Convert Kernelhwsrv package from SFL to EPL
kernel\eka\compsupp is subject to the ARM EABI LICENSE
userlibandfileserver\fatfilenameconversionplugins\unicodeTables is subject to the Unicode license
kernel\eka\kernel\zlib is subject to the zlib license
// Copyright (c) 2005-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32test\mmu\t_wdpsoak.cpp
//
//
#define __E32TEST_EXTENSION__
#include <e32test.h>
#include <dptest.h>
#include <hal.h>
#include "../mmu/mmudetect.h"
#include "../mmu/freeram.h"
#define MAX_CHUNKS 10
#define PRINT(string) if (!gQuiet) test.Printf(string)
#define PRINT1(string,param) if (!gQuiet) test.Printf(string,param)
#define TESTNEXT(string) if (!gQuiet) test.Next(string)
//------------globals---------------------
LOCAL_D RTest test(_L("T_WDPSOAK"));
LOCAL_D TInt gPageSize = 0;
LOCAL_D TUint gChunkSize = 0; // default chunk size
LOCAL_D RChunk gChunk[MAX_CHUNKS];
LOCAL_D TUint gNextChunk = 0;
LOCAL_D TBool gQuiet = EFalse;
LOCAL_D TUint gPeriod = 0;
LOCAL_D TUint gMin = 0;
LOCAL_D TUint gMax = 0;
LOCAL_D TUint gMemScheme = 0;
const TUint32 KFlushQuietLimit = 100000;
TUint64 SwapFree()
{
SVMSwapInfo swapInfo;
test_KErrNone(UserSvr::HalFunction(EHalGroupVM, EVMHalGetSwapInfo, &swapInfo, 0));
return swapInfo.iSwapFree;
}
TUint64 SwapSize()
{
SVMSwapInfo swapInfo;
test_KErrNone(UserSvr::HalFunction(EHalGroupVM, EVMHalGetSwapInfo, &swapInfo, 0));
return swapInfo.iSwapSize;
}
void CacheSize(TUint aMin, TUint aMax)
{
SVMCacheInfo info;
if (UserSvr::HalFunction(EHalGroupVM,EVMHalGetCacheSize,&info,0) != KErrNone)
{
return;
}
if (aMin > 0 || aMax > 0)
{
if (aMin > 0)
{
info.iMinSize = aMin;
}
if (aMax > 0)
{
info.iMaxSize = aMax;
}
UserSvr::HalFunction(EHalGroupVM,EVMHalSetCacheSize,(TAny*)info.iMinSize,(TAny*)info.iMaxSize);
if (UserSvr::HalFunction(EHalGroupVM,EVMHalGetCacheSize,&info,0) != KErrNone)
{
return;
}
}
PRINT1(_L("Paging Cache min size %d"),info.iMinSize);
PRINT1(_L(" max size %d"),info.iMaxSize);
PRINT1(_L(" current size %d\n"),info.iCurrentSize);
}
void ShowMemoryUse()
{
PRINT1(_L("RAM free 0x%08X bytes"),FreeRam());
PRINT1(_L(" Swap free 0x%08X bytes\n"),SwapFree());
TPckgBuf<DPTest::TEventInfo> infoBuf;
TInt r = UserSvr::HalFunction(EHalGroupVM,EVMHalGetEventInfo,&infoBuf,0);
if (r!=KErrNone)
{
return;
}
PRINT1(_L("Page fault count %d"),infoBuf().iPageFaultCount);
PRINT1(_L(" Page IN count %d\n"),infoBuf().iPageInReadCount);
return;
}
void ShowHelp()
{
PRINT(_L("***************************************\n"));
PRINT(_L("The following are immediate commands\n"));
PRINT(_L("F flush the paging cache\n"));
PRINT(_L("I show memory information\n"));
PRINT(_L("? show this help\n"));
PRINT(_L("Rn read all pages of chunk n\n"));
PRINT(_L("Wn write all pages of chunk n\n"));
PRINT(_L("Mn periodic memory scheme n\n"));
PRINT(_L("The following require a <CR> termination\n"));
PRINT(_L("C=nnnn create a chunnk of size nnnn\n"));
PRINT(_L("L=nnnn paging cache min size nnnn\n"));
PRINT(_L("H=nnnn paging cache max size nnnn\n"));
PRINT(_L("P=nnnn periodic flush/memory scheme nnnn microseconds\n"));
