x00u, // Device driver spin locks, low range
EOrderGenericIrqLow1 =0x01u, // Device driver spin locks, low range
EOrderGenericIrqLow2 =0x02u, // Device driver spin locks, low range
EOrderGenericIrqLow3 =0x03u, // Device driver spin locks, low range
EOrderBTrace =0x04u, // BTrace lock
EOrderEventHandlerList =0x07u, // Per-CPU event handler list lock
EOrderCacheMaintenance =0x08u, // CacheMaintenance (for PL310)
EOrderNIrq =0x0Au, // NIrq lock
EOrderGenericIPIList =0x0Du, // Generic IPI list lock
EOrderNTimerQ =0x10u, // Nanokernel timer queue lock
EOrderExIDfcQ =0x13u, // Per-CPU exogenous IDFC queue list lock
EOrderIdleDFCList =0x16u, // Idle DFC list lock
EOrderGenericIrqHigh0 =0x18u, // Device driver spin locks, high range
EOrderGenericIrqHigh1 =0x19u, // Device driver spin locks, high range
EOrderGenericIrqHigh2 =0x1Au, // Device driver spin locks, high range
EOrderGenericIrqHigh3 =0x1Bu, // Device driver spin locks, high range
// Bit 7 of order set for locks used with interrupts enabled, preemption disabled
EOrderGenericPreLow0 =0x80u, // Device driver spin locks, low range
EOrderGenericPreLow1 =0x81u, // Device driver spin locks, low range
EOrderReadyList =0x88u, // Per-CPU ready list lock
EOrderThreadGroup =0x90u, // Thread group locks
EOrderThread =0x91u, // Thread locks
EOrderFastMutex =0x98u, // Fast mutex locks
EOrderEventHandlerTied =0x9Cu, // Event handler tied lock
EOrderGenericPreHigh0 =0x9Eu, // Device driver spin locks, high range
EOrderGenericPreHigh1 =0x9Fu, // Device driver spin locks, high range
EOrderNone =0xFFu // No order check required (e.g. for dynamic ordering)
};
public:
IMPORT_C TSpinLock(TUint aOrder);
IMPORT_C void LockIrq(); /**< @internalComponent disable interrupts and acquire the lock */
IMPORT_C void UnlockIrq(); /**< @internalComponent release the lock and enable interrupts */
IMPORT_C TBool FlashIrq(); /**< @internalComponent if someone else is waiting for the lock, UnlockIrq() then LockIrq() */
IMPORT_C void LockOnly(); /**< @internalComponent acquire the lock, assuming interrupts/preemption already disabled */
IMPORT_C void UnlockOnly(); /**< @internalComponent release the lock, don't change interrupt/preemption state */
IMPORT_C TBool FlashOnly(); /**< @internalComponent if someone else is waiting for the lock, UnlockOnly() then LockOnly() */
IMPORT_C TInt LockIrqSave(); /**< @internalComponent remember original interrupt state then disable interrupts and acquire the lock */
IMPORT_C void UnlockIrqRestore(TInt); /**< @internalComponent release the lock then restore original interrupt state */
IMPORT_C TBool FlashIrqRestore(TInt); /**< @internalComponent if someone else is waiting for the lock, UnlockIrqRestore() then LockIrq() */
IMPORT_C TBool FlashPreempt(); /**< @internalComponent if someone else is waiting for the lock, UnlockOnly(); NKern::PreemptionPoint(); LockOnly(); */
private:
volatile TUint64 iLock;
};
/** Macro to disable interrupts and acquire the lock.
@publishedPartner
@prototype
*/
#define __SPIN_LOCK_IRQ(lock) ((lock).LockIrq())
/** Macro to release the lock and enable interrupts.
@publishedPartner
@prototype
*/
#define __SPIN_UNLOCK_IRQ(lock) (lock).UnlockIrq()
/** Macro to see if someone else is waiting for the lock, enabling IRQs
then disabling IRQs again.
@publishedPartner
@prototype
*/
#define __SPIN_FLASH_IRQ(lock) (lock).FlashIrq()
/** Macro to remember original interrupt state then disable interrupts
and acquire the lock.
@publishedPartner
@prototype
*/
#define __SPIN_LOCK_IRQSAVE(lock) ((lock).LockIrqSave())
/** Macro to release the lock then restore original interrupt state to that
supplied.
@publishedPartner
@prototype
*/
#define __SPIN_UNLOCK_IRQRESTORE(lock,irq) (lock).UnlockIrqRestore(irq)
/** Macro to see if someone else is waiting for the lock, enabling IRQs to
the original state supplied then disabling IRQs again.
@publishedPartner
@prototype
*/
#define __SPIN_FLASH_IRQRESTORE(lock,irq) (lock).FlashIrqRestore(irq)
/** Macro to acquire the lock. This assumes the caller has already disabled
interrupts/preemption.
If interrupts/preemption is not disabled a run-time assert will occur
This is to protect against unsafe code that might lead to same core
deadlock.
In device driver code it is safer to use __SPIN_LOCK_IRQSAVE() instead,
although not as efficient should interrupts aleady be disabled for the
duration the lock is held.
@publishedPartner
@prototype
*/
#define __SPIN_LOCK(lock) ((lock).LockOnly())
/** Macro to release the lock, don't change interrupt/preemption state.
