Convert Kernelhwsrv package from SFL to EPL
kernel\eka\compsupp is subject to the ARM EABI LICENSE
userlibandfileserver\fatfilenameconversionplugins\unicodeTables is subject to the Unicode license
kernel\eka\kernel\zlib is subject to the zlib license
// Copyright (c) 1998-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32\nkern\win32\ncsched.cpp
//
//
// NThreadBase member data
#define __INCLUDE_NTHREADBASE_DEFINES__
#include <e32cmn.h>
#include <e32cmn_private.h>
#include "nk_priv.h"
#ifdef __EMI_SUPPORT__
extern void EMI_AddTaskSwitchEvent(TAny* aPrevious, TAny* aNext);
extern void EMI_CheckDfcTag(TAny* aNext);
#endif
typedef void (*ProcessHandler)(TAny* aAddressSpace);
static DWORD TlsIndex = TLS_OUT_OF_INDEXES;
static NThreadBase* SelectThread(TScheduler& aS)
//
// Select the next thread to run.
// This is the heart of the rescheduling algorithm.
//
{
NThreadBase* t = static_cast<NThreadBase*>(aS.First());
__NK_ASSERT_DEBUG(t);
#ifdef _DEBUG
if (t->iHeldFastMutex)
{
__KTRACE_OPT(KSCHED2,DEBUGPRINT("Resched init->%T, Holding %M",t,t->iHeldFastMutex));
}
else
{
__KTRACE_OPT(KSCHED2,DEBUGPRINT("Resched init->%T",t));
}
#endif
if (t->iTime == 0 && !t->Alone())
{
// round robin
// get here if thread's timeslice has expired and there is another
// thread ready at the same priority
if (t->iHeldFastMutex)
{
// round-robin deferred due to fast mutex held
t->iHeldFastMutex->iWaiting = 1;
return t;
}
t->iTime = t->iTimeslice; // reset old thread time slice
t = static_cast<NThreadBase*>(t->iNext); // next thread
aS.iQueue[t->iPriority] = t; // make it first in list
__KTRACE_OPT(KSCHED2,DEBUGPRINT("RoundRobin->%T",t));
}
if (t->iHeldFastMutex)
{
if (t->iHeldFastMutex == &aS.iLock)
{
// thread holds system lock: use it
return t;
}
if ((t->i_ThrdAttr & KThreadAttImplicitSystemLock) != 0 && aS.iLock.iHoldingThread)
t->iHeldFastMutex->iWaiting = 1;
__NK_ASSERT_DEBUG((t->i_ThrdAttr & KThreadAttAddressSpace) == 0);
/*
Check for an address space change. Not implemented for Win32, but useful as
documentaiton of the algorithm.
if ((t->i_ThrdAttr & KThreadAttAddressSpace) != 0 && t->iAddressSpace != aS.iAddressSpace)
t->iHeldFastMutex->iWaiting = 1;
*/
}
else if (t->iWaitFastMutex && t->iWaitFastMutex->iHoldingThread)
{
__KTRACE_OPT(KSCHED2,DEBUGPRINT("Resched inter->%T, Blocked on %M",t->iWaitFastMutex->iHoldingThread,t->iWaitFastMutex));
t = t->iWaitFastMutex->iHoldingThread;
}
else if (t->i_ThrdAttr & KThreadAttImplicitSystemLock)
{
// implicit system lock required
if (aS.iLock.iHoldingThread)
{
// system lock held, switch to that thread
t = aS.iLock.iHoldingThread;
__KTRACE_OPT(KSCHED2,DEBUGPRINT("Resched inter->%T (IMP SYS)",t));
t->iHeldFastMutex->iWaiting = 1; // aS.iLock.iWaiting = 1;
return t;
}
__NK_ASSERT_DEBUG((t->i_ThrdAttr & KThreadAttAddressSpace) == 0);
/*
Check for an address space change. Not implemented for Win32, but useful as
documentaiton of the algorithm.
if ((t->i_ThrdAttr & KThreadAttAddressSpace) != 0 || t->iAddressSpace != aS.iAddressSpace)
{
// what do we do now?
__NK_ASSERT_DEBUG(FALSE);
}
*/
}
return t;
}
// from NThread
#undef i_ThrdAttr
TBool NThread::WakeUp()
//
// Wake up the thread. What to do depends on whether we were preempted or voluntarily
// rescheduled.
