Convert Kernelhwsrv package from SFL to EPL
kernel\eka\compsupp is subject to the ARM EABI LICENSE
userlibandfileserver\fatfilenameconversionplugins\unicodeTables is subject to the Unicode license
kernel\eka\kernel\zlib is subject to the zlib license
// Copyright (c) 1995-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32test\buffer\t_tbma.cpp
//
//
#define __E32TEST_EXTENSION__
#include "t_tbma.h"
#include <cpudefs.h>
#include <e32atomics.h>
RTest test(_L("T_TBMA"));
/**************************************
* class TBmaList
**************************************/
TBmaList* TBmaList::New(TInt aNumBmas)
{
TBmaList* pL=new TBmaList;
if (pL)
{
pL->iNumBmas=aNumBmas;
pL->iBmaList=(TBitMapAllocator**)User::Alloc(aNumBmas*sizeof(TBitMapAllocator*));
if (pL->iBmaList)
Mem::FillZ(pL->iBmaList, aNumBmas*sizeof(TBitMapAllocator*));
pL->iBaseList=(TInt*)User::Alloc((aNumBmas+1)*sizeof(TInt));
if (!pL->iBmaList || !pL->iBaseList)
{
delete pL;
pL=NULL;
}
}
return pL;
}
TBmaList* TBmaList::New(const TBitMapAllocator& aBma, TInt aNumSplits, VA_LIST aList)
{
TBmaList* pL=TBmaList::New(aNumSplits+1);
if (!pL)
return NULL;
TInt i;
pL->iBaseList[0]=0;
for (i=1; i<=aNumSplits; ++i)
pL->iBaseList[i]=VA_ARG(aList,TInt);
pL->iBaseList[aNumSplits+1]=aBma.iSize;
for (i=0; i<=aNumSplits; ++i)
{
TInt sz=pL->iBaseList[i+1]-pL->iBaseList[i];
__ASSERT_ALWAYS(sz>0, TBMA_FAULT());
pL->iBmaList[i]=TBitMapAllocator::New(sz,EFalse);
if (!pL->iBmaList[i])
{
delete pL;
return NULL;
}
TInt j;
for (j=0; j<sz; ++j)
{
if (aBma.NotAllocated(j+pL->iBaseList[i],1))
pL->iBmaList[i]->Free(j);
}
}
return pL;
}
TBmaList::TBmaList()
{
iNumBmas=0;
iBmaList=NULL;
iBaseList=NULL;
}
TBmaList::~TBmaList()
{
TInt i;
for (i=0; i<iNumBmas; ++i)
delete iBmaList[i];
User::Free(iBmaList);
User::Free(iBaseList);
}
/*
* Extended first fit allocator
*/
TInt TBmaList::AllocConsecutiveFF(TInt aLength)
{
TInt base=KErrNotFound;
TInt bmalen=0;
TInt carry=0;
TBitMapAllocator** ppA=iBmaList; // pointer to list of TBitMapAllocator*
TBitMapAllocator** pE=ppA+iNumBmas;
TInt* pB=iBaseList;
for (; ppA<pE; ++ppA, ++pB)
{
TBitMapAllocator* pA=*ppA;
if (*pB!=base+bmalen)
{
// this BMA is not contiguous with previous one
carry=0;
}
base=*pB;
bmalen=pA->iSize;
TInt l;
TInt r=pA->AllocAligned(aLength,0,0,EFalse,carry,l);
if (r>=0)
return base+r-carry;
}
return KErrNotFound;
}
/*
* Extended best fit allocator
*/
TInt TBmaList::AllocConsecutiveBF(TInt aLength)
{
TInt bmalen=0;
TInt carry=0;
TInt minrun=KMaxTInt;
TInt minrunpos=KErrNotFound;
TBitMapAllocator** ppA=iBmaList; // pointer to list of TBitMapAllocator*
TBitMapAllocator** pE=ppA+iNumBmas;
TInt* pB=iBaseList;
TInt base=*pB;
for (; ppA<pE; ++ppA, ++pB)
{
TBitMapAllocator* pA=*ppA;
if (*pB!=base+bmalen)
{
// this BMA is not contiguous with previous one
// check final run of previous BMA
if (carry<minrun)
{
minrun=carry;
minrunpos=base+bmalen-carry;
}
carry=0;
}
base=*pB;
bmalen=pA->iSize;
TInt l=KMaxTInt;
TInt oldc=carry;
TInt r=pA->AllocAligned(aLength,0,0,ETrue,carry,l);
if (r>=0)
{
// check shortest run in this BMA
if (l<minrun)
{
minrun=l;
minrunpos=r ? (base+r) : (base-oldc);
if (minrun==aLength)
break; // exact match so finish
}
}
}
// check final run of last BMA
if (ppA==pE && carry>=aLength && carry<minrun)