@publishedPartner
@prototype
*/
#define __SPIN_UNLOCK(lock) (lock).UnlockOnly()
/**
@internalComponent
*/
#define __SPIN_FLASH(lock) (lock).FlashOnly()
/** Macro to see if someone else is waiting for the lock, enabling preemption
then disabling it again.
@publishedPartner
@prototype
*/
#define __SPIN_FLASH_PREEMPT(lock) (lock).FlashPreempt()
/** Read/Write Spin lock
@publishedPartner
@prototype
*/
class TRWSpinLock
{
public:
IMPORT_C TRWSpinLock(TUint aOrder); // Uses same order space as TSpinLock
IMPORT_C void LockIrqR(); /**< @internalComponent disable interrupts and acquire read lock */
IMPORT_C void UnlockIrqR(); /**< @internalComponent release read lock and enable interrupts */
IMPORT_C TBool FlashIrqR(); /**< @internalComponent if someone else is waiting for write lock, UnlockIrqR() then LockIrqR() */
IMPORT_C void LockIrqW(); /**< @internalComponent disable interrupts and acquire write lock */
IMPORT_C void UnlockIrqW(); /**< @internalComponent release write lock and enable interrupts */
IMPORT_C TBool FlashIrqW(); /**< @internalComponent if someone else is waiting for the lock, UnlockIrqW() then LockIrqW() */
IMPORT_C void LockOnlyR(); /**< @internalComponent acquire read lock, assuming interrupts/preemption already disabled */
IMPORT_C void UnlockOnlyR(); /**< @internalComponent release read lock, don't change interrupt/preemption state */
IMPORT_C TBool FlashOnlyR(); /**< @internalComponent if someone else is waiting for write lock, UnlockOnlyR() then LockOnlyR() */
IMPORT_C void LockOnlyW(); /**< @internalComponent acquire write lock, assuming interrupts/preemption already disabled */
IMPORT_C void UnlockOnlyW(); /**< @internalComponent release write lock, don't change interrupt/preemption state */
IMPORT_C TBool FlashOnlyW(); /**< @internalComponent if someone else is waiting for the lock, UnlockOnlyW() then LockOnlyW() */
IMPORT_C TInt LockIrqSaveR(); /**< @internalComponent disable interrupts and acquire read lock, return original interrupt state */
IMPORT_C void UnlockIrqRestoreR(TInt); /**< @internalComponent release read lock and reset original interrupt state */
IMPORT_C TBool FlashIrqRestoreR(TInt); /**< @internalComponent if someone else is waiting for write lock, UnlockIrqRestoreR() then LockIrqR() */
IMPORT_C TInt LockIrqSaveW(); /**< @internalComponent disable interrupts and acquire write lock, return original interrupt state */
IMPORT_C void UnlockIrqRestoreW(TInt); /**< @internalComponent release write lock and reset original interrupt state */
IMPORT_C TBool FlashIrqRestoreW(TInt); /**< @internalComponent if someone else is waiting for the lock, UnlockIrqRestoreW() then LockIrqW() */
IMPORT_C TBool FlashPreemptR(); /**< @internalComponent if someone else is waiting for write lock, UnlockOnlyR(); NKern::PreemptionPoint(); LockOnlyR(); */
IMPORT_C TBool FlashPreemptW(); /**< @internalComponent if someone else is waiting for the lock, UnlockOnlyW(); NKern::PreemptionPoint(); LockOnlyW(); */
private:
volatile TUint64 iLock;
};
/**
@publishedPartner
@prototype
*/
#define __SPIN_LOCK_IRQ_R(lock) (lock).LockIrqR()
/**
@publishedPartner
@prototype
*/
#define __SPIN_UNLOCK_IRQ_R(lock) (lock).UnlockIrqR()
/**
@publishedPartner
@prototype
*/
#define __SPIN_FLASH_IRQ_R(lock) ((lock).FlashIrqR())
/**
@publishedPartner
@prototype
*/
#define __SPIN_LOCK_IRQ_W(lock) (lock).LockIrqW()
/**
@publishedPartner
@prototype
*/
#define __SPIN_UNLOCK_IRQ_W(lock) (lock).UnlockIrqW()
/**
@publishedPartner
@prototype
*/
#define __SPIN_FLASH_IRQ_W(lock) ((lock).FlashIrqW())
/**
@publishedPartner
@prototype
*/
#define __SPIN_LOCK_R(lock) (lock).LockOnlyR()
/**
@publishedPartner
@prototype
*/
#define __SPIN_UNLOCK_R(lock) (lock).UnlockOnlyR()
/**
@internalComponent
*/
#define __SPIN_FLASH_R(lock) ((lock).FlashOnlyR())
/**
@publishedPartner
@prototype
*/
#define __SPIN_LOCK_W(lock) (lock).LockOnlyW()
/**
@publishedPartner
@prototype
*/
#define __SPIN_UNLOCK_W(lock) (lock).UnlockOnlyW()
/**
@internalComponent
*/
#define __SPIN_FLASH_W(lock) ((lock).FlashOnlyW())
/**
@publishedPartner
@prototype
*/
#define __SPIN_LOCK_IRQSAVE_R(lock) (lock).LockIrqSaveR()
/**
@publishedPartner
@prototype
*/
#define __SPIN_UNLOCK_IRQRESTORE_R(lock,irq) (lock).UnlockIrqRestoreR(irq)
/**
@publishedPartner
@prototype
*/
#define __SPIN_FLASH_IRQRESTORE_R(lock,irq) ((lock).FlashIrqRestoreR(irq))
/**
@publishedPartner
@prototype
*/
#define __SPIN_LOCK_IRQSAVE_W(lock) (lock).LockIrqSaveW()
/**
@publishedPartner
@prototype
*/
#define __SPIN_UNLOCK_IRQRESTORE_W(lock,irq) (lock).UnlockIrqRestoreW(irq)
/**
@publishedPartner
@prototype
*/
#define __SPIN_FLASH_IRQRESTORE_W(lock,irq) ((lock).FlashIrqRestoreW(irq))
/**
@publishedPartner
@prototype
*/
#define __SPIN_FLASH_PREEMPT_R(lock) ((lock).FlashPreemptR())
/**
@publishedPartner
@prototype
*/
#define __SPIN_FLASH_PREEMPT_W(lock) ((lock).FlashPreemptW())
#ifdef _DEBUG
#define __INCLUDE_SPIN_LOCK_CHECKS__
#endif
/** Nanokernel fast semaphore
A light-weight semaphore class that only supports a single waiting thread,
suitable for the Symbian OS thread I/O semaphore.
