Convert Kernelhwsrv package from SFL to EPL
kernel\eka\compsupp is subject to the ARM EABI LICENSE
userlibandfileserver\fatfilenameconversionplugins\unicodeTables is subject to the Unicode license
kernel\eka\kernel\zlib is subject to the zlib license
// Copyright (c) 1995-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32test\active\t_cact.cpp
// Overview:
// Test the CActiveScheduler class, including scheduling priority, thread
// panics and cancelling objects attached to the scheduler.
// API Information:
// CActiveScheduler
// Details:
// - Verify the thread is panicked when one of the following programming errors occurs:
// - start an uninstalled scheduler
// - install a scheduler twice
// - stop the scheduler twice
// - stop an uninstalled scheduler
// - set active an active object twice
// - add an active object to an uninstalled scheduler
// - add a NULL pointer to the scheduler
// - add an active object twice
// - thread gets a stray signal
// - make request on an un-added active object
// - Create timers with different priorities
// - Check the timers are scheduled according to expiration time
// - Check the timers are scheduled in order of their priority when they expire at the
// same time
// - Check the timers are scheduled in order of the addition to the scheduler when
// they expire at the same time and they have the same priority
// - Verify that a leave in RunL method not handled by the active object calls the active
// scheduler's Error method
// - Test a cancelled timer will not be scheduled
// - Create a thread with its own heap and test that timers are scheduled in the order of
// their expiration time, priority and order of addition to the scheduler
// - Check the heap is not corrupted by all the tests
// Platforms/Drives/Compatibility:
// All
// Assumptions/Requirement/Pre-requisites:
// Failures and causes:
// Base Port information:
//
//
#include <e32test.h>
#include <e32panic.h>
const TInt KmyErrorNum=999;
const TInt KLeaveCode=1234;
const TInt KgTimerID=4321;
const TInt KCancelCode=1111;
const TInt KTestArraySize=10;
const TInt KPanicThreadRet=2222;
const TInt KHeapSize=0x2000;
enum TActivePriority {eLowest=-100,eLow=-1,eNone=0,eHigh=1,eHighest=100};
enum TDirective {EStartUninstalled,EInstallTwice,EStopTwice,EStopUninstalled,ESetActiveTwice,
EAddToUninstalled,EAddNull,EAddTwice,ECreateStray,ERequestUnadded,EStraySignalNoKRequestPending,EStraySignalNoSetActive,ENormal};
class TSecdulerTester
{
public:
void Test1();
void Test2();
void Test3();
void Test4();
};
class MyManager : public CActiveScheduler
{
public:
virtual void Error(TInt anError) const {CActiveScheduler::Halt(anError);}
};
class myTimer : public CTimer
{
public:
myTimer(const TInt aPriority, const TInt anIdentifier):CTimer(aPriority){iIdentifier=anIdentifier;}
virtual void RunL();
void Start();
void Setactive() {SetActive();}
static void SetNum(const TInt aNum) {iNum=aNum; iCount=0;}
private:
TInt iIdentifier;
static TInt iCount;
static TInt iNum;
};
class myThreadTimer : public CTimer
{
public:
myThreadTimer(const TInt aPriority, const TInt anIdentifier):CTimer(aPriority){iIdentifier=anIdentifier;}