//
// Return TRUE if we need to immediately reschedule again because we had to unlock
// the kernel but there are DFCs pending. In this case, the thread does not wake up.
//
// NB. kernel is locked
//
{
switch (iWakeup)
{
default:
FAULT();
case EIdle:
__NK_ASSERT_ALWAYS(TheScheduler.iCurrentThread == this);
__NK_ASSERT_ALWAYS(SetEvent(iScheduleLock));
break;
case ERelease:
TheScheduler.iCurrentThread = this;
__NK_ASSERT_ALWAYS(SetEvent(iScheduleLock));
break;
case EResumeLocked:
// The thread is Win32 suspended and must be resumed.
//
// A newly created thread does not need the kernel unlocked so we can
// just resume the suspended thread
//
__KTRACE_OPT(KSCHED,DEBUGPRINT("Win32Resume->%T",this));
iWakeup = ERelease;
TheScheduler.iCurrentThread = this;
if (TheScheduler.iProcessHandler)
(*ProcessHandler(TheScheduler.iProcessHandler))(iAddressSpace); // new thread will need to have its static data updated
__NK_ASSERT_ALWAYS(TInt(ResumeThread(iWinThread)) > 0); // check thread was previously suspended
break;
case EResumeDiverted:
// The thread is Win32 suspended and must be resumed.
//
// The thread needs to be diverted, and does not need the kernel
// unlocked.
//
// It's safe the divert the thread here because we called
// IsSafeToPreempt() when we suspended it - otherwise the diversion
// could get lost.
//
__KTRACE_OPT(KSCHED,DEBUGPRINT("Win32Resume->%T (Resuming diverted thread)",this));
iWakeup = ERelease;
ApplyDiversion();
TheScheduler.iCurrentThread = this;
__NK_ASSERT_ALWAYS(TInt(ResumeThread(iWinThread)) == 1);
break;
case EResume:
// The thread is Win32 suspended and must be resumed.
//
// the complication here is that we have to unlock the kernel on behalf of the
// pre-empted thread. This means that we have to check to see if there are more DFCs
// pending or a reschedule required, as we unlock the kernel. That check is
// carried out with interrupts disabled.
//
// If so, we go back around the loop in this thread context
//
// Otherwise, we unlock the kernel (having marked us as not-preempted),
// enable interrupts and then resume the thread. If pre-emption occurs before the thread
// is resumed, it is the new thread that is pre-empted, not the running thread, so we are guaranteed
// to be able to call ResumeThread. If pre-emption occurs, and we are rescheduled to run before
// that occurs, we will once again be running with the kernel locked and the other thread will
// have been re-suspended by Win32: so all is well.
//
{
__KTRACE_OPT(KSCHED,DEBUGPRINT("Win32Resume->%T",this));
TInt irq = NKern::DisableAllInterrupts();
if (TheScheduler.iDfcPendingFlag || TheScheduler.iRescheduleNeededFlag)
{
// we were interrrupted... back to the top
TheScheduler.iRescheduleNeededFlag = TRUE; // ensure we do the reschedule
return TRUE;
}
iWakeup = ERelease;
TheScheduler.iCurrentThread = this;
if (TheScheduler.iProcessHandler)
(*ProcessHandler(TheScheduler.iProcessHandler))(iAddressSpace); // threads resumed after interrupt or locks need to have static data updated
if (iInKernel == 0 && iUserModeCallbacks != NULL)
ApplyDiversion();
else
TheScheduler.iKernCSLocked = 0; // have to unlock the kernel on behalf of the new thread
TheScheduler.iCurrentThread = this;
NKern::RestoreInterrupts(irq);
__NK_ASSERT_ALWAYS(TInt(ResumeThread(iWinThread)) > 0); // check thread was previously suspended
}
break;
}
return FALSE;
}
static void ThreadExit(NThread& aCurrent, NThread& aNext)
//
// The final context switch of a thread.
// Wake up the next thread and then destroy this one's Win32 resources.
//
// Return without terminating if we need to immediately reschedule again because
// we had to unlock the kernel but there are DFCs pending.