Initialising a NFastSemaphore involves two steps:
- Constructing the semaphore
- Setting the semaphore owning thread (the one allowed to wait on it)
For example, creating one for the current thread to wait on:
@code
NFastSemaphore sem;
sem.iOwningThread = NKern::CurrentThread();
@endcode
@publishedPartner
@prototype
*/
class NFastSemaphore
{
public:
inline NFastSemaphore();
inline NFastSemaphore(NThreadBase* aThread);
IMPORT_C void SetOwner(NThreadBase* aThread);
IMPORT_C void Wait();
IMPORT_C void Signal();
IMPORT_C void SignalN(TInt aCount);
IMPORT_C void Reset();
void WaitCancel();
TInt Dec(NThreadBase* aThread); // does mb() if >0
NThreadBase* Inc(TInt aCount); // does mb()
NThreadBase* DoReset(); // does mb()
public:
/** If >=0 the semaphore count
If <0, (thread>>2)|0x80000000
@internalComponent
*/
TInt iCount;
/** The thread allowed to wait on the semaphore
@internalComponent
*/
NThreadBase* iOwningThread;
};
/** Create a fast semaphore
@publishedPartner
@prototype
*/
inline NFastSemaphore::NFastSemaphore()
: iCount(0), iOwningThread(NULL)
{}
/** Nanokernel fast mutex
A light-weight priority-inheritance mutex that can be used if the following
conditions apply:
- Threads that hold the mutex never block.
- The mutex is never acquired in a nested fashion
If either of these conditions is not met, a DMutex object is more appropriate.
@publishedPartner
@prototype
*/
class NFastMutex
{
public:
IMPORT_C NFastMutex();
IMPORT_C void Wait();
IMPORT_C void Signal();
IMPORT_C TBool HeldByCurrentThread();
private:
void DoWaitL();
void DoSignalL();
friend class NKern;
public:
/** @internalComponent
If mutex is free and no-one is waiting, iHoldingThread=0
If mutex is held and no-one is waiting, iHoldingThread points to holding thread
If mutex is free but threads are waiting, iHoldingThread=1
If mutex is held and threads are waiting, iHoldingThread points to holding thread but with bit 0 set
*/
NThreadBase* iHoldingThread;
TUint32 i_NFastMutex_Pad1; /**< @internalComponent */
/** @internalComponent
Spin lock to protect mutex
*/
TSpinLock iMutexLock;
/** @internalComponent
List of NThreads which are waiting for the mutex. The threads are linked via
their iWaitLink members.
*/
TPriList<NThreadBase, KNumPriorities> iWaitQ;
};
__ASSERT_COMPILE(!(_FOFF(NFastMutex,iMutexLock)&7));
/**
@publishedPartner
@prototype
The type of the callback function used by the nanokernel timer.
@see NTimer
*/
typedef NEventFn NTimerFn;
/**
@publishedPartner
@prototype
A basic relative timer provided by the nanokernel.
It can generate either a one-shot interrupt or periodic interrupts.
A timeout handler is called when the timer expires, either:
- from the timer ISR - if the timer is queued via OneShot(TInt aTime) or OneShot(TInt aTime, TBool EFalse), or
- from the nanokernel timer dfc1 thread - if the timer is queued via OneShot(TInt aTime, TBool ETrue) call, or
- from any other dfc thread that provided DFC belongs to - if the timer is queued via OneShot(TInt aTime, TDfc& aDfc) call.
Call-back mechanism cannot be changed in the life time of a timer.
These timer objects may be manipulated from any context.
The timers are driven from a periodic system tick interrupt,
usually a 1ms period.
@see NTimerFn
*/
class NTimerQ;
class NTimer : public NEventHandler
{
public:
/**
Default constructor.
*/
inline NTimer()
{
iHType = EEventHandlerNTimer;
i8888.iHState1 = EIdle;
}
/**
Constructor taking a callback function and a pointer to be passed
to the callback function.