virtual void RunL();
static void SetNum(const TInt aNum) {iNum=aNum; iCount=0;}
void Start();
private:
TInt iIdentifier;
static TInt iCount;
static TInt iNum;
};
class CreateStray : public CActive
{
public:
CreateStray(TInt aPriority);
void DoCancel() {}
void RunL() {}
private:
RTimer iTimer;
};
class myStray : public CActive
{
public:
myStray(TInt aPriority) : CActive(aPriority) {};
void DoCancel() {}
void RunL() { CActiveScheduler::Stop(); }
void Start1();
void Start2();
};
void myStray::Start1()
{
TRequestStatus* s=&iStatus;
SetActive();
RThread().RequestComplete(s,KErrNone);
}
void myStray::Start2()
{
TRequestStatus* s=&iStatus;
iStatus=KRequestPending;
User::RequestComplete(s,KErrNone);
}
TInt myTimer::iCount;
TInt myTimer::iNum;
TInt myThreadTimer::iCount;
TInt myThreadTimer::iNum;
LOCAL_D RTest test(_L("T_CACT"));
LOCAL_D myTimer* gTimer; // This is cancelled from within the run method
LOCAL_D RSemaphore threadSemaphore;
LOCAL_D myTimer* pLowest=NULL;
LOCAL_D myTimer* pLow=NULL;
LOCAL_D myTimer* pNone=NULL;
LOCAL_D myTimer* pHigh=NULL;
LOCAL_D myTimer* pHigh2=NULL;
LOCAL_D myTimer* pHigh3=NULL;
LOCAL_D myTimer* pHighest=NULL;
LOCAL_D TInt order[KTestArraySize]; // When a timer expires its identifier is placed in here
LOCAL_D TInt threadArray[KTestArraySize];
LOCAL_C TInt myThreadEntryPoint(TAny*)
//
// myThread tests
//
{
__UHEAP_MARK;
RTest test(_L("Separate thread tests"));
test.Title();
test.Start(_L("Create semaphore"));
RTimer t;
TInt ret=t.CreateLocal();
test(ret==KErrNone);
//
test.Next(_L("Install scheduler"));
MyManager* pManager=new MyManager;
CActiveScheduler::Install(pManager);
//
test.Next(_L("Create active objects"));
myThreadTimer* pLowest=new myThreadTimer(eLowest, eLowest);
test(pLowest!=NULL);
myThreadTimer* pLow=new myThreadTimer(eLow, eLow);
test(pLow!=NULL);
myThreadTimer* pNone=new myThreadTimer(eNone, eNone);
test(pNone!=NULL);
myThreadTimer* pHigh=new myThreadTimer(eHigh, eHigh);
test(pHigh!=NULL);
myThreadTimer* pHigh2=new myThreadTimer(eHigh, eHigh+2);
test(pHigh2!=NULL);
myThreadTimer* pHigh3=new myThreadTimer(eHigh, eHigh+3);
test(pHigh3!=NULL);
myThreadTimer* pHighest=new myThreadTimer(eHighest, eHighest);
test(pHighest!=NULL);
//
test.Next(_L("Test low is scheduled before lowest"));
myThreadTimer::SetNum(2);
pLowest->Start();
pLowest->After(0);
pLow->Start();
pLow->After(0);
TRequestStatus s;
t.After(s,100000);
test(s==KRequestPending);
User::WaitForRequest(s);
CActiveScheduler::Start();
test(threadArray[0]==eLow && threadArray[1]==eLowest);
//
test.Next(_L("Test none is scheduled before low"));
myThreadTimer::SetNum(2);
pLow->After(0);
pNone->Start();
pNone->After(0);
t.After(s,100000);
test(s==KRequestPending);
User::WaitForRequest(s);
CActiveScheduler::Start();
test(threadArray[0]==eNone && threadArray[1]==eLow);
//
test.Next(_L("Test high is scheduled before none"));
myThreadTimer::SetNum(2);
pHigh->Start();
pHigh->After(0);
pNone->After(0);
t.After(s, 100000);
test(s==KRequestPending);
User::WaitForRequest(s);
CActiveScheduler::Start();
test(threadArray[0]==eHigh && threadArray[1]==eNone);
//
test.Next(_L("Test highest is scheduled before high"));