//
{
// the thread is dead
// extract win32 handles from dying NThread object before rescheduling
HANDLE sl = aCurrent.iScheduleLock;
HANDLE th = aCurrent.iWinThread;
// wake up the next thread
if (aNext.WakeUp())
return; // need to re-reschedule in this thread
// we are now a vanilla win32 thread, nKern no longer knows about us
// release resources and exit cleanly
CloseHandle(sl);
CloseHandle(th);
ExitThread(0); // does not return
}
#ifdef MONITOR_THREAD_CPU_TIME
static inline void UpdateThreadCpuTime(NThread& aCurrent, NThread& aNext)
{
TUint32 timestamp = NKern::FastCounter();
if (aCurrent.iLastStartTime)
aCurrent.iTotalCpuTime += timestamp - aCurrent.iLastStartTime;
aNext.iLastStartTime = timestamp;
}
#else
static inline void UpdateThreadCpuTime(NThread& /*aCurrent*/, NThread& /*aNext*/)
{
}
#endif
static void SwitchThreads(NThread& aCurrent, NThread& aNext)
//
// The fundamental context switch - wake up the next thread and wait for reschedule
// trivially is aNext.WakeUp(), Wait(aCurrent.iScheduleLock), but we may be able to
// optimise the signal-and-wait
//
{
UpdateThreadCpuTime(aCurrent, aNext);
if (aCurrent.iNState == NThread::EDead)
ThreadExit(aCurrent, aNext);
else if (Win32AtomicSOAW && aNext.iWakeup==NThread::ERelease)
{
// special case optimization for normally blocked threads using atomic Win32 primitive
TheScheduler.iCurrentThread = &aNext;
DWORD result=SignalObjectAndWait(aNext.iScheduleLock,aCurrent.iScheduleLock, INFINITE, FALSE);
if (result != WAIT_OBJECT_0)
{
__NK_ASSERT_ALWAYS(result == 0xFFFFFFFF);
KPrintf("SignalObjectAndWait() failed with %d (%T->%T)",GetLastError(),&aCurrent,&aNext);
FAULT();
}
}
else
{
if (aNext.WakeUp())
return; // need to re-reschedule in this thread
__NK_ASSERT_ALWAYS(WaitForSingleObject(aCurrent.iScheduleLock, INFINITE) == WAIT_OBJECT_0);
}
}
void TScheduler::YieldTo(NThreadBase*)
//
// Directed context switch to the nominated thread.
// Enter with kernel locked, exit with kernel unlocked but interrupts disabled.
//
{
RescheduleNeeded();
TScheduler::Reschedule();
}
void TScheduler::Reschedule()
//
// Enter with kernel locked, exit with kernel unlocked, interrupts disabled.
// If the thread is dead do not return, but terminate the thread.
//
{
__NK_ASSERT_ALWAYS(TheScheduler.iKernCSLocked == 1);
NThread& me = *static_cast<NThread*>(TheScheduler.iCurrentThread);
for (;;)
{
NKern::DisableAllInterrupts();
if (TheScheduler.iDfcPendingFlag)
TheScheduler.QueueDfcs();
if (!TheScheduler.iRescheduleNeededFlag)
break;
NKern::EnableAllInterrupts();
TheScheduler.iRescheduleNeededFlag = FALSE;
NThread* t = static_cast<NThread*>(SelectThread(TheScheduler));
__KTRACE_OPT(KSCHED,DEBUGPRINT("Reschedule->%T (%08x%08x)",t,TheScheduler.iPresent[1],TheScheduler.iPresent[0]));
#ifdef __EMI_SUPPORT__
EMI_AddTaskSwitchEvent(&me,t);
EMI_CheckDfcTag(t);
#endif
#ifdef BTRACE_CPU_USAGE
if(TheScheduler.iCpuUsageFilter)
TheScheduler.iBTraceHandler(BTRACE_HEADER_C(4,BTrace::ECpuUsage,BTrace::ENewThreadContext),0,(TUint32)t,0,0,0,0,0);
#endif
SwitchThreads(me, *t);
// we have just been scheduled to run... check for diversion/new Dfcs
NThread::TDivert divert = me.iDivert;
if (divert)
{
// diversion (e.g. force exit)
me.iDivert = NULL;
divert(); // does not return
}
}
if (TheScheduler.iProcessHandler)
(*ProcessHandler(TheScheduler.iProcessHandler))(me.iAddressSpace);
// interrrupts are disabled, the kernel is still locked
TheScheduler.iKernCSLocked = 0;
}
/** Put the emulator into 'idle'.