@param aFunction The callback function.
@param aPtr A pointer to be passed to the callback function
when called.
*/
inline NTimer(NTimerFn aFunction, TAny* aPtr)
{
iPtr = aPtr;
iFn = aFunction;
iHType = EEventHandlerNTimer;
i8888.iHState1 = EIdle;
}
IMPORT_C NTimer(NSchedulable* aTied, NTimerFn aFunction, TAny* aPtr);
IMPORT_C NTimer(TDfcFn aFunction, TAny* aPtr, TInt aPriority); // create DFC, queue to be set later
IMPORT_C NTimer(TDfcFn aFunction, TAny* aPtr, TDfcQue* aDfcQ, TInt aPriority); // create DFC
IMPORT_C void SetDfcQ(TDfcQue* aDfcQ);
IMPORT_C ~NTimer();
IMPORT_C TInt SetTied(NSchedulable* aTied);
IMPORT_C TInt OneShot(TInt aTime);
IMPORT_C TInt OneShot(TInt aTime, TBool aDfc);
IMPORT_C TInt OneShot(TInt aTime, TDfc& aDfc);
IMPORT_C TInt Again(TInt aTime);
IMPORT_C TBool Cancel();
IMPORT_C TBool IsPending();
private:
enum { ECancelDestroy=1 };
private:
inline TBool IsNormal()
{ return iHType==EEventHandlerNTimer; }
inline TBool IsMutating()
{ return iHType<KNumDfcPriorities; }
inline TBool IsValid()
{ return iHType<KNumDfcPriorities || iHType==EEventHandlerNTimer; }
void AddAsDFC();
TUint DoCancel(TUint aFlags);
void DoCancel0(TUint aState);
TBool DoCancelMutating(TUint aFlags);
public:
/**
@internalComponent
*/
enum TState
{
EIdle=0, // not queued
// 1 skipped so as not to clash with DFC states
ETransferring=2, // being transferred from holding to ordered queue
EHolding=3, // on holding queue
EOrdered=4, // on ordered queue
ECritical=5, // on ordered queue and in use by queue walk routine
EFinal=6, // on final queue
EEventQ=32, // 32+n = on event queue of CPU n (for tied timers)
};
public:
TUint32 iTriggerTime; /**< @internalComponent */
TUint32 iNTimerSpare1; /**< @internalComponent */
/** This field is available for use by the timer client provided that
the timer isn't a mutating-into-DFC timer.
@internalTechnology */
// TUint8 iUserFlags; // i8888.iHState0
// TUint8 iState; /**< @internalComponent */ // i8888.iHState1
// TUint8 iCompleteInDfc; /**< @internalComponent */ // i8888.iHState2
friend class NTimerQ;
friend class NSchedulable;
};
/**
@internalTechnology
*/
#define i_NTimer_iUserFlags i8888.iHState0
/**
@internalComponent
*/
#define i_NTimer_iState i8888.iHState1
/**
@publishedPartner
@released
*/
typedef void (*NThreadFunction)(TAny*);
/**
@publishedPartner
@released
*/
typedef TDfc* (*NThreadExitHandler)(NThread*);
/**
@publishedPartner
@prototype
*/
typedef void (*NThreadStateHandler)(NThread*,TInt,TInt);
/**
@publishedPartner
@prototype
*/
typedef void (*NThreadExceptionHandler)(TAny*,NThread*);
/**
@publishedPartner
@prototype
*/
typedef void (*NThreadTimeoutHandler)(NThread*,TInt);
/**
@publishedPartner
@prototype
*/
struct SNThreadHandlers
{
NThreadExitHandler iExitHandler;
NThreadStateHandler iStateHandler;
NThreadExceptionHandler iExceptionHandler;
NThreadTimeoutHandler iTimeoutHandler;
};
/** @internalComponent */
extern void NThread_Default_State_Handler(NThread*, TInt, TInt);
/** @internalComponent */
extern void NThread_Default_Exception_Handler(TAny*, NThread*);
/** @internalComponent */
#define NTHREAD_DEFAULT_EXIT_HANDLER ((NThreadExitHandler)0)
/** @internalComponent */
#define NTHREAD_DEFAULT_STATE_HANDLER (&NThread_Default_State_Handler)
/** @internalComponent */
#define NTHREAD_DEFAULT_EXCEPTION_HANDLER (&NThread_Default_Exception_Handler)
/** @internalComponent */
#define NTHREAD_DEFAULT_TIMEOUT_HANDLER ((NThreadTimeoutHandler)0)
/**
@publishedPartner
@prototype
*/
struct SFastExecTable
{
TInt iFastExecCount; // includes implicit function#0
TLinAddr iFunction[1]; // first entry is for call number 1
};
/**
@publishedPartner
@prototype
*/
const TUint32 KExecFlagClaim=0x80000000; // claim system lock
/**
@publishedPartner
@prototype
*/
const TUint32 KExecFlagRelease=0x40000000; // release system lock
/**
@publishedPartner
@prototype
*/
const TUint32 KExecFlagPreprocess=0x20000000; // preprocess
/**
@publishedPartner
@prototype
*/
const TUint32 KExecFlagExtraArgMask=0x1C000000; // 3 bits indicating additional arguments
/**
@publishedPartner
@prototype
*/
const TUint32 KExecFlagExtraArgs2=0x04000000; // 2 additional arguments
/**
@publishedPartner
@prototype
*/
const TUint32 KExecFlagExtraArgs3=0x08000000; // 3 additional arguments
/**
@publishedPartner
@prototype
*/