myThreadTimer::SetNum(2);
pHighest->Start();
pHighest->After(0);
pHigh->After(0);
t.After(s, 100000);
test(s==KRequestPending);
User::WaitForRequest(s);
CActiveScheduler::Start();
test(threadArray[0]==eHighest && threadArray[1]==eHigh);
//
test.Next(_L("Test objects are scheduled according to priority"));
myThreadTimer::SetNum(5);
pLowest->After(0);
pLow->After(0);
pNone->After(0);
pHigh->After(0);
pHighest->After(0);
t.After(s, 100000);
test(s==KRequestPending);
User::WaitForRequest(s);
CActiveScheduler::Start();
test(threadArray[0]==eHighest && threadArray[1]==eHigh && threadArray[2]==eNone &&
threadArray[3]==eLow && threadArray[4]==eLowest);
//
test.Next(_L("Test objects are scheduled according to timer expiry"));
myThreadTimer::SetNum(5);
pLowest->After(0);
pLow->After(500000);
pNone->After(1000000);
pHigh->After(1500000);
pHighest->After(2000000);
CActiveScheduler::Start();
test(threadArray[4]==eHighest && threadArray[3]==eHigh && threadArray[2]==eNone &&
threadArray[1]==eLow && threadArray[0]==eLowest);
//
test.Next(_L("Test with some objects having the same priority"));
myThreadTimer::SetNum(7);
pLowest->After(0);
pLow->After(0);
pNone->After(0);
pHigh->After(0);
pHigh2->Start();
pHigh2->After(0);
pHigh3->Start();
pHigh3->After(0);
pHighest->After(0);
t.After(s, 100000);
test(s==KRequestPending);
User::WaitForRequest(s);
CActiveScheduler::Start();
test(threadArray[0]==eHighest && threadArray[1]==eHigh && threadArray[2]==eHigh+2 &&
threadArray[3]==eHigh+3 && threadArray[4]==eNone && threadArray[5]==eLow && threadArray[6]==eLowest);
//
test.Next(_L("Tidying up"));
delete pManager;
delete pLowest;
delete pLow;
delete pNone;
delete pHigh;
delete pHigh2;
delete pHigh3;
delete pHighest;
test.Close();
__UHEAP_MARKEND;
threadSemaphore.Signal();
return(KErrNone);
}
LOCAL_D TInt panicThread(TAny* aDirective)
//
// Test thread which panics
//
{
// cause panics in various ways depending upon aDirective
MyManager* pManager=new MyManager;
switch((TInt)aDirective)
{
case EStartUninstalled:
CActiveScheduler::Start(); // Start an uninstalled active schedler
break;
case EInstallTwice:
CActiveScheduler::Install(pManager); // Install the scheduler twice
CActiveScheduler::Install(pManager);
break;
case EStopTwice:
CActiveScheduler::Install(pManager); // Stop a scheduler twice
CActiveScheduler::Stop();
CActiveScheduler::Stop();
break;
case EStopUninstalled:
CActiveScheduler::Stop(); // Stop an uninstalled active scheduler
break;
case ESetActiveTwice:
{
//
// Set an active object to active twice
//
myTimer* pTimer=new myTimer(eNone,eNone);
CActiveScheduler::Install(pManager);
CActiveScheduler::Add(pTimer);
pTimer->Setactive();
pTimer->Setactive();
}
break;
case EAddToUninstalled:
{
//
// Add an active object to an uninstalled scheduler
//
myTimer* pTimer=new myTimer(eNone,eNone);
CActiveScheduler::Add(pTimer);
}
break;
case EAddNull:
//
// Add Null to the scheduling queue
//
CActiveScheduler::Install(pManager);
CActiveScheduler::Add(NULL);
break;
case EAddTwice:
{
//
// Add the same object twice to the scheduling queue
//
myTimer* pTimer=new myTimer(eNone,eNone);
CActiveScheduler::Install(pManager);