This is called by the idle thread when there is nothing else to do.
@internalTechnology
*/
EXPORT_C void NThread::Idle()
//
// Rather than spin, we go to sleep on the schedule lock. Preemption detects
// this state (Win32Idling) and pokes the event rather than diverting the thread.
//
// enter and exit with kernel locked
//
{
NThread& me = *static_cast<NThread*>(TheScheduler.iCurrentThread);
me.iWakeup = EIdle;
__NK_ASSERT_ALWAYS(WaitForSingleObject(me.iScheduleLock, INFINITE) == WAIT_OBJECT_0);
// something happened, and we've been prodded by an interrupt
// the kernel was locked by the interrupt, and now reschedule
me.iWakeup = ERelease;
TScheduler::Reschedule();
NKern::EnableAllInterrupts();
}
void SchedulerInit(NThread& aInit)
//
// Initialise the win32 nKern scheduler
//
{
DWORD procaffin,sysaffin;
if (GetProcessAffinityMask(GetCurrentProcess(),&procaffin,&sysaffin))
{
DWORD cpu;
switch (Win32SingleCpu)
{
default:
// bind the emulator to a nominated CPU on the host PC
cpu = (1<<Win32SingleCpu);
if (!(sysaffin & cpu))
cpu = procaffin; // CPU selection invalid
break;
case NThread::ECpuSingle:
// bind the emulator to a single CPU on the host PC, pick one
cpu = procaffin ^ (procaffin & (procaffin-1));
break;
case NThread::ECpuAll:
// run the emulator on all CPUs on the host PC
cpu=sysaffin;
break;
}
SetProcessAffinityMask(GetCurrentProcess(), cpu);
}
// identify if we can use the atomic SignalObjectAndWait API in Win32 for rescheduling
Win32AtomicSOAW = (SignalObjectAndWait(aInit.iScheduleLock, aInit.iScheduleLock, INFINITE, FALSE) == WAIT_OBJECT_0);
//
// allocate the TLS used for thread identification, and set it for the init thread
TlsIndex = TlsAlloc();
__NK_ASSERT_ALWAYS(TlsIndex != TLS_OUT_OF_INDEXES);
SchedulerRegister(aInit);
//
Interrupt.Init();
Win32FindNonPreemptibleFunctions();
}
void SchedulerRegister(NThread& aSelf)
{
TlsSetValue(TlsIndex,&aSelf);
}
NThread* SchedulerThread()
{
if (TlsIndex != TLS_OUT_OF_INDEXES)
return static_cast<NThread*>(TlsGetValue(TlsIndex));
else
return NULL; // not yet initialised
}
inline TBool IsScheduledThread()
{
return SchedulerThread() == TheScheduler.iCurrentThread;
}
NThread& CheckedCurrentThread()
{
NThread* t = SchedulerThread();
__NK_ASSERT_ALWAYS(t == TheScheduler.iCurrentThread);
return *t;
}
/** Disable normal 'interrupts'.
@param aLevel Ignored
@return Cookie to be passed into RestoreInterrupts()
*/
EXPORT_C TInt NKern::DisableInterrupts(TInt /*aLevel*/)
{
return Interrupt.Mask();
}
/** Disable all maskable 'interrupts'.
@return Cookie to be passed into RestoreInterrupts()
*/
EXPORT_C TInt NKern::DisableAllInterrupts()
{
return Interrupt.Mask();
}
/** Enable all maskable 'interrupts'
@internalComponent
*/
EXPORT_C void NKern::EnableAllInterrupts()
{
Interrupt.Restore(0);
}
/** Restore interrupt mask to state preceding a DisableInterrupts() call
@param aLevel Cookie returned by Disable(All)Interrupts()
*/
EXPORT_C void NKern::RestoreInterrupts(TInt aLevel)
{
Interrupt.Restore(aLevel);
}
/** Unlocks the kernel.
Decrements iKernCSLocked; if it becomes zero and IDFCs or a reschedule are
pending, calls the scheduler to process them.
@pre Call either in a thread or an IDFC context.
@pre Do not call from an ISR.
