Convert Kernelhwsrv package from SFL to EPL
kernel\eka\compsupp is subject to the ARM EABI LICENSE
userlibandfileserver\fatfilenameconversionplugins\unicodeTables is subject to the Unicode license
kernel\eka\kernel\zlib is subject to the zlib license
// Copyright (c) 2008-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32\nkernsmp\arm\ncirq.cpp
//
//
/**
@file
@internalTechnology
*/
#include "nk_priv.h"
#include "nk_plat.h"
#include <nk_irq.h>
#include <arm.h>
#include <arm_gic.h>
#include <arm_scu.h>
#include <arm_tmr.h>
#ifdef _DEBUG
#define DMEMDUMP(base,size) DbgMemDump((TLinAddr)base,size)
void DbgMemDump(TLinAddr aBase, TInt aSize)
{
TInt off;
const TUint8* p=(const TUint8*)aBase;
NKern::Lock();
for (off=0; off<aSize; off+=16, p+=16)
{
DEBUGPRINT("%08x: %02x %02x %02x %02x %02x %02x %02x %02x | %02x %02x %02x %02x %02x %02x %02x %02x",
p, p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
}
NKern::Unlock();
}
#else
#define DMEMDUMP(base,size)
#endif
/******************************************************************************
* ARM Generic Interrupt Controller
******************************************************************************/
class ArmGic
{
public:
static void Enable(TInt aIndex);
static void Disable(TInt aIndex);
static TBool IsEnabled(TInt aIndex);
static void SetPending(TInt aIndex);
static void ClearPending(TInt aIndex);
static TBool IsPending(TInt aIndex);
static TBool IsActive(TInt aIndex);
static TBool SetNonSecure(TInt aIndex, TBool aNonSecure);
static TUint32 Priority(TInt aIndex);
static TUint32 SetPriority(TInt aIndex, TUint32 aPri);
static TUint32 Dest(TInt aIndex);
static TUint32 ModifyDest(TInt aIndex, TUint32 aClear, TUint32 aSet);
static TUint32 Config(TInt aIndex);
static TUint32 ModifyConfig(TInt aIndex, TUint32 aClear, TUint32 aSet);
static void Dump();
static void DumpCpuIfc();
public:
static TSpinLock ArmGicLock;
static TInt LSPI;
static TInt Domains;
static TInt NumCpus;
static TInt NumLines;
static TUint32 PriMask;
static TUint32 PriSpc;
static TUint32 MinPri;
};
TSpinLock ArmGic::ArmGicLock(TSpinLock::EOrderBTrace);
TInt ArmGic::LSPI;
TInt ArmGic::Domains;
TInt ArmGic::NumCpus;
TInt ArmGic::NumLines;
TUint32 ArmGic::PriMask;
TUint32 ArmGic::PriSpc;
TUint32 ArmGic::MinPri;
void ArmGic::Enable(TInt aIndex)
{
TUint32 mask = 1u << (aIndex&31);
GIC_DIST.iEnableSet[aIndex>>5] = mask;
arm_dsb();
}
void ArmGic::Disable(TInt aIndex)
{
TUint32 mask = 1u << (aIndex&31);
GIC_DIST.iEnableClear[aIndex>>5] = mask;
arm_dsb();
}
TBool ArmGic::IsEnabled(TInt aIndex)
{
TUint32 mask = 1u << (aIndex&31);
return GIC_DIST.iEnableSet[aIndex>>5] & mask;
}
void ArmGic::SetPending(TInt aIndex)
{
TUint32 mask = 1u << (aIndex&31);
GIC_DIST.iPendingSet[aIndex>>5] = mask;
arm_dsb();
}
void ArmGic::ClearPending(TInt aIndex)
{
TUint32 mask = 1u << (aIndex&31);
GIC_DIST.iPendingClear[aIndex>>5] = mask;