CActiveScheduler::Add(pTimer);
CActiveScheduler::Add(pTimer);
}
break;
case ECreateStray:
{
//
// Create a stray signal
//
CActiveScheduler::Install(pManager);
new CreateStray(1);
CActiveScheduler::Start();
}
break;
case ERequestUnadded:
{
//
// Make a request of an active object not added to the scheduling queue
//
CActiveScheduler::Install(pManager);
myTimer* pTimer=new myTimer(eNone,eNone);
pTimer->Setactive();
}
break;
case EStraySignalNoKRequestPending:
{
CActiveScheduler::Install(pManager);
myStray* pStray = new myStray(eNone);
CActiveScheduler::Add(pStray);
pStray->Start1();
CActiveScheduler::Start();
}
break;
case EStraySignalNoSetActive:
{
CActiveScheduler::Install(pManager);
myStray* pStray = new myStray(eNone);
CActiveScheduler::Add(pStray);
pStray->Start2();
CActiveScheduler::Start();
}
break;
case ENormal:
default:
break;
}
delete pManager;
return(KPanicThreadRet);
}
void myTimer::RunL()
//
// Handle the timer completion
//
{
if (iIdentifier==KLeaveCode) // Used to test that the request manager error() method is called
User::Leave(KmyErrorNum);
if (iIdentifier==KCancelCode) // Used to test cancelling an object
gTimer->Cancel();
order[iCount++]=iIdentifier;
if (iCount>=iNum)
CActiveScheduler::Stop();
}
void myTimer::Start()
//
// Start a timer
//
{
ConstructL();
CActiveScheduler::Add(this);
}
void myThreadTimer::RunL()
//
// Handle timer completion
//
{
threadArray[iCount++]=iIdentifier;
if(iCount>=iNum)
CActiveScheduler::Stop();
}
void myThreadTimer::Start()
//
// Start a timer
//
{
ConstructL();
CActiveScheduler::Add(this);
}
CreateStray::CreateStray(TInt aPriority)
//
// Constructor
//
: CActive(aPriority)
{
iTimer.CreateLocal();
CActiveScheduler::Add(this);
iTimer.After(iStatus, 1000000);
}
void TSecdulerTester::Test1()
//
// Test 1
//
{
//
// Test the panics
//
RThread thread;
TRequestStatus stat;
//
test.Start(_L("First test normal thread termination"));
TInt r=thread.Create(_L("myThread"),panicThread,KDefaultStackSize,KHeapSize,KHeapSize,(TAny*)ENormal);
test(r==KErrNone);
thread.Logon(stat);
thread.Resume();
User::WaitForRequest(stat);
test(thread.ExitCategory().Compare(_L("Kill"))==0);
test(thread.ExitReason()==KPanicThreadRet);
test(thread.ExitType()==EExitKill);
CLOSE_AND_WAIT(thread);
//
test.Next(_L("Starting an uninstalled scheduler panics"));
r=thread.Create(_L("myThread"),panicThread,KDefaultStackSize,KHeapSize,KHeapSize,(TAny*)EStartUninstalled);
test(r==KErrNone);
thread.Logon(stat);
thread.Resume();
User::WaitForRequest(stat);
test(thread.ExitReason()==EReqManagerDoesNotExist);
test(thread.ExitType()==EExitPanic);
CLOSE_AND_WAIT(thread);
//
test.Next(_L("Installing the scheduler twice panics"));
r=thread.Create(_L("myThread"),panicThread,KDefaultStackSize,KHeapSize,KHeapSize,(TAny*)EInstallTwice);
test(r==KErrNone);
thread.Logon(stat);
thread.Resume();
User::WaitForRequest(stat);
test(thread.ExitReason()==EReqManagerAlreadyExists);
test(thread.ExitType()==EExitPanic);
CLOSE_AND_WAIT(thread);
//
test.Next(_L("Stopping the scheduler twice panics"));
r=thread.Create(_L("myThread"),panicThread,KDefaultStackSize,KHeapSize,KHeapSize,(TAny*)EStopTwice);
test(r==KErrNone);
thread.Logon(stat);