@pre Do not call from bare Win32 threads.
*/
EXPORT_C void NKern::Unlock()
//
// using this coding sequence it is possible to call Reschedule unnecessarily
// if we are preempted after testing the flags (lock is zero at this point).
// However, in the common case this is much faster because 'disabling interrupts'
// can be very expensive.
//
{
CHECK_PRECONDITIONS(MASK_NOT_ISR,"NKern::Unlock");
__ASSERT_WITH_MESSAGE_DEBUG(IsScheduledThread(),"Do not call from bare Win32 threads","NKern::Unlock"); // check that we are a scheduled thread
__NK_ASSERT_ALWAYS(TheScheduler.iKernCSLocked > 0); // Can't unlock if it isn't locked!
if (--TheScheduler.iKernCSLocked == 0)
{
if (TheScheduler.iRescheduleNeededFlag || TheScheduler.iDfcPendingFlag)
{
TheScheduler.iKernCSLocked = 1;
TScheduler::Reschedule();
NKern::EnableAllInterrupts();
}
}
}
/** Locks the kernel.
Increments iKernCSLocked, thereby deferring IDFCs and preemption.
@pre Call either in a thread or an IDFC context.
@pre Do not call from an ISR.
@pre Do not call from bare Win32 threads.
*/
EXPORT_C void NKern::Lock()
{
CHECK_PRECONDITIONS(MASK_NOT_ISR,"NKern::Lock");
__ASSERT_WITH_MESSAGE_ALWAYS(IsScheduledThread(),"Do not call from bare Win32 threads","NKern::Lock"); // check that we are a scheduled thread
++TheScheduler.iKernCSLocked;
}
/** Locks the kernel and returns a pointer to the current thread
Increments iKernCSLocked, thereby deferring IDFCs and preemption.
@pre Call either in a thread or an IDFC context.
@pre Do not call from an ISR.
@pre Do not call from bare Win32 threads.
*/
EXPORT_C NThread* NKern::LockC()
{
CHECK_PRECONDITIONS(MASK_NOT_ISR,"NKern::Lock");
__ASSERT_WITH_MESSAGE_ALWAYS(IsScheduledThread(),"Do not call from bare Win32 threads","NKern::Lock"); // check that we are a scheduled thread
++TheScheduler.iKernCSLocked;
return (NThread*)TheScheduler.iCurrentThread;
}
/** Allows IDFCs and rescheduling if they are pending.
If IDFCs or a reschedule are pending and iKernCSLocked is exactly equal to 1
calls the scheduler to process the IDFCs and possibly reschedule.
@return Nonzero if a reschedule actually occurred, zero if not.
@pre Call either in a thread or an IDFC context.
@pre Do not call from an ISR.
@pre Do not call from bare Win32 threads.
*/
EXPORT_C TInt NKern::PreemptionPoint()
{
CHECK_PRECONDITIONS(MASK_NOT_ISR,"NKern::PreemptionPoint");
__ASSERT_WITH_MESSAGE_DEBUG(IsScheduledThread(),"Do not call from bare Win32 threads","NKern::PreemptionPoint"); // check that we are a scheduled thread
if (TheScheduler.iKernCSLocked == 1 &&
(TheScheduler.iRescheduleNeededFlag || TheScheduler.iDfcPendingFlag))
{
TScheduler::Reschedule();
TheScheduler.iKernCSLocked = 1;
NKern::EnableAllInterrupts();
return TRUE;
}
return FALSE;
}
/** Mark the start of an 'interrupt' in the Win32 emulator.
This must be called in interrupt threads before using any other kernel APIs,
and should be paired with a call to EndOfInterrupt().
@pre Win32 'interrupt' thread context
*/
EXPORT_C void StartOfInterrupt()
{
__ASSERT_WITH_MESSAGE_DEBUG(!IsScheduledThread(),"Win32 'interrupt' thread context","StartOfInterrupt"); // check that we are a scheduled thread
Interrupt.Begin();
}
/** Mark the end of an 'interrupt' in the Win32 emulator.
This checks to see if we need to reschedule.