arm_dsb();
}
TBool ArmGic::IsPending(TInt aIndex)
{
TUint32 mask = 1u << (aIndex&31);
return GIC_DIST.iPendingSet[aIndex>>5] & mask;
}
TBool ArmGic::IsActive(TInt aIndex)
{
TUint32 mask = 1u << (aIndex&31);
return GIC_DIST.iActive[aIndex>>5] & mask;
}
TUint32 ArmGic::Dest(TInt aIndex)
{
TUint32 reg = GIC_DIST.iTarget[aIndex>>2];
reg >>= ((aIndex&3)<<3);
reg &= 0xff;
return reg;
}
TUint32 ArmGic::ModifyDest(TInt aIndex, TUint32 aClear, TUint32 aSet)
{
aClear &= 0xff;
aSet &= 0xff;
TInt shift = (aIndex&3)<<3;
aClear <<= shift;
aSet <<= shift;
volatile TUint32& reg = GIC_DIST.iTarget[aIndex>>2];
TInt irq = __SPIN_LOCK_IRQSAVE(ArmGicLock);
TUint32 old = reg;
reg = (old &~ aClear) | aSet;
arm_dsb();
__SPIN_UNLOCK_IRQRESTORE(ArmGicLock, irq);
old >>= shift;
return old & 0xff;
}
TUint32 ArmGic::Config(TInt aIndex)
{
TInt shift = (aIndex&15)<<1;
TUint32 x = GIC_DIST.iConfig[aIndex>>4];
x >>= shift;
return x & 3;
}
TUint32 ArmGic::ModifyConfig(TInt aIndex, TUint32 aClear, TUint32 aSet)
{
aClear &= 3;
aSet &= 3;
TInt shift = (aIndex&15)<<1;
aClear <<= shift;
aSet <<= shift;
volatile TUint32& reg = GIC_DIST.iConfig[aIndex>>4];
TInt irq = __SPIN_LOCK_IRQSAVE(ArmGicLock);
TUint32 old = reg;
reg = (old &~ aClear) | aSet;
arm_dsb();
__SPIN_UNLOCK_IRQRESTORE(ArmGicLock, irq);
old >>= shift;
return old & 3;
}
TBool ArmGic::SetNonSecure(TInt aIndex, TBool aNonSecure)
{
TUint32 mask = 1u << (aIndex & 31);
volatile TUint32& reg = GIC_DIST.iIntSec[aIndex>>5];
TInt irq = __SPIN_LOCK_IRQSAVE(ArmGicLock);
TUint32 old = reg;
reg = aNonSecure ? (old | mask) : (old &~ mask);
arm_dsb();
__SPIN_UNLOCK_IRQRESTORE(ArmGicLock, irq);
return old & mask;
}
TUint32 ArmGic::Priority(TInt aIndex)
{
TInt shift = (aIndex&3)<<3;
TUint32 x = GIC_DIST.iPriority[aIndex>>2];
x >>= shift;
return x & 0xff;
}
TUint32 ArmGic::SetPriority(TInt aIndex, TUint32 aPri)
{
aPri &= 0xff;
TInt shift = (aIndex&3)<<3;
TUint32 clear = 0xffu << shift;
aPri <<= shift;
volatile TUint32& reg = GIC_DIST.iPriority[aIndex>>2];
TInt irq = __SPIN_LOCK_IRQSAVE(ArmGicLock);
TUint32 old = reg;
reg = (old &~ clear) | aPri;
arm_dsb();
__SPIN_UNLOCK_IRQRESTORE(ArmGicLock, irq);
old >>= shift;
return old & 0xff;
}
void ArmGic::Dump()
{
#ifdef KBOOT
__KTRACE_OPT(KBOOT,DEBUGPRINT("GIC iCtrl=%08x iType=%08x", GIC_DIST.iCtrl, GIC_DIST.iType));
TInt n = ArmGic::NumLines;
TInt i;
for (i=0; i<n; i++)
{
TUint32 cfg = Config(i);
TUint32 pri = Priority(i);
TUint32 dest = Dest(i);
TUint32 enabled = IsEnabled(i) ? 1 : 0;
TUint32 pending = IsPending(i) ? 1 : 0;
TUint32 active = IsActive(i) ? 1 : 0;
const char* cat = (i<16) ? "SW" : (i<32) ? "PP" : "SP";
__KTRACE_OPT(KBOOT,DEBUGPRINT("%3d: %2s cfg=%1d pri=%02x dest=%02x E%1d P%1d A%1d",
i, cat, cfg, pri, dest, enabled, pending, active));
}
#endif
}
void ArmGic::DumpCpuIfc()
{
#ifdef KBOOT
GicCpuIfc& C = GIC_CPU_IFC;