PRINT(_L("Esc to exit\n"));
PRINT(_L("***************************************\n"));
}
void CreateChunk(RChunk * aChunk, TUint aSize)
{
TESTNEXT(_L("Creating a paged chunk"));
TChunkCreateInfo createInfo;
PRINT1(_L("Creating chunk size 0x%08X bytes "),aSize);
PRINT1(_L("at index %d\n"),gNextChunk);
createInfo.SetPaging(TChunkCreateInfo::EPaged);
createInfo.SetNormal(aSize,aSize);
test_KErrNone(aChunk->Create(createInfo));
}
void ReadChunk(RChunk * aChunk)
{
TESTNEXT(_L("Reading from each page of chunk"));
TUint8* chunkBase = aChunk->Base();
TUint8 chunkVal = 0;
for (TInt i = 0; i < aChunk->Size(); i += gPageSize)
{
chunkVal = * (chunkBase + i);
}
// only needed to remove compiler warning on unused variable
if (chunkVal)
chunkVal = 0;
return;
}
void WriteChunk(RChunk * aChunk, TUint8 aValue = 0)
{
static TUint8 lastWriteValue = 1;
TESTNEXT(_L("Writing to each page of chunk"));
TUint8* chunkBase = aChunk->Base();
lastWriteValue = (TUint8)(aValue == 0 ? lastWriteValue + 1 : aValue);
for (TInt i = 0; i < aChunk->Size(); i += gPageSize)
{
* (chunkBase + i) = lastWriteValue;
}
return;
}
void ParseCommandLine ()
{
TBuf<64> c;
User::CommandLine(c);
c.LowerCase();
if (c != KNullDesC)
{
TLex lex(c);
TPtrC token;
while (token.Set(lex.NextToken()), token != KNullDesC)
{
if (token.Mid(0) == _L("quiet"))
{
gQuiet = ETrue;
continue;
}
if (token.Mid(0) == _L("verbose"))
{
gQuiet = EFalse;
continue;
}
if (token.Left(5) == _L("chunk"))
{
TInt equalPos;
equalPos = token.Locate('=');
if (equalPos > 0 && (equalPos+1) < token.Length())
{
TLex lexNum(token.Mid(equalPos+1));
lexNum.Val(gChunkSize,EDecimal);
}
continue;
}
if (token.Left(3) == _L("low"))
{
TInt equalPos;
equalPos = token.Locate('=');
if (equalPos > 0 && (equalPos+1) < token.Length())
{
TLex lexNum(token.Mid(equalPos+1));
lexNum.Val(gMin,EDecimal);
}
continue;
}
if (token.Left(5) == _L("high"))
{
TInt equalPos;
equalPos = token.Locate('=');
if (equalPos > 0 && (equalPos+1) < token.Length())
{
TLex lexNum(token.Mid(equalPos+1));
lexNum.Val(gMax,EDecimal);
}
continue;
}
if (token.Left(6) == _L("period"))
{
TInt equalPos;
equalPos = token.Locate('=');
if (equalPos > 0 && (equalPos+1) < token.Length())
{
TLex lexNum(token.Mid(equalPos+1));
lexNum.Val(gPeriod,EDecimal);
}
continue;
}
if (token.Left(3) == _L("mem"))
{
TInt equalPos;
equalPos = token.Locate('=');
if (equalPos > 0 && (equalPos+1) < token.Length())
{
TLex lexNum(token.Mid(equalPos+1));
lexNum.Val(gMemScheme,EDecimal);
}
continue;
}
}
}
}
enum TimerActions
{
ENoaction = 0,
EFlush = 1,
EFlushQuiet = 2,
EMemScheme1 = 1 << 4,
EMemScheme2 = 2 << 4,
EMemScheme3 = 3 << 4,
EMemScheme4 = 4 << 4,
};
// CActive class to monitor KeyStrokes from User
class CActiveConsole : public CActive
{
public:
CActiveConsole();
~CActiveConsole();
void GetCharacter();
static TInt Callback(TAny* aCtrl);
private:
CPeriodic* iTimer;
TChar iCmdGetValue;
TBool iGetHexValue;
TBool iPrompt;
TChar iLastChar;
TUint iValue;
TUint16 iActions;
TUint32 iPeriod;
// Defined as pure virtual by CActive;
// implementation provided by this class.