minrunpos=base+bmalen-carry;
return minrunpos;
}
/*
* Extended first fit aligned allocator
*/
TInt TBmaList::AllocAlignedFF(TInt aLength, TInt aAlign)
{
TUint32 alignsize=1<<aAlign;
TUint32 alignmask=alignsize-1;
TInt base=KErrNotFound;
TInt bmalen=0;
TInt carry=0;
TBitMapAllocator** ppA=iBmaList; // pointer to list of TBitMapAllocator*
TBitMapAllocator** pE=ppA+iNumBmas;
TInt* pB=iBaseList;
for (; ppA<pE; ++ppA, ++pB)
{
TBitMapAllocator* pA=*ppA;
if (*pB!=base+bmalen)
{
// this BMA is not contiguous with previous one
carry=0;
}
base=*pB;
bmalen=pA->iSize;
TInt l;
TInt r=pA->AllocAligned(aLength,aAlign,base,EFalse,carry,l);
if (r>=0)
return (base+r-carry+alignmask)&~alignmask;
}
return KErrNotFound;
}
/*
* Extended best fit aligned allocator
*/
TInt TBmaList::AllocAlignedBF(TInt aLength, TInt aAlign)
{
TInt bmalen=0;
TInt carry=0;
TInt minrun=KMaxTInt;
TInt minrunpos=KErrNotFound;
TUint32 alignsize=1<<aAlign;
TUint32 alignmask=alignsize-1;
TBitMapAllocator** ppA=iBmaList; // pointer to list of TBitMapAllocator*
TBitMapAllocator** pE=ppA+iNumBmas;
TInt* pB=iBaseList;
TInt base=*pB;
for (; ppA<pE; ++ppA, ++pB)
{
TBitMapAllocator* pA=*ppA;
if (*pB!=base+bmalen)
{
// this BMA is not contiguous with previous one
// check final run of previous BMA
if (carry<minrun)
{
TInt fpos=base+bmalen-carry;
TInt lost=((fpos+base+alignmask)&~alignmask)-base-fpos;
if (carry-lost>=aLength)
{
minrun=carry;
minrunpos=fpos;
}
}
carry=0;
}
base=*pB;
bmalen=pA->iSize;
TInt l=KMaxTInt;
TInt oldc=carry;
TInt r=pA->AllocAligned(aLength,aAlign,base,ETrue,carry,l);
if (r>=0)
{
// check shortest run in this BMA
if (l<minrun)
{
minrun=l;
minrunpos=r ? (base+r) : (base-oldc);
if (minrun==aLength)
break; // exact match so finish
}
}
}
// check final run of last BMA
if (ppA==pE && carry<minrun)
{
TInt fpos=base+bmalen-carry;
TInt lost=((fpos+alignmask)&~alignmask)-fpos;
if (carry-lost>=aLength)
{
minrun=carry;
minrunpos=fpos;
}
}
return (minrunpos<0) ? minrunpos : ((minrunpos+alignmask)&~alignmask);
}
void Display(TBitMapAllocator* aBma)
{
test.Printf(_L("Free %d FirstCheck %08x Size %d Map %08x\n"),aBma->iAvail,aBma->iCheckFirst,aBma->iSize,aBma->iMap);
TInt i;
TInt l=0;
for (i=0; i<((aBma->iSize+31)>>5); i++)
{
if (++l==10)
{
l=0;
// test.Getch();
}
TUint32 x=aBma->iMap[i];
TBuf<80> buf;
buf.NumFixedWidth(x,EBinary,32);
buf.Append(_L("\n"));
test.Printf(buf);
}
test.Getch();
}
void Check(TBitMapAllocator& a)
{
TInt l=a.iSize;
l=(l+31)>>5;
TInt n=0;
TInt i;
TUint32* first=NULL;
for (i=0; i<l; ++i)
{
TUint32 w=a.iMap[i];
if (w && !first)
first=a.iMap+i;
n+=__e32_bit_count_32(w);
}
test(a.Avail()==n);
test(first?(a.iCheckFirst<=first):(a.iCheckFirst>=a.iMap && a.iCheckFirst<=a.iMap+l));
}
void TestConstruct(TInt aSize)
{
test.Printf(_L("TestConstruct %d\n"),aSize);
TBitMapAllocator* pA;
pA=TBitMapAllocator::New(aSize, EFalse);
test(pA!=NULL);
test(pA->Avail()==0);
Check(*pA);
delete pA;
pA=TBitMapAllocator::New(aSize, ETrue);
test(pA!=NULL);
test(pA->Avail()==aSize);
Check(*pA);
delete pA;
}
void TestAlloc1(TInt aSize)
{
test.Printf(_L("TestAlloc1 %d\n"),aSize);
TBitMapAllocator* pA=TBitMapAllocator::New(aSize, ETrue);
test(pA!=NULL);
test(pA->Avail()==aSize);
Check(*pA);
TInt i;
for (i=0; i<aSize; ++i)
{
TInt r=pA->Alloc();
test(r==i);
test(pA->Avail()==aSize-i-1);