@pre Win32 'interrupt' thread context
*/
EXPORT_C void EndOfInterrupt()
{
__ASSERT_WITH_MESSAGE_DEBUG(!IsScheduledThread(),"Win32 'interrupt' thread context","EndOfInterrupt"); // check that we are a scheduled thread
Interrupt.End();
}
void Win32Interrupt::Init()
{
iQ=CreateSemaphoreA(NULL, 0, KMaxTInt, NULL);
__NK_ASSERT_ALWAYS(iQ);
//
// create the NThread which exists solely to service reschedules for interrupts
// this makes the End() much simpler as it merely needs to kick this thread
SNThreadCreateInfo ni;
memclr(&ni, sizeof(ni));
ni.iFunction=&Reschedule;
ni.iTimeslice=-1;
ni.iPriority=1;
NKern::ThreadCreate(&iScheduler, ni);
NKern::Lock();
TScheduler::YieldTo(&iScheduler);
Restore(0);
}
TInt Win32Interrupt::Mask()
{
if (!iQ)
return 0; // interrupt scheme not enabled yet
DWORD id=GetCurrentThreadId();
if (__e32_atomic_add_ord32(&iLock, 1))
{
if (id==iOwner)
return iLevel++;
__NK_ASSERT_ALWAYS(WaitForSingleObject(iQ,INFINITE) == WAIT_OBJECT_0);
iRescheduleOnExit=IsScheduledThread() &&
(TheScheduler.iRescheduleNeededFlag || TheScheduler.iDfcPendingFlag);
}
else
iRescheduleOnExit=FALSE;
__NK_ASSERT_ALWAYS(iOwner==0 && iLevel==0);
iOwner=id;
iLevel=1;
return 0;
}
void Win32Interrupt::Restore(TInt aLevel)
{
if (!iQ)
return; // interrupt scheme not enabled yet
DWORD id=GetCurrentThreadId();
for (;;)
{
__NK_ASSERT_ALWAYS(id == iOwner);
TInt count = iLevel - aLevel;
if (count <= 0)
return; // alredy restored to that level
TBool reschedule = FALSE;
iLevel = aLevel; // update this value before releasing the lock
if (aLevel == 0)
{
// we release the lock
iOwner = 0;
if (iRescheduleOnExit && TheScheduler.iKernCSLocked == 0)
reschedule = TRUE; // need to trigger reschedule on full release
}
// now release the lock
if (__e32_atomic_add_ord32(&iLock, TUint32(-count)) == (TUint32)count)
{ // fully released, check for reschedule
if (!reschedule)
return;
}
else
{ // not fully released
if (aLevel == 0)
__NK_ASSERT_ALWAYS(ReleaseSemaphore(iQ,1,NULL));
return;
}
// unlocked everything but a reschedule may be required
TheScheduler.iKernCSLocked = 1;
TScheduler::Reschedule();
// return with the kernel unlocked, but interrupts disabled
// instead of going recursive with a call to EnableAllInterrupts() we iterate
aLevel=0;
}
}
void Win32Interrupt::Begin()
{
Mask();
__NK_ASSERT_ALWAYS(iInterrupted==0); // check we haven't done this already
__NK_ASSERT_ALWAYS(!IsScheduledThread()); // check that we aren't a scheduled thread
NThread* pC;
for (;;)
{
pC=static_cast<NThread*>(TheScheduler.iCurrentThread);
DWORD r=SuspendThread(pC->iWinThread);
if (pC == TheScheduler.iCurrentThread)
{
// there was no race while suspending the thread, so we can carry on
__NK_ASSERT_ALWAYS(r != 0xffffffff);
break;
}
// We suspended the thread while doing a context switch, resume it and try again
if (r != 0xffffffff)
__NK_ASSERT_ALWAYS(TInt(ResumeThread(pC->iWinThread)) > 0); // check thread was previously suspended
}
#ifdef BTRACE_CPU_USAGE
BTrace0(BTrace::ECpuUsage,BTrace::EIrqStart);
#endif
iInterrupted = pC;
}
void Win32Interrupt::End()
{
__NK_ASSERT_ALWAYS(iOwner == GetCurrentThreadId()); // check we are the interrupting thread
NThread* pC = iInterrupted;
__NK_ASSERT_ALWAYS(pC==TheScheduler.iCurrentThread);
iInterrupted = 0;
if (iLock == 1 && TheScheduler.iKernCSLocked == 0 &&
(TheScheduler.iRescheduleNeededFlag || TheScheduler.iDfcPendingFlag) &&
pC->IsSafeToPreempt())
{
TheScheduler.iKernCSLocked = 1; // prevent further pre-emption
if (pC->iWakeup == NThread::EIdle)
{
// wake up the NULL thread, it will always reschedule immediately
pC->WakeUp();
}
else
{
// pre-empt the current thread and poke the 'scheduler' thread
__NK_ASSERT_ALWAYS(pC->iWakeup == NThread::ERelease);
pC->iWakeup = NThread::EResume;
UpdateThreadCpuTime(*pC, iScheduler);
RescheduleNeeded();
NKern::EnableAllInterrupts();
iScheduler.WakeUp();
return;
}
}
else
{
// no thread reschedle, so emit trace...
