Convert Kernelhwsrv package from SFL to EPL
kernel\eka\compsupp is subject to the ARM EABI LICENSE
userlibandfileserver\fatfilenameconversionplugins\unicodeTables is subject to the Unicode license
kernel\eka\kernel\zlib is subject to the zlib license
// Copyright (c) 2003-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32test\math\t_vfp.cpp
// Overview:
// Test the ARM Vector Floating Point operations.
// API Information:
// VFP
// Details:
// - Check that the HAL agrees with the hardware about whether
// VFP is supported.
// - Test setting VFP to IEEE with no exceptions mode, if IEEE mode is
// supported, otherwise leave the mode alone.
// - Test single and double precision vector floating point operations:
// ABS, NEG, ADD, SUB, MUL, DIV, NMUL, SQRT, MAC, MSC, NMAC and NMSC.
// Verify results are as expected - if IEEE mode was set, verify
// bit-for-bit, in accordance with the IEEE specification, otherwise
// use normal floating point equality.
// - Test VFP context save.
// - Test various VFP operations that cause bounces to support code if
// IEEE mode is supported.
// - Test setting VFP to RunFast mode if RunFast mode is supported.
// - Test setting VFP rounding mode.
// - Test inheriting VFP mode to created threads.
// Platforms/Drives/Compatibility:
// All
// Assumptions/Requirement/Pre-requisites:
// Failures and causes:
// Base Port information:
//
//
//! @file
//! @SYMTestCaseID KBASE-0017-T_VFP
//! @SYMTestCaseDesc VFPv2 general functionality and bounce handling
//! @SYMREQ 5159
//! @SYMTestPriority Critical
//! @SYMTestActions Check VFP functions correctly in all modes and that mode switching works correctly.
//! @SYMTestExpectedResults Test runs until this message is emitted: RTEST: SUCCESS : T_VFP test completed O.K.
//! @SYMTestType UT
#include "t_vfp.h"
#define __E32TEST_EXTENSION__
#include <e32test.h>
#include <e32math.h>
#include <hal.h>
#include <e32svr.h>
#include <u32hal.h>
RTest test(_L("T_VFP"));
TUint32 FPSID;
TUint32 ArchVersion;
TBool Double;
TBool IEEEMode;
TInt CPUs;
TInt CurrentCpu1;
TInt CurrentCpu2;
typedef void TSglTest(const TReal32* aArgs, TReal32* aResults);
typedef void TDblTest(const TReal64* aArgs, TReal64* aResults);
TBool DetectVFP()
{
TInt r = UserSvr::HalFunction(EHalGroupKernel, EKernelHalFloatingPointSystemId, &FPSID, NULL);
return (r==KErrNone);
}
TInt TestVFPInitThreadFn(TAny* aPtr)
{
UserSvr::HalFunction(EHalGroupKernel, EKernelHalLockThreadToCpu, (TAny*)CurrentCpu1, 0);
TReal32* p = (TReal32*)aPtr;
TInt i;
for (i=0; i<32; ++i)
*p++ = Vfp::SReg(i);
return 0;
}
void TestVFPInitialState()
{
for (CurrentCpu1 = 0; CurrentCpu1 < CPUs; CurrentCpu1++)
{
TReal32 f[32];
RThread t;
TInt r = t.Create(KNullDesC, &TestVFPInitThreadFn, 0x1000, NULL, f);
test(r==KErrNone);
TRequestStatus s;
t.Logon(s);
t.Resume();
User::WaitForRequest(s);