test(pA->iCheckFirst==pA->iMap+i/32);
Check(*pA);
}
test(pA->Alloc()<0);
delete pA;
}
void TestFree1(TInt aSize)
{
test.Printf(_L("TestFree1 %d\n"),aSize);
TBitMapAllocator* pA=TBitMapAllocator::New(aSize, EFalse);
test(pA!=NULL);
test(pA->Avail()==0);
TInt i;
for (i=aSize-1; i>=0; --i)
{
pA->Free(i);
test(pA->Avail()==aSize-i);
test(pA->Alloc()==i);
pA->Free(i);
test(pA->iCheckFirst==pA->iMap+i/32);
Check(*pA);
}
delete pA;
}
void TestBlockAlloc(TInt aSize)
{
test.Printf(_L("TestBlockAlloc %d\n"),aSize);
const TInt begin[]={0,1,2,7,16,29,31,32,33,63,64,65,83,128};
TBitMapAllocator* pA=TBitMapAllocator::New(aSize, ETrue);
test(pA!=NULL);
test(pA->Avail()==aSize);
pA->Alloc(0,aSize);
test(pA->Avail()==0);
Check(*pA);
pA->Free(0,aSize);
test(pA->Avail()==aSize);
Check(*pA);
TInt i;
for (i=0; i<(TInt)(sizeof(begin)/sizeof(TInt)); ++i)
{
TInt j=begin[i];
if (j>aSize)
break;
TInt l;
for (l=1; l<=aSize-j; ++l)
{
// test.Printf(_L("j=%d, l=%d, s=%d\n"),j,l,aSize);
pA->Alloc(j,l);
test(pA->Avail()==aSize-l);
test(!pA->NotAllocated(j,l));
if (j+l<aSize)
test(pA->NotAllocated(j,l+1));
if (j>0)
test(pA->NotAllocated(j-1,l));
TInt r=pA->Alloc();
if (j==0)
{
if (l<aSize)
test(r==l);
else
test(r<0);
}
else
test(r==0);
if (r==0)
{
pA->Free(r);
pA->Free(j,l);
}
else if (r>0)
pA->Free(j,l+1);
else
pA->Free(j,l);
test(pA->Avail()==aSize);
Check(*pA);
}
}
delete pA;
}
void TestBlockFree(TInt aSize)
{
test.Printf(_L("TestBlockFree %d\n"),aSize);
const TInt begin[]={0,1,2,7,16,29,31,32,33,63,64,65,83,128};
TBitMapAllocator* pA=TBitMapAllocator::New(aSize, EFalse);
test(pA!=NULL);
test(pA->Avail()==0);
TInt i;
for (i=0; i<(TInt)(sizeof(begin)/sizeof(TInt)); ++i)
{
TInt j=begin[i];
if (j>aSize)
break;
TInt l;
for (l=1; l<=aSize-j; ++l)
{
// test.Printf(_L("j=%d, l=%d, s=%d\n"),j,l,aSize);
pA->Free(j,l);
test(pA->Avail()==l);
test(!pA->NotFree(j,l));
if (j+l<aSize)
test(pA->NotFree(j,l+1));
if (j>0)
test(pA->NotFree(j-1,l));
TInt r=pA->Alloc();
test(r==j);
if (l>1)
pA->Alloc(j+1,l-1);
test(pA->Avail()==0);
Check(*pA);
}
}
delete pA;
}
void TestNotFree(TInt aSize)
{
test.Printf(_L("TestNotFree %d\n"),aSize);
TBitMapAllocator* pA=TBitMapAllocator::New(aSize, ETrue);
test(pA!=NULL);
test(pA->Avail()==aSize);
test(!pA->NotFree(0,aSize));
TInt i;
for (i=0; i<aSize; ++i)
{
pA->Alloc(i,1);
test(pA->NotFree(0,aSize));
TInt j;
for (j=1; j*j<=i || j*j+i<=aSize; ++j)
{
TInt a=Max(i-j*j,0);
TInt b=Min(i+j*j,aSize);
test(pA->NotFree(a,b-a));
}
pA->Free(i);
test(!pA->NotFree(0,aSize));
}
const TInt begin[]={0,1,2,7,16,29,31,32,33,63,64,65,83,128};
const TInt size[]={2,3,7,16,23,31,32,33,63,64,65,89,128};
const TInt* pB=begin;
const TInt* pBE=pB+sizeof(begin)/sizeof(TInt);
const TInt* pS=size;
const TInt* pSE=pS+sizeof(size)/sizeof(TInt);
for (; pB<pBE; ++pB)
{
TInt b=*pB;
if (b>=aSize)
continue;
for (; pS<pSE; ++pS)
{
TInt l=*pS;
if (b+l>aSize)
continue;
pA->Alloc(b,l);
TInt j;
for (j=1; j<aSize; ++j)
{
if (j<=b)
test(!pA->NotFree(0,j));
else
test(pA->NotFree(0,j));
if (aSize-j>=b+l)
test(!pA->NotFree(aSize-j,j));
else
test(pA->NotFree(aSize-j,j));
}
pA->Free(b,l);
}
}
delete pA;
}
void TestNotAllocated(TInt aSize)
{
test.Printf(_L("TestNotAllocated %d\n"),aSize);
TBitMapAllocator* pA=TBitMapAllocator::New(aSize, EFalse);
test(pA!=NULL);