#ifdef BTRACE_CPU_USAGE
BTrace0(BTrace::ECpuUsage,BTrace::EIrqEnd);
#endif
}
if (((NThread*)pC)->iInKernel == 0 && // thread is running in user mode
pC->iUserModeCallbacks != NULL && // and has callbacks queued
TheScheduler.iKernCSLocked == 0 && // and is not currently processing a diversion
pC->IsSafeToPreempt()) // and can be safely prempted at this point
{
TheScheduler.iKernCSLocked = 1;
pC->ApplyDiversion();
}
NKern::EnableAllInterrupts();
__NK_ASSERT_ALWAYS(TInt(ResumeThread(pC->iWinThread)) > 0); // check thread was previously suspended
}
void Win32Interrupt::Reschedule(TAny*)
//
// The entry-point for the interrupt-rescheduler thread.
//
// This spends its whole life going around the TScheduler::Reschedule() loop
// selecting another thread to run.
//
{
TheScheduler.iKernCSLocked = 1;
RescheduleNeeded();
TScheduler::Reschedule();
FAULT();
}
void Win32Interrupt::ForceReschedule()
{
RescheduleNeeded();
iScheduler.WakeUp();
}
void SchedulerEscape()
{
NThread& me=CheckedCurrentThread();
EnterKernel();
__NK_ASSERT_ALWAYS(TheScheduler.iKernCSLocked==0); // Can't call Escape() with the Emulator/kernel already locked
NKern::ThreadEnterCS();
NKern::Lock();
me.iNState=NThreadBase::EBlocked;
TheScheduler.Remove(&me);
me.iWakeup=NThread::EEscaped;
SetThreadPriority(me.iWinThread,THREAD_PRIORITY_ABOVE_NORMAL);
Interrupt.ForceReschedule(); // schedules some other thread so we can carry on outside the scheduler domain
// this will change the value of iCurrentThread to ensure the 'escaped' invariants are set
}
void ReenterDfc(TAny* aPtr)
{
NThread& me = *static_cast<NThread*>(aPtr);
me.iWakeup = NThread::ERelease;
me.CheckSuspendThenReady();
}
void SchedulerReenter()
{
NThread* me=SchedulerThread();
__NK_ASSERT_ALWAYS(me);
__NK_ASSERT_ALWAYS(me->iWakeup == NThread::EEscaped);
TDfc idfc(&ReenterDfc, me);
StartOfInterrupt();
idfc.Add();
EndOfInterrupt();
SetThreadPriority(me->iWinThread,THREAD_PRIORITY_NORMAL);
__NK_ASSERT_ALWAYS(WaitForSingleObject(me->iScheduleLock, INFINITE) == WAIT_OBJECT_0);
// when released, the kernel is locked and handed over to us
// need to complete the reschedule protocol in this thread now
TScheduler::Reschedule();
NKern::EnableAllInterrupts();
NKern::ThreadLeaveCS();
LeaveKernel();
}
/** Return the current processor context type
(thread, IDFC, interrupt or escaped thread)
@return A value from NKern::TContext enumeration (including EEscaped)
@pre Any context
@see NKern::TContext
*/
EXPORT_C TInt NKern::CurrentContext()
{
NThread* t = SchedulerThread();
if (!t)
return NKern::EInterrupt;
if (TheScheduler.iInIDFC)
return NKern::EIDFC;
if (t->iWakeup == NThread::EEscaped)
return NKern::EEscaped;
__NK_ASSERT_ALWAYS(NKern::Crashed() || t == TheScheduler.iCurrentThread);
return NKern::EThread;
}
//
// We use SuspendThread and ResumeThread to preempt threads. This can cause
// deadlock if the thread is using windows synchronisation primitives (eg
// critical sections). This isn't too much of a problem most of the time,
// because threads generally use the symbian environment rather than the native
// windows APIs. However exceptions are an issue - they can happen at any time,
// and cause execution of native windows code over which we have no control.