thread.Resume();
User::WaitForRequest(stat);
test(thread.ExitReason()==EReqTooManyStops);
test(thread.ExitType()==EExitPanic);
CLOSE_AND_WAIT(thread);
//
test.Next(_L("Stopping an uninstalled scheduler panics"));
r=thread.Create(_L("myThread"),panicThread,KDefaultStackSize,KHeapSize,KHeapSize,(TAny*)EStopUninstalled);
test(r==KErrNone);
thread.Logon(stat);
thread.Resume();
User::WaitForRequest(stat);
test(thread.ExitReason()==EReqManagerDoesNotExist);
test(thread.ExitType()==EExitPanic);
CLOSE_AND_WAIT(thread);
//
test.Next(_L("Setting an active object to active twice panics"));
r=thread.Create(_L("myThread"),panicThread,KDefaultStackSize,KHeapSize,KHeapSize,(TAny*)ESetActiveTwice);
test(r==KErrNone);
thread.Logon(stat);
thread.Resume();
User::WaitForRequest(stat);
test(thread.ExitReason()==EReqAlreadyActive);
test(thread.ExitType()==EExitPanic);
CLOSE_AND_WAIT(thread);
//
test.Next(_L("Adding an active object to an uninstalled scheduler panics"));
r=thread.Create(_L("myThread"),panicThread,KDefaultStackSize,KHeapSize,KHeapSize,(TAny*)EAddToUninstalled);
test(r==KErrNone);
thread.Logon(stat);
thread.Resume();
User::WaitForRequest(stat);
test(thread.ExitReason()==EReqManagerDoesNotExist);
test(thread.ExitType()==EExitPanic);
CLOSE_AND_WAIT(thread);
//
test.Next(_L("Adding NULL panics"));
r=thread.Create(_L("myThread"),panicThread,KDefaultStackSize,KHeapSize,KHeapSize,(TAny*)EAddNull);
test(r==KErrNone);
thread.Logon(stat);
thread.Resume();
User::WaitForRequest(stat);
test(thread.ExitReason()==EReqNull);
test(thread.ExitType()==EExitPanic);
CLOSE_AND_WAIT(thread);
//
test.Next(_L("Adding an active object twice panics"));
r=thread.Create(_L("myThread"),panicThread,KDefaultStackSize,KHeapSize,KHeapSize,(TAny*)EAddTwice);
test(r==KErrNone);
thread.Logon(stat);
thread.Resume();
User::WaitForRequest(stat);
test(thread.ExitReason()==EReqAlreadyAdded);
test(thread.ExitType()==EExitPanic);
CLOSE_AND_WAIT(thread);
//
test.Next(_L("A stray signal causes a panic"));
r=thread.Create(_L("myThread"),panicThread,KDefaultStackSize,KHeapSize,KHeapSize,(TAny*)ECreateStray);
test(r==KErrNone);
thread.Logon(stat);
thread.Resume();
User::WaitForRequest(stat);
test(thread.ExitReason()==EReqStrayEvent);
test(thread.ExitType()==EExitPanic);
CLOSE_AND_WAIT(thread);
//
test.Next(_L("Making a request on an unadded active object panics"));
r=thread.Create(_L("myThread"),panicThread,KDefaultStackSize,KHeapSize,KHeapSize,(TAny*)ERequestUnadded);
test(r==KErrNone);
thread.Logon(stat);
thread.Resume();
User::WaitForRequest(stat);
test(thread.ExitReason()==EActiveNotAdded);
test(thread.ExitType()==EExitPanic);
CLOSE_AND_WAIT(thread);
//
test.Next(_L("The service provider does not set the status to KRequestPending"));
r=thread.Create(_L("myThread"),panicThread,KDefaultStackSize,KHeapSize,KHeapSize,(TAny*)EStraySignalNoKRequestPending);
test(r==KErrNone);
thread.Logon(stat);
thread.Resume();
User::WaitForRequest(stat);
#ifdef _DEBUG
//this might fail if we're using a UREL euser
test(thread.ExitReason()==EReqStrayEvent);
test(thread.ExitType()==EExitPanic);
#else
test(thread.ExitCategory().Compare(_L("Kill"))==0);