test(pA->Avail()==0);
test(!pA->NotAllocated(0,aSize));
TInt i;
for (i=0; i<aSize; ++i)
{
pA->Free(i);
test(pA->NotAllocated(0,aSize));
TInt j;
for (j=1; j*j<=i || j*j+i<=aSize; ++j)
{
TInt a=Max(i-j*j,0);
TInt b=Min(i+j*j,aSize);
test(pA->NotAllocated(a,b-a));
}
pA->Alloc(i,1);
test(!pA->NotAllocated(0,aSize));
}
const TInt begin[]={0,1,2,7,16,29,31,32,33,63,64,65,83,128};
const TInt size[]={2,3,7,16,23,31,32,33,63,64,65,89,128};
const TInt* pB=begin;
const TInt* pBE=pB+sizeof(begin)/sizeof(TInt);
const TInt* pS=size;
const TInt* pSE=pS+sizeof(size)/sizeof(TInt);
for (; pB<pBE; ++pB)
{
TInt b=*pB;
if (b>=aSize)
continue;
for (; pS<pSE; ++pS)
{
TInt l=*pS;
if (b+l>aSize)
continue;
pA->Free(b,l);
TInt j;
for (j=1; j<aSize; ++j)
{
if (j<=b)
test(!pA->NotAllocated(0,j));
else
test(pA->NotAllocated(0,j));
if (aSize-j>=b+l)
test(!pA->NotAllocated(aSize-j,j));
else
test(pA->NotAllocated(aSize-j,j));
}
pA->Alloc(b,l);
}
}
delete pA;
}
void TestAllocList(TInt aSize)
{
test.Printf(_L("TestAllocList %d\n"),aSize);
TBitMapAllocator* pA=TBitMapAllocator::New(aSize, EFalse);
test(pA!=NULL);
test(pA->Avail()==0);
TInt i;
TInt list[256];
for (i=0; i<aSize; ++i)
{
pA->Free(i);
test(pA->AllocList(128,list)==1);
test(list[0]==i);
test(pA->Avail()==0);
}
TInt j;
for (i=0; i<aSize-1; ++i)
{
for (j=i+1; j<aSize; ++j)
{
pA->Free(i);
pA->Free(j);
test(pA->AllocList(1,list)==1);
test(list[0]==i);
test(pA->Avail()==1);
pA->Free(i);
test(pA->AllocList(128,list)==2);
test(list[0]==i && list[1]==j);
test(pA->Avail()==0);
}
}
TInt l;
for (l=1; l<80; ++l)
{
if (2*l+1>aSize)
break;
for (i=l+1; i<=aSize-l; ++i)
{
pA->Free(0,l);
pA->Free(i,l);
test(pA->Avail()==2*l);
TInt l2;
for (l2=Max(l-1,1); l2<=2*l; ++l2)
{
TInt r=pA->AllocList(l2,list);
// test.Printf(_L("l2=%d r=%d\n"),l2,r);
test(r==l2);
for (j=0; j<Min(l2,l); j++)
test(list[j]==j);
for (j=l; j<l2; j++)
test(list[j]==j-l+i);
for (j=0; j<l2; ++j)
pA->Free(list[j]);
pA->SelectiveFree(0,l);
pA->SelectiveFree(i,l);
test(pA->Avail()==2*l);
}
pA->Alloc(0,l);
pA->Alloc(i,l);
Check(*pA);
}
}
delete pA;
}
void TestSelectiveFree(TInt aSize)
{
test.Printf(_L("TestSelectiveFree %d\n"),aSize);
TBitMapAllocator* pA=TBitMapAllocator::New(aSize, ETrue);
test(pA!=NULL);
test(pA->Avail()==aSize);
TInt i;
TInt j;
TInt l;
for (i=2; i<8; ++i)
{
for (l=1; l<=aSize; ++l)
{
new (pA) TBitMapAllocator(aSize, ETrue);
for (j=0; j<aSize; j+=i)
pA->Alloc(j,1);
TInt orig=pA->Avail();
test(orig==aSize-(aSize+i-1)/i);
pA->SelectiveFree(0,l);
TInt freed=pA->Avail()-orig;
test(freed==(l+i-1)/i);
Check(*pA);
}
}
for (i=0; i<=Min(32,aSize-1); ++i)
{
for (l=1; l<=aSize-i; ++l)
{
for (j=1; j<=aSize; ++j)
{
new (pA) TBitMapAllocator(aSize, ETrue);
pA->Alloc(i,l);
test(pA->Avail()==aSize-l);
pA->SelectiveFree(0,j);
test(pA->Avail()==aSize-l+Max(0,Min(i+l,j)-i));
test(!pA->NotFree(0,j));
if (j>=i && j<i+l)
test(pA->NotFree(0,j+1));
Check(*pA);
}
}
}
delete pA;
}
TBitMapAllocator* DoSetupBMA(TInt aSize, VA_LIST aList)
{
TBitMapAllocator* pA=TBitMapAllocator::New(aSize, EFalse);
test(pA!=NULL);
test(pA->Avail()==0);
TInt totalfree=0;
FOREVER
{
TInt i=VA_ARG(aList,TInt);
if (i<0)
break;
TInt l=VA_ARG(aList,TInt);
pA->Free(i,l);
totalfree+=l;
}
test(pA->Avail()==totalfree);
return pA;
}
TBitMapAllocator* SetupBMA(TInt aSize, ...)