__KTRACE_OPT(KBOOT,DEBUGPRINT("IFC iCtrl=%08x iPriMask=%08x iBinaryPoint=%08x", C.iCtrl, C.iPriMask, C.iBinaryPoint));
__KTRACE_OPT(KBOOT,DEBUGPRINT("IFC Running=%08x HighestP=%08x", C.iRunningPri, C.iHighestPending));
#endif
}
void NIrq::HwEoi()
{
if (iX && iX->iEoiFn)
(*iX->iEoiFn)(this);
else
{
GIC_CPU_IFC.iEoi = iVector;
#if defined(SMP_CRAZY_INTERRUPTS) && !defined(__STANDALONE_NANOKERNEL__)
// change the target CPU for the next Interrupt
if ((TInt)TheSuperPage().KernelConfigFlags() & EKernelConfigSMPCrazyInterrupts)
{
TInt cpu = NKern::CurrentCpu() + 1;
if(cpu >= NKern::NumberOfCpus())
cpu = 0;
ArmGic::ModifyDest(iVector, 0xffu, 1u << cpu);
}
else
arm_dsb();
#else
arm_dsb();
#endif
}
}
void NIrq::HwEnable()
{
if (iX && iX->iEnableFn)
(*iX->iEnableFn)(this);
else
{
ArmGic::Enable(iVector);
}
}
void NIrq::HwDisable()
{
if (iX && iX->iDisableFn)
(*iX->iDisableFn)(this);
else
{
ArmGic::Disable(iVector);
}
}
void NIrq::HwSetCpu(TInt aCpu)
{
if (iX && iX->iSetCpuFn)
(*iX->iSetCpuFn)(this, 1u<<aCpu);
else
{
ArmGic::ModifyDest(iVector, 0xffu, 1u<<aCpu);
}
}
void NIrq::HwSetCpuMask(TUint32 aMask)
{
if (iX && iX->iSetCpuFn)
(*iX->iSetCpuFn)(this, aMask);
else
{
ArmGic::ModifyDest(iVector, 0xffu, aMask);
}
}
void NIrq::HwInit()
{
if (iX && iX->iInitFn)
(*iX->iInitFn)(this);
else
{
__KTRACE_OPT(KBOOT,DEBUGPRINT("NIrq %02x HwInit", iIndex));
TUint32 clear = E_GicDistICfgEdge;
TUint32 set = 0;
if (!(iStaticFlags & ELevel))
set = E_GicDistICfgEdge;
ArmGic::ModifyConfig(iVector, clear, set);
}
}
TBool NIrq::HwPending()
{
if (iX && iX->iPendingFn)
return (*iX->iPendingFn)(this);
return ArmGic::IsPending(iVector) || ArmGic::IsActive(iVector);
}
void NIrq::HwWaitCpus()
{
if (iX && iX->iWaitFn)
(*iX->iWaitFn)(this);
}
void NIrq::HwInit0()
{
__KTRACE_OPT(KBOOT, DEBUGPRINT("NIrq::HwInit0"));
// Need to set up addresses of GIC_DIST, GIC_CPU_IFC, SCU and LOCAL_TIMER
GicDistributor& D = GIC_DIST;
GicCpuIfc& C = GIC_CPU_IFC;
D.iCtrl = 0;
C.iCtrl = 0;
arm_dsb();
TUint32 type = D.iType;
__KTRACE_OPT(KBOOT, DEBUGPRINT("GIC iType = %08x", type));
ArmGic::LSPI = (type & E_GicDistType_LSPIMask) >> E_GicDistType_LSPIShift;
ArmGic::Domains = (type & E_GicDistType_Domains) ? 2 : 1;
ArmGic::NumCpus = ((type & E_GicDistType_CPUNMask) >> E_GicDistType_CPUNShift) + 1;
ArmGic::NumLines = ((type & E_GicDistType_ITMask) + 1) << 5;
__KTRACE_OPT(KBOOT, DEBUGPRINT("GIC LSPI=%d Domains=%d NumCpus=%d NumLines=%d",
ArmGic::LSPI, ArmGic::Domains, ArmGic::NumCpus, ArmGic::NumLines));
TInt i;
for (i=0; i<32; ++i)
D.iEnableClear[i] = 0xffffffffu; // disable all interrupts
arm_dsb();
for (i=0; i<32; ++i)
D.iPendingClear[i] = 0xffffffffu; // clear any pending interrupts
arm_dsb();
D.iPriority[0] = 0xffffffffu;
ArmGic::PriMask = D.iPriority[0] & 0xffu;
ArmGic::PriSpc = (~ArmGic::PriMask + 1) & 0xffu;
ArmGic::MinPri = ArmGic::PriMask - ArmGic::PriSpc;