test(thread.ExitReason()==KPanicThreadRet);
test(thread.ExitType()==EExitKill);
#endif
CLOSE_AND_WAIT(thread);
//
#ifdef _DEBUG
//this might fail if we're using a UREL euser
test.Next(_L("The active object does not call SetActive"));
r=thread.Create(_L("myThread"),panicThread,KDefaultStackSize,KHeapSize,KHeapSize,(TAny*)EStraySignalNoSetActive);
test(r==KErrNone);
thread.Logon(stat);
thread.Resume();
User::WaitForRequest(stat);
test(thread.ExitReason()==EReqStrayEvent);
test(thread.ExitType()==EExitPanic);
CLOSE_AND_WAIT(thread);
#endif
//
test.End();
}
void TSecdulerTester::Test2()
//
// Test 2
//
{
test.Start(_L("Create timer"));
RTimer t;
TInt ret=t.CreateLocal();
test(ret==KErrNone);
TRequestStatus s;
//
test.Next(_L("Test low is scheduled before lowest when timing equal"));
myTimer::SetNum(2);
pLowest->After(0);
pLow->After(0);
t.After(s, 100000);
test(s==KRequestPending);
User::WaitForRequest(s);
CActiveScheduler::Start();
test(order[0]==eLow && order[1]==eLowest);
//
test.Next(_L("Test low is not before lowest when it expires later"));
myTimer::SetNum(2);
pLowest->After(0);
pLow->After(1000000);
CActiveScheduler::Start();
test(order[0]==eLowest && order[1]==eLow);
//
test.Next(_L("Test none is scheduled before low"));
myTimer::SetNum(2);
pLow->After(0);
pNone->After(0);
t.After(s, 100000);
test(s==KRequestPending);
User::WaitForRequest(s);
CActiveScheduler::Start();
test(order[0]==eNone && order[1]==eLow);
//
test.Next(_L("Test none is not before low when it expires later"));
myTimer::SetNum(2);
pLow->After(0);
pNone->After(1000000);
CActiveScheduler::Start();
test(order[0]==eLow && order[1]==eNone);
//
test.Next(_L("Test high is scheduled before none"));
myTimer::SetNum(2);
pHigh->After(0);
pNone->After(0);
t.After(s, 100000);
test(s==KRequestPending);
User::WaitForRequest(s);
CActiveScheduler::Start();
test(order[0]==eHigh && order[1]==eNone);
//
test.Next(_L("Test high is not before none when it expires later"));
myTimer::SetNum(2);
pHigh->After(1000000);
pNone->After(0);
CActiveScheduler::Start();
test(order[0]==eNone && order[1]==eHigh);
//
test.Next(_L("Test highest is scheduled before high"));
myTimer::SetNum(2);
pHighest->After(0);
pHigh->After(0);
t.After(s, 100000);
test(s==KRequestPending);
User::WaitForRequest(s);
CActiveScheduler::Start();
test(order[0]==eHighest && order[1]==eHigh);
//
test.Next(_L("Test highest is not before high when it expires later"));
myTimer::SetNum(2);
pHighest->After(1000000);
pHigh->After(0);
CActiveScheduler::Start();
test(order[0]==eHigh && order[1]==eHighest);
//
test.Next(_L("Test all objects are scheduled in priority order"));
myTimer::SetNum(5);
pLowest->After(0);
pLow->After(0);
pNone->After(0);
pHigh->After(0);
pHighest->After(0);
t.After(s, 100000);
test(s==KRequestPending);
User::WaitForRequest(s);
CActiveScheduler::Start();
test(order[0]==eHighest && order[1]==eHigh && order[2]==eNone && order[3]==eLow && order[4]==eLowest);
//
test.Next(_L("Test objects are scheduled according to expiry of timers"));
myTimer::SetNum(5);
pLowest->After(0);
pLow->After(500000);
pNone->After(1000000);
pHigh->After(1500000);
pHighest->After(2000000);