{
VA_LIST list;
VA_START(list,aSize);
return DoSetupBMA(aSize,list);
}
void PopulateRangeArray(RArray<SRange>& aArray, VA_LIST aList)
{
aArray.Reset();
TInt n=0;
FOREVER
{
SRange rng;
rng.iBase=VA_ARG(aList,TInt);
if (rng.iBase<0)
break;
rng.iLength=VA_ARG(aList,TInt);
rng.iLength<<=8;
rng.iLength+=n;
++n;
test(aArray.Append(rng)==KErrNone);
}
}
TInt FirstFitPos(RArray<SRange>& aArray, TInt aLength)
{
TInt c=aArray.Count();
SRange* pR=&aArray[0];
SRange* pE=pR+c;
for (; pR<pE; ++pR)
{
TInt l=pR->iLength>>8;
if (l>=aLength)
{
// test.Printf(_L("FFP %d = %d\n"),aLength,pR->iBase);
return pR->iBase;
}
}
// test.Printf(_L("FFP %d = -1\n"),aLength);
return -1;
}
TInt AlignedFirstFitPos(RArray<SRange>& aArray, TInt aSize, TInt aLength, TInt aAlign, TInt aBase, TInt aOffset=0, TBool aBestFit=EFalse)
{
TInt alignSize=1<<aAlign;
TInt alignMask=alignSize-1;
TInt minRun=0;
TInt minRunStart=0;
TBool runFound = EFalse;
TInt c=aArray.Count();
SRange* pR=&aArray[0];
// Best fit mode should ignore any final run TBitMapAllocator will
// always ignore the final run in best fit mode and rely on carry being
// checked by the caller.
SRange* pE = pR + c - 1;
if (!aBestFit || aSize > pE->iBase + (pE->iLength >> 8))
pE++;
for (; pR<pE; ++pR)
{
TInt l=pR->iLength>>8;
TInt b=pR->iBase;
if (aOffset != 0)
{
aOffset = ((aOffset + aBase + alignMask) & ~alignMask) - aBase;
if (aOffset + aLength - 1 >= b + l)
{// The offset is after the end of this region.
continue;
}
l -= (aOffset <= b)? 0 : aOffset - b;
b += (aOffset <= b)? 0 : aOffset - b; // Start the search from aOffset
}
TInt ab=((b+aBase+alignMask)&~alignMask)-aBase;
TInt al = l + b - ab;
if (al >= aLength)
{
if (!aBestFit || l == aLength)
{
// test.Printf(_L("AFFP %d %d %d = %d\n"),aLength,aAlign,aBase,ab);
return ab;
}
if (!runFound || minRun > l)
{
minRun = l;
minRunStart = ab;
runFound = ETrue;
}
}
}
if (runFound)
{
return minRunStart;
}
// test.Printf(_L("AFFP %d %d %d = -1\n"),aLength,aAlign,aBase);
return -1;
}
void DoConsecTest(TInt aSize, ...)
{
test.Printf(_L("DoConsecTest %d\n"),aSize);
VA_LIST list;
VA_LIST list2;
VA_START(list,aSize);
VA_START(list2,aSize);
TBitMapAllocator* pA=DoSetupBMA(aSize,list2);
RArray<SRange> rangeArray(8,_FOFF(SRange,iLength));
PopulateRangeArray(rangeArray, list);
TInt n;
for (n=1; n<=aSize; ++n)
{
TInt r1=pA->AllocConsecutive(n,EFalse);
TInt r2=FirstFitPos(rangeArray,n);
// test.Printf(_L("ALC(%d,0) = %d [%d]\n"),n,r1,r2);
test_Equal(r2, r1);
}
rangeArray.SortUnsigned(); // sort array in ascending order of length
for (n=1; n<=aSize; ++n)
{
TInt r1=pA->AllocConsecutive(n,ETrue);
TInt r2=FirstFitPos(rangeArray,n);
// test.Printf(_L("ALC(%d,1) = %d [%d]\n"),n,r1,r2);
test_Equal(r2, r1);
}
rangeArray.Close();
delete pA;
}
void DoAlignedTest(TInt aSize, ...)