virtual void DoCancel();
// Defined as pure virtual by CActive;
// implementation provided by this class,
virtual void RunL();
void ProcessKeyPressL(TChar aChar);
void ProcessValue();
};
// Class CActiveConsole
CActiveConsole::CActiveConsole()
: CActive(EPriorityHigh)
{
CActiveScheduler::Add(this);
iTimer = CPeriodic::NewL(EPriorityNormal);
iActions = ENoaction;
iPrompt = ETrue;
iPeriod = 0;
if (gPeriod > 0)
{
if (gMemScheme > 0)
{
iActions = (TUint16)(gMemScheme << 4);
}
else
{
iActions = (TUint16)(gPeriod < KFlushQuietLimit ? EFlushQuiet : EFlush);
}
iPeriod = gPeriod;
iTimer->Start(0,gPeriod,TCallBack(Callback,this));
}
}
CActiveConsole::~CActiveConsole()
{
iTimer->Cancel();
delete iTimer;
Cancel();
}
// Callback function for timer expiry
TInt CActiveConsole::Callback(TAny* aControl)
{
switch (((CActiveConsole*)aControl)->iActions & 0x0F)
{
case ENoaction :
break;
case EFlush :
PRINT(_L("Flush\n"));
// drop through to quiet
case EFlushQuiet :
test_KErrNone(DPTest::FlushCache());
break;
default :
break;
}
switch (((CActiveConsole*)aControl)->iActions & 0xF0)
{
TUint i;
case EMemScheme1 :
for (i = 0; i < gNextChunk; i++)
ReadChunk (&gChunk[i]);
break;
case EMemScheme2 :
for (i = 0; i < gNextChunk; i++)
WriteChunk (&gChunk[i]);
break;
default :
break;
}
return KErrNone;
}
void CActiveConsole::GetCharacter()
{
if (iPrompt)
{
PRINT(_L("***Command (F,I,Q,V,?,Rn,Wn,Mn,C=nnnnn,H=nnnn,L=nnnn,P=nnnn) or Esc to exit ***\n"));
iPrompt = EFalse;
}
test.Console()->Read(iStatus);
SetActive();
}
void CActiveConsole::DoCancel()
{
PRINT(_L("CActiveConsole::DoCancel\n"));
test.Console()->ReadCancel();
}
void CActiveConsole::ProcessKeyPressL(TChar aChar)
{
if (aChar == EKeyEscape)
{
PRINT(_L("CActiveConsole: ESC key pressed -> stopping active scheduler...\n"));
CActiveScheduler::Stop();
return;
}
aChar.UpperCase();
if (iCmdGetValue != 0 && aChar == '\r')
{
if (iLastChar == 'K')
{
iValue *= iGetHexValue ? 0x400 : 1000;
}
if (iLastChar == 'M')
{
iValue *= iGetHexValue ? 0x10000 : 1000000;
}
PRINT1(_L("CActiveConsole: Value %d\n"),iValue);
ProcessValue();
}
if (iCmdGetValue != 0 )
{
if (iGetHexValue)
{
if (aChar.IsDigit())
{
iValue = iValue * 16 + aChar.GetNumericValue();
}
else
{
if (aChar.IsHexDigit())
{
iValue = iValue * 16 + (TUint)aChar - 'A' + 10;
}
else
{
if (aChar != 'K' && aChar != 'M')
{
PRINT(_L("Illegal hexadecimal character - Enter command\n"));
iCmdGetValue = 0;
}
}
}
}
else
{
if (aChar.IsDigit())
{
iValue = iValue * 10 + aChar.GetNumericValue();
}
else
{
if ((aChar == 'X') && (iLastChar == '0') && (iValue == 0))
iGetHexValue = ETrue;
else
{
if (aChar != 'K' && aChar != 'M')
{
test.Printf(_L("Illegal decimal character - Enter command\n"));
iCmdGetValue = 0;
}
}
}
}
}
else
{
switch (aChar)
{
case 'F' :
TESTNEXT(_L("Flushing Cache"));
test_KErrNone(DPTest::FlushCache());
ShowMemoryUse();
iPrompt = ETrue;
break;
case 'I' :
CacheSize(0,0);
ShowMemoryUse();
iPrompt = ETrue;
break;
case 'Q' :
gQuiet = ETrue;