const TUint32 KExecFlagExtraArgs4=0x0C000000; // 4 additional arguments
/**
@publishedPartner
@prototype
*/
const TUint32 KExecFlagExtraArgs5=0x10000000; // 5 additional arguments
/**
@publishedPartner
@prototype
*/
const TUint32 KExecFlagExtraArgs6=0x14000000; // 6 additional arguments
/**
@publishedPartner
@prototype
*/
const TUint32 KExecFlagExtraArgs7=0x18000000; // 7 additional arguments
/**
@publishedPartner
@prototype
*/
const TUint32 KExecFlagExtraArgs8=0x1C000000; // 8 additional arguments
/**
@publishedPartner
@prototype
*/
struct SSlowExecEntry
{
TUint32 iFlags; // information about call
TLinAddr iFunction; // address of function to be called
};
/**
@publishedPartner
@prototype
*/
struct SSlowExecTable
{
TInt iSlowExecCount;
TLinAddr iInvalidExecHandler; // used if call number invalid
TLinAddr iPreprocessHandler; // used for handle lookups
SSlowExecEntry iEntries[1]; // first entry is for call number 0
};
// Thread iAttributes Constants
const TUint8 KThreadAttImplicitSystemLock=1; /**< @internalComponent */
const TUint8 KThreadAttAddressSpace=2; /**< @internalComponent */
const TUint8 KThreadAttLoggable=4; /**< @internalComponent */
// Thread CPU
const TUint32 KCpuAffinityAny=0xffffffffu; /**< @internalComponent */
/** Information needed for creating a nanothread.
@publishedPartner
@prototype
*/
struct SNThreadCreateInfo
{
NThreadFunction iFunction;
TAny* iStackBase;
TInt iStackSize;
TInt iPriority;
TInt iTimeslice;
TUint8 iAttributes;
TUint32 iCpuAffinity;
const SNThreadHandlers* iHandlers;
const SFastExecTable* iFastExecTable;
const SSlowExecTable* iSlowExecTable;
const TUint32* iParameterBlock;
TInt iParameterBlockSize; // if zero, iParameterBlock _is_ the initial data
// otherwise it points to n bytes of initial data
NThreadGroup* iGroup; // NULL for lone thread
};
/** Information needed for creating a nanothread group.
@publishedPartner
@prototype
*/
struct SNThreadGroupCreateInfo
{
TUint32 iCpuAffinity;
};
/** Constant for use with NKern:: functions which release a fast mutex as well
as performing some other operations.
@publishedPartner
@released
*/
#define SYSTEM_LOCK (NFastMutex*)0
/** Idle handler function
Pointer to a function which is called whenever a CPU goes idle
@param aPtr The iPtr stored in the SCpuIdleHandler structure
@param aStage If positive, the number of processors still active
If zero, indicates all processors are now idle
-1 indicates that postamble processing is required after waking up
@publishedPartner
@prototype
*/
typedef void (*TCpuIdleHandlerFn)(TAny* aPtr, TInt aStage);
/** Idle handler structure
@publishedPartner
@prototype
*/
struct SCpuIdleHandler
{
TCpuIdleHandlerFn iHandler;
TAny* iPtr;
volatile TBool iPostambleRequired;
};
/**
@internalComponent
*/
enum TUserModeCallbackReason
{
EUserModeCallbackRun,
EUserModeCallbackCancel,
};
/**
A callback function executed when a thread returns to user mode.
@internalComponent
*/
typedef void (*TUserModeCallbackFunc)(TAny* aThisPtr, TUserModeCallbackReason aReasonCode);
/**
An object representing a queued callback to be executed when a thread returns to user mode.
@internalComponent
*/
class TUserModeCallback
{
public:
TUserModeCallback(TUserModeCallbackFunc);
~TUserModeCallback();
public:
TUserModeCallback* volatile iNext;
TUserModeCallbackFunc iFunc;
};
TUserModeCallback* const KUserModeCallbackUnqueued = ((TUserModeCallback*)1);
/** Main function for AP
@internalTechnology
*/
struct SAPBootInfo;
typedef void (*TAPBootFunc)(volatile SAPBootInfo*);
/** Information needed to boot an AP
@internalTechnology
*/
struct SAPBootInfo
{
TUint32 iCpu; // Hardware CPU ID
TUint32 iInitStackSize; // Size of initial stack
TLinAddr iInitStackBase; // Base of initial stack
TAPBootFunc iMain; // Address of initial function to call
TAny* iArgs[4];
};
typedef void (*NIsr)(TAny*);
/** Nanokernel functions
@publishedPartner
@prototype
*/
class NKern
{
public:
/** Bitmask values used when blocking a nanothread.
@see NKern::Block()
*/
enum TBlockMode
{
EEnterCS=1, /**< Enter thread critical section before blocking */
ERelease=2, /**< Release specified fast mutex before blocking */
EClaim=4, /**< Re-acquire specified fast mutex when unblocked */
EObstruct=8, /**< Signifies obstruction of thread rather than lack of work to do */
};
/** Values that specify the context of the processor.