{
test.Printf(_L("DoAlignedTest %d\n"),aSize);
VA_LIST list;
VA_LIST list2;
VA_START(list,aSize);
VA_START(list2,aSize);
TBitMapAllocator* pA=DoSetupBMA(aSize,list2);
RArray<SRange> rangeArray(8,_FOFF(SRange,iLength));
PopulateRangeArray(rangeArray, list);
TInt finalRunLength = 0;
SRange& lastRun = rangeArray[rangeArray.Count() - 1];
if (lastRun.iBase + (lastRun.iLength>>8) == aSize)
{// The last run is at the end of the bma.
finalRunLength = lastRun.iLength >> 8;
}
TInt a;
TInt b;
TInt n;
TUint offset;
for (a=0; ((1<<a)<=aSize); ++a)
{
TInt alignsize=1<<a;
TInt alignmask=alignsize-1;
for (b=0; b<(1<<a); ++b)
{
// test.Printf(_L("size %d a=%d b=%d First\n"),aSize,a,b);
for (n=1; n<=aSize; ++n)
{
for (offset = 1; offset < (TUint)aSize; offset <<= 1)
{
TInt carry = 0;
TInt runLength;
TInt r1=pA->AllocAligned(n,a,b,EFalse, carry, runLength, offset);
TInt r2=AlignedFirstFitPos(rangeArray,aSize, n,a,b, offset);
if (r2 < 0 && pA->iSize == pA->iAvail)
{// Totally empty bmas return KErrOverflow on failure.
r2 = KErrOverflow;
}
// test.Printf(_L("ALA %d %d %d %d 0 = %d [%d]\n"),n,a,b,offset,r1,r2);
test( (r1<0) || ((r1+b)&alignmask)==0 );
test( (r1<0) || !pA->NotFree(r1,n));
test( (r1<0) || runLength >= n);
test_Equal(r2, r1);
}
}
}
}
for (a=0; ((1<<a)<=aSize); ++a)
{
TInt alignsize=1<<a;
TInt alignmask=alignsize-1;
for (b=0; b<(1<<a); ++b)
{
// test.Printf(_L("size %d a=%d b=%d Best\n"),aSize,a,b);
for (n=1; n<=aSize; ++n)
{// test for with offset=0 as that has screwed best fit in past.
for (offset = 0; offset < (TUint)aSize; offset <<= 1)
{
TInt carry = 0;
TInt runLength;
TInt r1=pA->AllocAligned(n,a,b,ETrue, carry, runLength, offset);
TInt r2=AlignedFirstFitPos(rangeArray,aSize, n,a,b, offset, ETrue);
if (pA->iSize == pA->iAvail)
{// Totally empty bmas return KErrOverflow always on best fit mode.
r2 = KErrOverflow;
}
// test.Printf(_L("ALA %d %d %d 1 = %d [%d]\n"),n,a,b,r1,r2);
test( (r1<0) || ((r1+b)&alignmask)==0 );
test( (r1<0) || !pA->NotFree(r1,n));
test( (r1<0) || runLength >= n);
test_Equal(r2, r1);
// No carry in so if run found then carry should be zero.
// If no run found then carry should set to the length of
// any run at the end of the bma minus the aligned offset.
TInt lost = 0;
TInt alignOffset = ((offset + b + alignmask) & ~alignmask) - b;
if (finalRunLength && offset && lastRun.iBase < alignOffset)
{// This search had started past the start of the final run
// so the final run length found will be shorter than its
// total length.
if (alignOffset < aSize)
{
lost = Min(alignOffset - lastRun.iBase, finalRunLength);
}
else // alignedOffset starts past end of bma.
lost = finalRunLength;
}
test((r1>=0 && carry == 0) || carry == finalRunLength - lost);
offset = (offset)? offset : 1;
}
}
}
}
rangeArray.Close();
delete pA;
}
void Clone(TAny* aDest, const TBitMapAllocator* aSrc)
{
TInt nmapw=(aSrc->iSize+31)>>5;
TInt memsz=sizeof(TBitMapAllocator)+(nmapw-1)*sizeof(TUint32);
Mem::Move(aDest,aSrc,memsz);
}
void TestAllocConsecutive()
{
test.Printf(_L("TestAllocConsecutive\n"));
DoConsecTest(256, 0,4 , 20,8 , 38,1 , 58,6 , 65,10, 78,16 , 127,72, 222,19 , 244,12 , -1);
DoConsecTest(255, 0,2 , 3,2 , 6,3 , 10,3 , 14,5 , 20,5 , 26,7 , 34,7 , 42,11 , 54,11 , 66,13 , 80,37,
118,19 , 138,23 , 162,47 , 254,1 , -1);
DoConsecTest(1023, 0,2 , 32,32 , 65,31 , 99,30 , 144,64 , 256,519 , 776,1, 778,245 , -1);
DoAlignedTest(256, 0,4 , 20,8 , 38,1 , 58,6 , 65,10, 78,16 , 127,72, 222,19 , 244,12 , -1);
DoAlignedTest(255, 0,2 , 3,2 , 6,3 , 10,3 , 14,5 , 20,5 , 26,7 , 34,7 , 42,11 , 54,11 , 66,13 , 80,37,
118,19 , 138,23 , 162,47 , 254,1 , -1);
DoAlignedTest(1023, 0,2 , 32,32 , 65,31 , 99,30 , 144,64 , 256,519 , 776,1, 778,245 , -1);
// Test some completely free bmas
DoAlignedTest(255, 0,255, -1);
DoAlignedTest(256, 0,256, -1);
DoAlignedTest(1023, 0,1023, -1);
DoAlignedTest(1024, 0,1024, -1);
}
void DoTestChain(const TBitMapAllocator& aBma, TInt aNumSplits, ...)