//
// To work around this we examine the call stack to see if the thread is inside
// one of the windows exception handling functions. If so, preemption is
// deferred.
//
#include <winnt.h>
const TInt KWin32NonPreemptibleFunctionCount = 2;
struct TWin32FunctionInfo
{
TUint iStartAddr;
TUint iLength;
};
static TWin32FunctionInfo Win32NonPreemptibleFunctions[KWin32NonPreemptibleFunctionCount];
TWin32FunctionInfo Win32FindExportedFunction(const char* aModuleName, const char* aFunctionName)
{
HMODULE library = GetModuleHandleA(aModuleName);
__NK_ASSERT_ALWAYS(library != NULL);
// Find the start address of the function
TUint start = (TUint)GetProcAddress(library, aFunctionName);
__NK_ASSERT_ALWAYS(start);
// Now have to check all other exports to find the end of the function
TUint end = 0xffffffff;
TInt i = 1;
for (;;)
{
TUint addr = (TUint)GetProcAddress(library, MAKEINTRESOURCEA(i));
if (!addr)
break;
if (addr > start && addr < end)
end = addr;
++i;
}
__NK_ASSERT_ALWAYS(end != 0xffffffff);
TWin32FunctionInfo result = { start, end - start };
return result;
}
void Win32FindNonPreemptibleFunctions()
{
Win32NonPreemptibleFunctions[0] = Win32FindExportedFunction("kernel32.dll", "RaiseException");
Win32NonPreemptibleFunctions[1] = Win32FindExportedFunction("ntdll.dll", "KiUserExceptionDispatcher");
}
TBool Win32IsThreadInNonPreemptibleFunction(HANDLE aWinThread, TLinAddr aStackTop)
{
const TInt KMaxSearchDepth = 16; // 12 max observed while handling exceptions
const TInt KMaxStackSize = 1024 * 1024; // Default reserved stack size on windows
const TInt KMaxFrameSize = 4096;
CONTEXT c;
c.ContextFlags=CONTEXT_FULL;
GetThreadContext(aWinThread, &c);
TUint eip = c.Eip;
TUint ebp = c.Ebp;
TUint lastEbp = c.Esp;
// Walk the call stack
for (TInt i = 0 ; i < KMaxSearchDepth ; ++i)
{
for (TInt j = 0 ; j < KWin32NonPreemptibleFunctionCount ; ++j)
{
const TWin32FunctionInfo& info = Win32NonPreemptibleFunctions[j];
if (TUint(eip - info.iStartAddr) < info.iLength)
{
__KTRACE_OPT(KSCHED, DEBUGPRINT("Thread is in non-preemptible function %d at frame %d: eip == %08x", j, i, eip));
return TRUE;
}
}
// Check frame pointer is valid before dereferencing it
if (TUint(aStackTop - ebp) > KMaxStackSize || TUint(ebp - lastEbp) > KMaxFrameSize || ebp & 3)
break;
TUint* frame = (TUint*)ebp;
lastEbp = ebp;
ebp = frame[0];
eip = frame[1];
}
return FALSE;
}
TBool NThread::IsSafeToPreempt()
{
return !Win32IsThreadInNonPreemptibleFunction(iWinThread, iUserStackBase);
}
void LeaveKernel()
{
TInt& k=CheckedCurrentThread().iInKernel;
__NK_ASSERT_DEBUG(k>0);
if (k==1) // just about to leave kernel
{
NThread& t = CheckedCurrentThread();
__NK_ASSERT_ALWAYS(t.iCsCount==0);
__NK_ASSERT_ALWAYS(t.iHeldFastMutex==0);
__NK_ASSERT_ALWAYS(TheScheduler.iKernCSLocked==0);
NKern::DisableAllInterrupts();
t.CallUserModeCallbacks();
NKern::EnableAllInterrupts();
}
--k;
}