@see NKern::CurrentContext()
*/
enum TContext
{
EThread=0, /**< The processor is in a thread context*/
EIDFC=1, /**< The processor is in an IDFC context*/
EInterrupt=2, /**< The processor is in an interrupt context*/
EEscaped=KMaxTInt /**< Not valid a process context on target hardware*/
};
public:
// Threads
IMPORT_C static TInt ThreadCreate(NThread* aThread, SNThreadCreateInfo& aInfo);
IMPORT_C static TBool ThreadSuspend(NThread* aThread, TInt aCount);
IMPORT_C static TBool ThreadResume(NThread* aThread);
IMPORT_C static TBool ThreadResume(NThread* aThread, NFastMutex* aMutex);
IMPORT_C static TBool ThreadForceResume(NThread* aThread);
IMPORT_C static TBool ThreadForceResume(NThread* aThread, NFastMutex* aMutex);
IMPORT_C static void ThreadRelease(NThread* aThread, TInt aReturnValue);
IMPORT_C static void ThreadRelease(NThread* aThread, TInt aReturnValue, NFastMutex* aMutex);
IMPORT_C static void ThreadSetPriority(NThread* aThread, TInt aPriority);
IMPORT_C static void ThreadSetPriority(NThread* aThread, TInt aPriority, NFastMutex* aMutex);
IMPORT_C static void ThreadRequestSignal(NThread* aThread);
IMPORT_C static void ThreadRequestSignal(NThread* aThread, NFastMutex* aMutex);
IMPORT_C static void ThreadRequestSignal(NThread* aThread, TInt aCount);
IMPORT_C static void ThreadKill(NThread* aThread);
IMPORT_C static void ThreadKill(NThread* aThread, NFastMutex* aMutex);
IMPORT_C static void ThreadEnterCS();
IMPORT_C static void ThreadLeaveCS();
static NThread* _ThreadEnterCS(); /**< @internalComponent */
static void _ThreadLeaveCS(); /**< @internalComponent */
IMPORT_C static TInt Block(TUint32 aTimeout, TUint aMode, NFastMutex* aMutex);
IMPORT_C static TInt Block(TUint32 aTimeout, TUint aMode);
IMPORT_C static void NanoBlock(TUint32 aTimeout, TUint aState, TAny* aWaitObj);
IMPORT_C static void ThreadGetUserContext(NThread* aThread, TAny* aContext, TUint32& aAvailRegistersMask);
IMPORT_C static void ThreadSetUserContext(NThread* aThread, TAny* aContext);
IMPORT_C static void ThreadGetSystemContext(NThread* aThread, TAny* aContext, TUint32& aAvailRegistersMask);
static void ThreadModifyUsp(NThread* aThread, TLinAddr aUsp);
IMPORT_C static TInt FreezeCpu(); /**< @internalComponent */
IMPORT_C static void EndFreezeCpu(TInt aCookie); /**< @internalComponent */
IMPORT_C static TUint32 ThreadSetCpuAffinity(NThread* aThread, TUint32 aAffinity); /**< @internalComponent */
IMPORT_C static void ThreadSetTimeslice(NThread* aThread, TInt aTimeslice); /**< @internalComponent */
IMPORT_C static TUint64 ThreadCpuTime(NThread* aThread); /**< @internalComponent */
IMPORT_C static TUint32 CpuTimeMeasFreq(); /**< @internalComponent */
static TInt QueueUserModeCallback(NThreadBase* aThread, TUserModeCallback* aCallback); /**< @internalComponent */
static void MoveUserModeCallbacks(NThreadBase* aSrcThread, NThreadBase* aDestThread); /**< @internalComponent */
static void CancelUserModeCallbacks(); /**< @internalComponent */
// Thread Groups
IMPORT_C static TInt GroupCreate(NThreadGroup* aGroup, SNThreadGroupCreateInfo& aInfo);
IMPORT_C static void GroupDestroy(NThreadGroup* aGroup);
IMPORT_C static NThreadGroup* CurrentGroup();
IMPORT_C static NThreadGroup* LeaveGroup();
IMPORT_C static void JoinGroup(NThreadGroup* aGroup);
IMPORT_C static TUint32 GroupSetCpuAffinity(NThreadGroup* aGroup, TUint32 aAffinity);
// Fast semaphores
IMPORT_C static void FSSetOwner(NFastSemaphore* aSem,NThreadBase* aThread);
IMPORT_C static void FSWait(NFastSemaphore* aSem);
IMPORT_C static void FSSignal(NFastSemaphore* aSem);
IMPORT_C static void FSSignal(NFastSemaphore* aSem, NFastMutex* aMutex);
IMPORT_C static void FSSignalN(NFastSemaphore* aSem, TInt aCount);
IMPORT_C static void FSSignalN(NFastSemaphore* aSem, TInt aCount, NFastMutex* aMutex);
// Fast mutexes
IMPORT_C static void FMWait(NFastMutex* aMutex);
IMPORT_C static void FMSignal(NFastMutex* aMutex);
IMPORT_C static TBool FMFlash(NFastMutex* aMutex);
// Scheduler