TInt xt = t.ExitType();
TInt xr = t.ExitReason();
test(xt == EExitKill && xr == KErrNone);
CLOSE_AND_WAIT(t);
UserSvr::HalFunction(EHalGroupKernel, EKernelHalLockThreadToCpu, (TAny*)CurrentCpu1, 0);
test.Printf(_L("FPSCR = %08x for core %d\n"), Vfp::Fpscr(), CurrentCpu1);
const TUint32* p = (const TUint32*)f;
for (TInt i=0; i<32; ++i)
{
if (f[i] != 0.0f)
{
test.Printf(_L("S%d = 0x%08x\n"), i, p[i]);
test(f[i] == 0.0f);
}
}
}
}
void TestVFPSglRegs(TInt aIter=2)
{
TInt i;
TInt j;
TInt nSglRegs=0;
switch(ArchVersion)
{
case ARCH_VERSION_VFPV2:
case ARCH_VERSION_VFPV3_SUBARCH_V2:
case ARCH_VERSION_VFPV3_SUBARCH_NULL:
case ARCH_VERSION_VFPV3_SUBARCH_V3:
nSglRegs = 32;
break;
case 0:
default:
__ASSERT_ALWAYS(0, User::Panic(_L("Bad VFP version"),__LINE__));
/* NOTREACHED */
}
for (i=0; i<aIter; ++i)
{
for (j=0; j<nSglRegs; ++j)
{
TInt32 f = i + j;
Vfp::SetSReg(f, j);
}
for (j=0; j<nSglRegs; ++j)
{
TInt32 f = i + j;
TInt32 g = Vfp::SRegInt(j);
test(f == g);
}
}
}
TInt TestVFPSglRegsThread(TAny*)
{
UserSvr::HalFunction(EHalGroupKernel, EKernelHalLockThreadToCpu, (TAny*)CurrentCpu1, 0);
TestVFPSglRegs(KMaxTInt);
return 0;
}
void TestVFPDblRegs(TInt aIter=2)
{
TInt i;
TInt j;
TInt nDblRegs=0;
switch(ArchVersion)
{
case ARCH_VERSION_VFPV2:
{
nDblRegs = 16;
break;
}
case ARCH_VERSION_VFPV3_SUBARCH_V2:
case ARCH_VERSION_VFPV3_SUBARCH_NULL:
case ARCH_VERSION_VFPV3_SUBARCH_V3:
{
TInt vfpType;
TInt ret = HAL::Get(HALData::EHardwareFloatingPoint, vfpType);
if (ret == KErrNone && vfpType == EFpTypeVFPv3)
nDblRegs = 32;
else
nDblRegs = 16;
break;
}
case 0:
default:
__ASSERT_ALWAYS(0, User::Panic(_L("Bad VFP version"),__LINE__));
}
for (i=0; i<aIter; ++i)
{
for (j=0; j<nDblRegs; ++j)
{
TInt64 f = i + j + KMaxTUint;
Vfp::SetDReg(f, j);
}
for (j=0; j<nDblRegs; ++j)
{
TInt64 f = i + j + KMaxTUint;
TInt64 g = Vfp::DRegInt(j);
test(f == g);
}
}
}
TInt TestVFPDblRegsThread(TAny*)
{
UserSvr::HalFunction(EHalGroupKernel, EKernelHalLockThreadToCpu, (TAny*)CurrentCpu2, 0);
TestVFPDblRegs(KMaxTInt);
return 0;
}
void TestVFPContextSave()
{
for (CurrentCpu2 = 0; CurrentCpu2 < CPUs; CurrentCpu2++)
{
for (CurrentCpu1 = 0; CurrentCpu1 < CPUs; CurrentCpu1++)
{
TThreadFunction tf1 = &TestVFPSglRegsThread;
TThreadFunction tf2 = Double ? &TestVFPDblRegsThread : &TestVFPSglRegsThread;
RThread t1, t2;
TInt r;
r = t1.Create(KNullDesC, tf1, 0x1000, 0x1000, 0x1000, NULL);
test(r==KErrNone);
t1.SetPriority(EPriorityLess);
r = t2.Create(KNullDesC, tf2, 0x1000, 0x1000, 0x1000, NULL);
test(r==KErrNone);
t2.SetPriority(EPriorityLess);
TRequestStatus s1, s2;
t1.Logon(s1);
t2.Logon(s2);
t1.Resume();
t2.Resume();
test.Printf(_L("Let threads run concurrently (cores %d and %d)\n"), CurrentCpu1, CurrentCpu2);
User::After(20*1000*1000/CPUs);
test.Printf(_L("Kill threads\n"));
t1.Kill(0);
t2.Kill(0);
User::WaitForRequest(s1);
User::WaitForRequest(s2);