CActiveScheduler::Start();
test(order[4]==eHighest && order[3]==eHigh && order[2]==eNone && order[1]==eLow && order[0]==eLowest);
//
test.Next(_L("Test with some objects having the same priority"));
myTimer::SetNum(7);
pLowest->After(0);
pLow->After(0);
pNone->After(0);
pHigh->After(0);
pHigh2->After(0);
pHigh3->After(0);
pHighest->After(0);
t.After(s, 100000);
test(s==KRequestPending);
User::WaitForRequest(s);
CActiveScheduler::Start();
test(order[0]==eHighest && order[1]==eHigh && order[2]==eHigh+2 && order[3]==eHigh+3 && order[4]==eNone && order[5]==eLow && order[6]==eLowest);
//
test.End();
}
void TSecdulerTester::Test3()
//
// Test 3
//
{
//
// Test that a leave in a Run method calls the requestmanager error() method
//
myTimer* pTimer=new myTimer(0, KLeaveCode);
pTimer->Start();
pTimer->After(100000);
TRAPD(ret,CActiveScheduler::Start());
test(ret==KmyErrorNum);
//
// Test cancelling an object
// Without the cancel the schedule order should be: pTimer1, gTimer, pTimer3
// gTimer is cancelled so should not be scheduled
//
myTimer::SetNum(2);
myTimer* pTimer2=new myTimer(eHighest,KCancelCode);
myTimer* pTimer3=new myTimer(eLowest,eLowest);
pTimer2->Start();
pTimer2->After(100000);
gTimer->Start();
gTimer->After(1000000);
pTimer3->Start();
pTimer3->After(2000000);
CActiveScheduler::Start();
test(order[0]==KCancelCode && order[1]==eLowest);
delete pTimer;
delete pTimer2;
delete pTimer3;
}
void TSecdulerTester::Test4()
//
// Create a thread with its own scheduler
//
{
threadSemaphore.CreateLocal(0);
RThread myThread;
test(myThread.Create(_L("myThread"),myThreadEntryPoint,KDefaultStackSize,KHeapSize,KHeapSize,NULL)==KErrNone);
myThread.Resume();
myThread.Close();
Test2();
threadSemaphore.Wait();
User::After(100000);
}
GLDEF_C TInt E32Main()
{
// don't want just in time debugging as we trap panics
TBool justInTime=User::JustInTime();
User::SetJustInTime(EFalse);
test.Title();
__UHEAP_MARK;
//
test.Start(_L("Test1"));
TSecdulerTester sched;
sched.Test1();
MyManager* pManager=new MyManager;
test(pManager!=NULL);
CActiveScheduler::Install(pManager);
test(CActiveScheduler::Current()==pManager);
MyManager* pManager2=new MyManager;
test(pManager2!=NULL);
delete pManager2;
test(CActiveScheduler::Current()==pManager);
pLowest=new myTimer(eLowest,eLowest);
test(pLowest!=NULL);
pLow=new myTimer(eLow,eLow);
test(pLow!=NULL);
pNone=new myTimer(eNone,eNone);
test(pNone!=NULL);
pHigh=new myTimer(eHigh,eHigh);
test(pHigh!=NULL);
pHigh2=new myTimer(eHigh,eHigh+2);
test(pHigh2!=NULL);
pHigh3=new myTimer(eHigh,eHigh+3);
test(pHigh3!=NULL);
pHighest=new myTimer(eHighest,eHighest);
test(pHighest!=NULL);
pLowest->Start();
pLow->Start();
pNone->Start();
pHigh->Start();
pHigh2->Start();
pHigh3->Start();
pHighest->Start();
//
test.Next(_L("Test2"));
sched.Test2();
User::Check();
//
test.Next(_L("Test3"));
gTimer=new myTimer(eNone, KgTimerID);
sched.Test3();
//
test.Next(_L("Test4"));
sched.Test4();
delete gTimer;
User::Check();
delete pManager;
delete pLowest;
delete pLow;
delete pNone;
delete pHigh;
delete pHigh2;
delete pHigh3;
delete pHighest;
//
test.End();
__UHEAP_MARKEND;
User::SetJustInTime(justInTime);
return(KErrNone);
}