IMPORT_C static void Lock();
IMPORT_C static NThread* LockC();
IMPORT_C static void Unlock();
IMPORT_C static TInt PreemptionPoint();
// Interrupts
IMPORT_C static TInt DisableAllInterrupts();
IMPORT_C static TInt DisableInterrupts(TInt aLevel);
IMPORT_C static void RestoreInterrupts(TInt aRestoreData);
IMPORT_C static void EnableAllInterrupts();
// Read-modify-write
inline static TInt LockedInc(TInt& aCount)
{ return __e32_atomic_add_ord32(&aCount,1); }
inline static TInt LockedDec(TInt& aCount)
{ return __e32_atomic_add_ord32(&aCount,0xffffffff); }
inline static TInt LockedAdd(TInt& aDest, TInt aSrc)
{ return __e32_atomic_add_ord32(&aDest,aSrc); }
inline static TInt64 LockedInc(TInt64& aCount)
{ return __e32_atomic_add_ord64(&aCount,1); }
inline static TInt64 LockedDec(TInt64& aCount)
{ return __e32_atomic_add_ord64(&aCount,TUint64(TInt64(-1))); }
inline static TInt64 LockedAdd(TInt64& aDest, TInt64 aSrc) /**< @internalComponent */
{ return __e32_atomic_add_ord64(&aDest,aSrc); }
inline static TUint32 LockedSetClear(TUint32& aDest, TUint32 aClearMask, TUint32 aSetMask)
{ return __e32_atomic_axo_ord32(&aDest,~(aClearMask|aSetMask),aSetMask); }
inline static TUint16 LockedSetClear16(TUint16& aDest, TUint16 aClearMask, TUint16 aSetMask) /**< @internalComponent */
{ return __e32_atomic_axo_ord16(&aDest,TUint16(~(aClearMask|aSetMask)),aSetMask); }
inline static TUint8 LockedSetClear8(TUint8& aDest, TUint8 aClearMask, TUint8 aSetMask)
{ return __e32_atomic_axo_ord8(&aDest,TUint8(~(aClearMask|aSetMask)),aSetMask); }
inline static TInt SafeInc(TInt& aCount)
{ return __e32_atomic_tas_ord32(&aCount,1,1,0); }
inline static TInt SafeDec(TInt& aCount)
{ return __e32_atomic_tas_ord32(&aCount,1,-1,0); }
inline static TInt AddIfGe(TInt& aCount, TInt aLimit, TInt aInc) /**< @internalComponent */
{ return __e32_atomic_tas_ord32(&aCount,aLimit,aInc,0); }
inline static TInt AddIfLt(TInt& aCount, TInt aLimit, TInt aInc) /**< @internalComponent */
{ return __e32_atomic_tas_ord32(&aCount,aLimit,0,aInc); }
inline static TAny* SafeSwap(TAny* aNewValue, TAny*& aPtr)
{ return __e32_atomic_swp_ord_ptr(&aPtr, aNewValue); }
inline static TUint8 SafeSwap8(TUint8 aNewValue, TUint8& aPtr)
{ return __e32_atomic_swp_ord8(&aPtr, aNewValue); }
inline static TUint16 SafeSwap16(TUint16 aNewValue, TUint16& aPtr) /**< @internalComponent */
{ return __e32_atomic_swp_ord16(&aPtr, aNewValue); }
inline static TBool CompareAndSwap(TAny*& aPtr, TAny* aExpected, TAny* aNew) /**< @internalComponent */
{ return __e32_atomic_cas_ord_ptr(&aPtr, &aExpected, aNew); }
inline static TBool CompareAndSwap8(TUint8& aPtr, TUint8 aExpected, TUint8 aNew) /**< @internalComponent */
{ return __e32_atomic_cas_ord8(&aPtr, (TUint8*)&aExpected, (TUint8)aNew); }
inline static TBool CompareAndSwap16(TUint16& aPtr, TUint16 aExpected, TUint16 aNew) /**< @internalComponent */
{ return __e32_atomic_cas_ord16(&aPtr, (TUint16*)&aExpected, (TUint16)aNew); }
inline static TUint32 SafeSwap(TUint32 aNewValue, TUint32& aPtr) /**< @internalComponent */
{ return __e32_atomic_swp_ord32(&aPtr, aNewValue); }
inline static TUint SafeSwap(TUint aNewValue, TUint& aPtr) /**< @internalComponent */
{ return __e32_atomic_swp_ord32(&aPtr, aNewValue); }
inline static TInt SafeSwap(TInt aNewValue, TInt& aPtr) /**< @internalComponent */
{ return __e32_atomic_swp_ord32(&aPtr, aNewValue); }
inline static TBool CompareAndSwap(TUint32& aPtr, TUint32 aExpected, TUint32 aNew) /**< @internalComponent */
{ return __e32_atomic_cas_ord32(&aPtr, &aExpected, aNew); }
inline static TBool CompareAndSwap(TUint& aPtr, TUint aExpected, TUint aNew) /**< @internalComponent */
{ return __e32_atomic_cas_ord32(&aPtr, (TUint32*)&aExpected, (TUint32)aNew); }
inline static TBool CompareAndSwap(TInt& aPtr, TInt aExpected, TInt aNew) /**< @internalComponent */
{ return __e32_atomic_cas_ord32(&aPtr, (TUint32*)&aExpected, (TUint32)aNew); }
// Miscellaneous
IMPORT_C static NThread* CurrentThread();