iPrompt = ETrue;
break;
case 'V' :
gQuiet = EFalse;
iPrompt = ETrue;
break;
case '?' :
ShowHelp();
break;
case '=' :
iCmdGetValue = iLastChar;
iGetHexValue = EFalse;
iValue = 0;
break;
default :
if (aChar.IsDigit())
{
if (iLastChar == 'R')
{
if (aChar.GetNumericValue() < (TInt)gNextChunk)
{
ReadChunk (&gChunk[aChar.GetNumericValue()]);
}
else
{
for (TUint i = 0; i < gNextChunk; i++)
ReadChunk (&gChunk[i]);
}
iPrompt = ETrue;
}
if (iLastChar == 'W')
{
if (aChar.GetNumericValue() < (TInt)gNextChunk)
{
WriteChunk (&gChunk[aChar.GetNumericValue()]);
}
else
{
for (TUint i = 0; i < gNextChunk; i++)
WriteChunk (&gChunk[i]);
}
iPrompt = ETrue;
}
if (iLastChar == 'M')
{
if (aChar.GetNumericValue() == 0)
{
iActions = (TUint16)(iPeriod < KFlushQuietLimit ? EFlushQuiet : EFlush);
}
else
{
iActions = (TUint16)(aChar.GetNumericValue() << 4);
}
iPrompt = ETrue;
}
}
break;
}
}
iLastChar = aChar;
GetCharacter();
return;
}
void CActiveConsole::ProcessValue()
{
switch (iCmdGetValue)
{
case 'C' :
if (iValue > 0 && gNextChunk < MAX_CHUNKS)
{
CreateChunk (&gChunk[gNextChunk], iValue);
ReadChunk (&gChunk[gNextChunk]);
ShowMemoryUse();
gNextChunk++;
}
break;
case 'H' :
CacheSize (0,iValue);
break;
case 'L' :
CacheSize (iValue,0);
break;
case 'P' :
iPeriod = iValue;
iActions = (TUint16)(iValue < KFlushQuietLimit ? EFlushQuiet : EFlush);
iTimer->Cancel();
if (iValue > 0)
{
iTimer->Start(0,iValue,TCallBack(Callback,this));
}
break;
default :
break;
}
iCmdGetValue = 0;
iPrompt = ETrue;
}
void CActiveConsole::RunL()
{
ProcessKeyPressL(static_cast<TChar>(test.Console()->KeyCode()));
}
TInt E32Main()
{
test.Title();
test.Start(_L("Writable Data Paging Soak Test"));
ParseCommandLine();
if (DPTest::Attributes() & DPTest::ERomPaging)
test.Printf(_L("Rom paging supported\n"));
if (DPTest::Attributes() & DPTest::ECodePaging)
test.Printf(_L("Code paging supported\n"));
if (DPTest::Attributes() & DPTest::EDataPaging)
test.Printf(_L("Data paging supported\n"));
TInt totalRamSize;
HAL::Get(HAL::EMemoryRAM,totalRamSize);
HAL::Get(HAL::EMemoryPageSize,gPageSize);
test.Printf(_L("Total RAM size 0x%08X bytes"),totalRamSize);
test.Printf(_L(" Swap size 0x%08X bytes"),SwapSize());
test.Printf(_L(" Page size 0x%08X bytes\n"),gPageSize);
CacheSize(gMin,gMax);
if ((DPTest::Attributes() & DPTest::EDataPaging) == 0)
{
test.Printf(_L("Writable Demand Paging not supported\n"));
test.End();
return 0;
}
ShowMemoryUse();
//User::SetDebugMask(0x00000008); //KMMU
//User::SetDebugMask(0x00000080); //KEXEC
//User::SetDebugMask(0x90000000); //KPANIC KMMU2
//User::SetDebugMask(0x40000000, 1); //KPAGING
if (gChunkSize)
{
CreateChunk (&gChunk[gNextChunk], gChunkSize);
ReadChunk (&gChunk[gNextChunk]);
ShowMemoryUse();
gNextChunk++;
}
CActiveScheduler* myScheduler = new (ELeave) CActiveScheduler();
CActiveScheduler::Install(myScheduler);
CActiveConsole* myActiveConsole = new CActiveConsole();
myActiveConsole->GetCharacter();
CActiveScheduler::Start();
test.End();
return 0;
}