__KTRACE_OPT(KBOOT, DEBUGPRINT("PriMask=%02x PriSpc=%02x MinPri=%02x", ArmGic::PriMask, ArmGic::PriSpc, ArmGic::MinPri));
TUint32 x = ArmGic::MinPri;
x |= (x<<8);
x |= (x<<16);
for (i=0; i<256; ++i)
D.iPriority[i] = x; // set all interrupts to minimum active priority
x = 0x01010101u;
for (i=0; i<256; ++i)
D.iTarget[i] = x; // set all interrupts to target this CPU
x = 0xAAAAAAAAu; // config value for SW interrupts (rising edge, N-N)
D.iConfig[0] = x; // set config for 0-15
x = 0x28000000u; // 31=0b00, 30=29=0b10
D.iConfig[1] = x; // set config for 16-31
x = 0xAAAAAAAAu; // config value for SW interrupts (rising edge, N-N)
for (i=2; i<64; ++i)
D.iConfig[i] = x; // set default value for other interrupts
arm_dsb();
ArmGic::Dump();
}
void NIrq::HwInit1()
{
__KTRACE_OPT(KBOOT, DEBUGPRINT("NIrq::HwInit1"));
// elevate priority of CRASH_IPI to highest level
ArmGic::SetPriority(CRASH_IPI_VECTOR, 0);
GicDistributor& D = GIC_DIST;
GicCpuIfc& C = GIC_CPU_IFC;
C.iCtrl = 0;
C.iPriMask = ArmGic::PriMask; // unmask all interrupts
C.iBinaryPoint = 0;
arm_dsb();
C.iCtrl = E_GicDistCtrl_Enable; // enable this CPU's interrupt controller interface
arm_dsb();
D.iCtrl = E_GicDistCtrl_Enable; // enable the global interrupt distributor
arm_dsb();
// Enable timeslice timer interrupt
ArmLocalTimer& T = LOCAL_TIMER;
T.iTimerCtrl = 0;
T.iTimerIntStatus = E_ArmTmrIntStatus_Event;
ArmGic::ClearPending(TIMESLICE_VECTOR);
arm_dsb();
ArmGic::Enable(TIMESLICE_VECTOR);
arm_dsb();
T.iTimerLoad = KMaxTUint32; // timer wraps to 0xffffffff after reaching 0
arm_dsb();
T.iTimerCount = (TUint32)KMaxTInt32; // timer starts at 0x7fffffff (initial thread doesn't timeslice)
arm_dsb();
ArmGic::DumpCpuIfc();
}
void NIrq::HwInit2AP()
{
__KTRACE_OPT(KBOOT, DEBUGPRINT("NIrq::HwInit2AP"));
// Must set up interrupts 0-31 separately for each CPU
GicDistributor& D = GIC_DIST;
TInt i;
TUint32 x = ArmGic::MinPri;
x |= (x<<8);
x |= (x<<16);
for (i=0; i<32; ++i)
D.iPriority[i] = x; // set all interrupts to minimum active priority
x = 0xAAAAAAAAu; // config value for SW interrupts (rising edge, N-N)
D.iConfig[0] = x; // set config for 0-15
x = 0x28000000u; // 31=0b00, 30=29=0b10
D.iConfig[1] = x; // set config for 16-31
arm_dsb();
ArmGic::Dump();
// elevate priority of CRASH_IPI to highest level
ArmGic::SetPriority(CRASH_IPI_VECTOR, 0);
GicCpuIfc& C = GIC_CPU_IFC;
C.iCtrl = 0;
C.iPriMask = ArmGic::PriMask; // unmask all interrupts
C.iBinaryPoint = 0;
arm_dsb();
C.iCtrl = E_GicDistCtrl_Enable;
arm_dsb();
// Enable timeslice timer interrupt
ArmLocalTimer& T = LOCAL_TIMER;
T.iTimerCtrl = 0;
T.iTimerIntStatus = E_ArmTmrIntStatus_Event;
ArmGic::ClearPending(TIMESLICE_VECTOR);
arm_dsb();
ArmGic::Enable(TIMESLICE_VECTOR);
arm_dsb();
T.iTimerLoad = KMaxTUint32; // timer wraps to 0xffffffff after reaching 0
arm_dsb();
T.iTimerCount = (TUint32)KMaxTInt32; // timer starts at 0x7fffffff (initial thread doesn't timeslice)
arm_dsb();
ArmGic::DumpCpuIfc();
}