IMPORT_C static TInt CurrentCpu(); /**< @internalComponent */
IMPORT_C static TInt NumberOfCpus(); /**< @internalComponent */
IMPORT_C static void LockSystem();
IMPORT_C static void UnlockSystem();
IMPORT_C static TBool FlashSystem();
IMPORT_C static void WaitForAnyRequest();
IMPORT_C static void Sleep(TUint32 aTime);
IMPORT_C static void Exit();
IMPORT_C static void DeferredExit();
IMPORT_C static void YieldTimeslice(); /**< @internalComponent */
IMPORT_C static void RotateReadyList(TInt aPriority);
IMPORT_C static void RotateReadyList(TInt aPriority, TInt aCpu); /**< @internalTechnology */
IMPORT_C static void RecordIntLatency(TInt aLatency, TInt aIntMask); /**< @internalTechnology */
IMPORT_C static void RecordThreadLatency(TInt aLatency); /**< @internalTechnology */
IMPORT_C static TUint32 TickCount();
IMPORT_C static TInt TickPeriod();
IMPORT_C static TInt TimerTicks(TInt aMilliseconds);
IMPORT_C static TInt TimesliceTicks(TUint32 aMicroseconds); /**< @internalTechnology */
IMPORT_C static TInt CurrentContext();
IMPORT_C static TUint32 FastCounter();
IMPORT_C static TInt FastCounterFrequency();
IMPORT_C static TUint64 Timestamp();
IMPORT_C static TUint32 TimestampFrequency();
static void Init0(TAny* aVariantData);
static void Init(NThread* aThread, SNThreadCreateInfo& aInfo);
static TInt BootAP(volatile SAPBootInfo* aInfo);
IMPORT_C static TBool KernelLocked(TInt aCount=0); /**< @internalTechnology */
IMPORT_C static NFastMutex* HeldFastMutex(); /**< @internalTechnology */
static void Idle();
IMPORT_C static SCpuIdleHandler* CpuIdleHandler(); /**< @internalTechnology */
static void NotifyCrash(const TAny* a0, TInt a1); /**< @internalTechnology */
IMPORT_C static TBool Crashed();
static TUint32 IdleGenerationCount();
// Debugger support
typedef void (*TRescheduleCallback)(NThread*);
IMPORT_C static void SchedulerHooks(TLinAddr& aStart, TLinAddr& aEnd);
IMPORT_C static void InsertSchedulerHooks();
IMPORT_C static void RemoveSchedulerHooks();
IMPORT_C static void SetRescheduleCallback(TRescheduleCallback aCallback);
// Interrupts
enum TIrqInitFlags
{
EIrqInit_FallingEdge=0,
EIrqInit_RisingEdge=2,
EIrqInit_LevelLow=1,
EIrqInit_LevelHigh=3,
EIrqInit_Shared=0x10,
EIrqInit_Count=0x20,
};
enum TIrqBindFlags
{
EIrqBind_Raw=1,
EIrqBind_Count=2,
EIrqBind_Exclusive=4,
EIrqBind_Tied=8
};
enum TIrqIdBits
{
EIrqIndexMask = 0x0000ffff, // bottom 16 bits is IRQ number if top 16 bits all zero
// otherwise is IRQ handler index
EIrqCookieMask = 0x7fff0000,
EIrqCookieShift = 16
};
static void InterruptInit0();
IMPORT_C static TInt InterruptInit(TInt aId, TUint32 aFlags, TInt aVector, TUint32 aHwId, TAny* aExt=0);
IMPORT_C static TInt InterruptBind(TInt aId, NIsr aIsr, TAny* aPtr, TUint32 aFlags, NSchedulable* aTied);
IMPORT_C static TInt InterruptUnbind(TInt aId);
IMPORT_C static TInt InterruptEnable(TInt aId);
IMPORT_C static TInt InterruptDisable(TInt aId);
IMPORT_C static TInt InterruptClear(TInt aId);
IMPORT_C static TInt InterruptSetPriority(TInt aId, TInt aPri);
IMPORT_C static TInt InterruptSetCpuMask(TInt aId, TUint32 aMask);
IMPORT_C static void Interrupt(TInt aIrqNo);
};
/** Create a fast semaphore
@publishedPartner
@prototype
*/
inline NFastSemaphore::NFastSemaphore(NThreadBase* aThread)
: iCount(0),
iOwningThread(aThread ? aThread : (NThreadBase*)NKern::CurrentThread())
{
}
class TGenericIPI;
/**
@internalComponent
*/
typedef void (*TGenericIPIFn)(TGenericIPI*);
/**
@internalComponent
*/
class TGenericIPI : public SDblQueLink
{
public:
void Queue(TGenericIPIFn aFunc, TUint32 aCpuMask);
void QueueAll(TGenericIPIFn aFunc);
void QueueAllOther(TGenericIPIFn aFunc);
void WaitEntry();
void WaitCompletion();
public:
TGenericIPIFn iFunc;
volatile TUint32 iCpusIn;
volatile TUint32 iCpusOut;
};
/**
@internalComponent
*/
class TStopIPI : public TGenericIPI
{
public:
void StopCPUs();
void ReleaseCPUs();
static void Isr(TGenericIPI*);
public:
volatile TInt iFlag;
};
#include <ncern.h>
#endif