{
test.Printf(_L("DoTestChain %d %d\n"),aBma.iSize,aNumSplits);
VA_LIST list;
VA_START(list,aNumSplits);
TBmaList* pL=TBmaList::New(aBma,aNumSplits,list);
test(pL!=NULL);
TInt n;
for (n=1; n<=aBma.iSize; ++n)
{
TInt r1=aBma.AllocConsecutive(n,EFalse);
TInt r2=pL->AllocConsecutiveFF(n);
// test.Printf(_L("CHAIN C FF %d: r1=%d r2=%d\n"),n,r1,r2);
test(r1==r2);
}
for (n=1; n<=aBma.iSize; ++n)
{
TInt r1=aBma.AllocConsecutive(n,ETrue);
TInt r2=pL->AllocConsecutiveBF(n);
// test.Printf(_L("CHAIN C BF %d: r1=%d r2=%d\n"),n,r1,r2);
test(r1==r2);
}
TInt a;
for (a=0; ((1<<a)<=aBma.iSize); ++a)
{
for (n=1; n<=aBma.iSize; ++n)
{
if (n==264 && a==9)
{
++n;
--n;
}
TInt r1=aBma.AllocAligned(n,a,0,EFalse);
TInt r2=pL->AllocAlignedFF(n,a);
// test.Printf(_L("CHAIN A FF %d,%d: r1=%d r2=%d\n"),n,a,r1,r2);
test(r1==r2);
}
}
for (a=0; ((1<<a)<=aBma.iSize); ++a)
{
for (n=1; n<=aBma.iSize; ++n)
{
if (n==240 && a==3)
{
++n;
--n;
}
TInt r1=aBma.AllocAligned(n,a,0,ETrue);
TInt r2=pL->AllocAlignedBF(n,a);
// test.Printf(_L("CHAIN A BF %d,%d: r1=%d r2=%d\n"),n,a,r1,r2);
test(r1==r2);
}
}
delete pL;
}
void TestChain()
{
test.Printf(_L("TestChain\n"));
TBitMapAllocator* pA;
pA=SetupBMA(1023, 0,2 , 32,32 , 65,31 , 99,30 , 144,64 , 256,519 , 776,1, 778,245 , -1);
test(pA!=NULL);
DoTestChain(*pA, 2, 300, 700);
DoTestChain(*pA, 3, 64, 301, 702);
delete pA;
pA=SetupBMA(512, 0,2 , 20,10 , 32,32 , 65,31 , 144,64 , 399,113 , -1);
test(pA!=NULL);
DoTestChain(*pA, 2, 256, 384);
DoTestChain(*pA, 3, 128, 256, 384);
DoTestChain(*pA, 3, 80, 208, 384);
DoTestChain(*pA, 3, 80, 208, 400);
delete pA;
}
void TestBitOps()
{
test.Next(_L("Bit operations (32 bit)"));
test(__e32_find_ls1_32(0x00000000)==-1);
TInt i, j, k;
TInt count = 0;
for (i=0; i<=31; ++i)
test(__e32_find_ls1_32(1u<<i)==i);
TUint x = 0;
for (i=0; i<1000; ++i)
{
x = 69069*x + 41;
TInt bit = x&31;
x = 69069*x + 41;
TUint y = ((x|1)<<bit);
test(__e32_find_ls1_32(y) == bit);
}
test(__e32_find_ms1_32(0x00000000)==-1);
for (i=0; i<=31; ++i)
test(__e32_find_ms1_32(1u<<i)==i);
for (i=0; i<1000; ++i)
{
x = 69069*x + 41;
TInt bit = x&31;
x = 69069*x + 41;
TUint y = ((x|0x80000000u)>>bit);
test(__e32_find_ms1_32(y) == 31-bit);
}
test(__e32_bit_count_32(0)==0);
test(__e32_bit_count_32(0xffffffff)==32);
for (i=0; i<32; ++i)
{
TUint32 y = 0xffffffffu << i;
TUint32 z = 0xffffffffu >> i;
test(__e32_bit_count_32(y) == 32-i);
test(__e32_bit_count_32(z) == 32-i);
test(__e32_bit_count_32(~y) == i);
test(__e32_bit_count_32(~z) == i);
}
for (i=0; i<32; ++i)
for (j=0; j<32; ++j)
for (k=0; k<32; ++k)
{
TUint32 b0 = 1u<<i;
TUint32 b1 = 1u<<j;
TUint32 b2 = 1u<<k;
TUint32 y = b0 | b1 | b2;
TInt n;
if (i==j && j==k) n=1;
else if (i==j || j==k || i==k) n=2;
else n=3;
test(__e32_bit_count_32(y) == n);
test(__e32_bit_count_32(~y) == 32-n);
++count;
}
test.Printf(_L("%d iterations done\n"), count);
for (i=0; i<=31; ++i)
{
test(__e32_bit_count_32(0xaaaaaaaau<<i)==16-(i+1)/2);
test(__e32_bit_count_32(0x55555555u<<i)==16-i/2);
}
test(__e32_bit_count_32(0x33333333u)==16);
test(__e32_bit_count_32(0x88888888u)==8);
test.Next(_L("Bit operations (64 bit)"));
test(__e32_find_ls1_64(0x00000000)==-1);
for (i=0; i<=63; ++i)
{
TUint64 x = 1u;
x<<=i;
test(__e32_find_ls1_64(x)==i);
}
x = 487;
for (i=0; i<1000; ++i)
{
x = 69069*x + 41;
TInt bit = x&63;
x = 69069*x + 41;
TUint32 xl = x|1;
x = 69069*x + 41;
TUint32 xh = x;
TUint64 y = MAKE_TUINT64(xh,xl);
y <<= bit;
test(__e32_find_ls1_64(y) == bit);
}
test(__e32_find_ms1_64(0x00000000)==-1);
for (i=0; i<=63; ++i)
{
TUint64 x = 1u;
x<<=i;
test(__e32_find_ms1_64(x)==i);
}
x = 1039;
for (i=0; i<1000; ++i)
{
x = 69069*x + 41;
TInt bit = x&63;
x = 69069*x + 41;
TUint32 xl = x;
x = 69069*x + 41;
TUint32 xh = x|0x80000000u;
TUint64 y = MAKE_TUINT64(xh,xl);
y >>= bit;
test(__e32_find_ms1_64(y) == 63-bit);
}
test(__e32_bit_count_64(0)==0);
test(__e32_bit_count_64(MAKE_TUINT64(0x00000000,0xffffffff))==32);
test(__e32_bit_count_64(MAKE_TUINT64(0xffffffff,0x00000000))==32);
test(__e32_bit_count_64(MAKE_TUINT64(0xffffffff,0xffffffff))==64);
for (i=0; i<64; ++i)
{
TUint64 y = MAKE_TUINT64(0xffffffff,0xffffffff);
TUint64 z = y >> i;
y <<= i;
test(__e32_bit_count_64(y) == 64-i);
test(__e32_bit_count_64(z) == 64-i);
test(__e32_bit_count_64(~y) == i);
test(__e32_bit_count_64(~z) == i);
}
count = 0;
for (i=0; i<64; ++i)
for (j=0; j<64; ++j)
for (k=0; k<64; ++k)
{
TUint64 b0 = 1u;
TUint64 b1 = 1u;
TUint64 b2 = 1u;
b0 <<= i;
b1 <<= j;
b2 <<= k;
TUint64 y = b0 | b1 | b2;
TUint64 z = ~y;
TInt n;
if (i==j && j==k) n=1;
else if (i==j || j==k || i==k) n=2;
else n=3;
test(__e32_bit_count_64(y) == n);
test(__e32_bit_count_64(z) == 64-n);
++count;
}
test.Printf(_L("%d iterations done\n"), count);
for (i=0; i<64; ++i)
{
TUint64 y = MAKE_TUINT64(0xaaaaaaaa,0xaaaaaaaa);
TUint64 z = ~y;
test(__e32_bit_count_64(y<<i)==32-(i+1)/2);
test(__e32_bit_count_64(z<<i)==32-i/2);
}
test(__e32_bit_count_64(MAKE_TUINT64(0x33333333u,0x33333333u))==32);
test(__e32_bit_count_64(MAKE_TUINT64(0x88888888u,0x88888888u))==16);
}
GLDEF_C TInt E32Main()
{
test.Title();
__UHEAP_MARK;
test.Start(_L("TBitMapAllocator tests"));
TestBitOps();
TestConstruct(3);
TestConstruct(29);
TestConstruct(256);
TestConstruct(487);
TestAlloc1(3);
TestAlloc1(29);
TestAlloc1(256);
TestAlloc1(181);
TestFree1(3);
TestFree1(29);
TestFree1(256);
TestFree1(181);
TestBlockAlloc(3);
TestBlockAlloc(29);
TestBlockAlloc(256);
TestBlockAlloc(179);
TestBlockFree(3);
TestBlockFree(31);
TestBlockFree(256);
TestBlockFree(149);
TestNotFree(3);
TestNotFree(31);
TestNotFree(256);
TestNotFree(149);
TestNotAllocated(3);
TestNotAllocated(31);
TestNotAllocated(256);
TestNotAllocated(149);
TestAllocList(3);
TestAllocList(31);
TestAllocList(128);
TestAllocList(149);
TestSelectiveFree(3);
TestSelectiveFree(31);
TestSelectiveFree(128);
TestSelectiveFree(149);
TestAllocConsecutive();
TestChain();
__UHEAP_MARKEND;
test.End();
return 0;
}