test(t1.ExitType()==EExitKill && t1.ExitReason()==KErrNone);
test(t2.ExitType()==EExitKill && t2.ExitReason()==KErrNone);
CLOSE_AND_WAIT(t1);
CLOSE_AND_WAIT(t2);
}
}
}
TInt TestBounceCtxThread1(TAny*)
{
for(TInt iter=0; iter<KMaxTInt; ++iter)
{
Vfp::SReg(0);
}
return KErrNone;
}
TInt TestBounceCtxThread2(TAny*)
{
TInt start_rep = 0x00800000; // smallest single precision normal number, 1*2^-126
TReal32 start = *(TReal32*)&start_rep;
for(TInt iter=0; iter<KMaxTInt; ++iter)
{
Vfp::SetSReg(start, 1);
Vfp::SetSReg(2.0f, 2);
Vfp::DivS();
Vfp::CpyS0(1);
Vfp::MulS();
Vfp::CpyS0(1);
TReal32 end = Vfp::SReg(0);
TInt end_rep = *(TInt*)&end;
if (start_rep != end_rep)
{
RDebug::Printf("mismatch in iter %d, start %08x end %08x\n", iter, start_rep, end_rep);
test(0);
}
}
return KErrNone;
}
void DoBounceContextSwitchTests()
{
RThread t1, t2;
TInt r;
r = t1.Create(KNullDesC, &TestBounceCtxThread1, 0x1000, 0x1000, 0x1000, NULL);
test(r==KErrNone);
t1.SetPriority(EPriorityLess);
r = t2.Create(KNullDesC, &TestBounceCtxThread2, 0x1000, 0x1000, 0x1000, NULL);
test(r==KErrNone);
t2.SetPriority(EPriorityLess);
TRequestStatus s1, s2;
t1.Logon(s1);
t2.Logon(s2);
t1.Resume();
t2.Resume();
test.Printf(_L("Let threads run concurrently ...\n"));
User::After(20*1000*1000);
test.Printf(_L("Kill threads\n"));
t1.Kill(0);
t2.Kill(0);
User::WaitForRequest(s1);
User::WaitForRequest(s2);
test(t1.ExitType()==EExitKill && t1.ExitReason()==KErrNone);
test(t2.ExitType()==EExitKill && t2.ExitReason()==KErrNone);
CLOSE_AND_WAIT(t1);
CLOSE_AND_WAIT(t2);
}
void TestAbsS(const TReal32* a, TReal32* r)
{
Vfp::SetSReg(a[0], 1);
Vfp::AbsS();
r[0] = Vfp::SReg(0);
r[1] = Abs(a[0]);
}
void TestAddS(const TReal32* a, TReal32* r)
{
Vfp::SetSReg(a[0], 1);
Vfp::SetSReg(a[1], 2);
Vfp::AddS();
r[0] = Vfp::SReg(0);
r[1] = a[0] + a[1];
}
void TestDivS(const TReal32* a, TReal32* r)
{
Vfp::SetSReg(a[0], 1);
Vfp::SetSReg(a[1], 2);
Vfp::DivS();
r[0] = Vfp::SReg(0);
TRealX x(a[0]);
TRealX y(a[1]);
x.DivEq(y);
r[1] = (TReal32)x;
}
void TestMacS(const TReal32* a, TReal32* r)
{
Vfp::SetSReg(a[0], 0);
Vfp::SetSReg(a[1], 1);
Vfp::SetSReg(a[2], 2);
Vfp::MacS();
r[0] = Vfp::SReg(0);
r[1] = a[0] + a[1] * a[2];
}
void TestMscS(const TReal32* a, TReal32* r)
{
Vfp::SetSReg(a[0], 0);
Vfp::SetSReg(a[1], 1);
Vfp::SetSReg(a[2], 2);
Vfp::MscS();
r[0] = Vfp::SReg(0);
r[1] = a[1] * a[2] - a[0];
}
void TestMulS(const TReal32* a, TReal32* r)
{
Vfp::SetSReg(a[0], 1);
Vfp::SetSReg(a[1], 2);
Vfp::MulS();
r[0] = Vfp::SReg(0);
TRealX x(a[0]);
TRealX y(a[1]);
x.MultEq(y);
r[1] = (TReal32)x;
}
void TestNegS(const TReal32* a, TReal32* r)
{
Vfp::SetSReg(a[0], 1);
Vfp::NegS();
r[0] = Vfp::SReg(0);
r[1] = -a[0];
}
void TestNMacS(const TReal32* a, TReal32* r)
{
Vfp::SetSReg(a[0], 0);
Vfp::SetSReg(a[1], 1);
Vfp::SetSReg(a[2], 2);
Vfp::NMacS();
r[0] = Vfp::SReg(0);
r[1] = a[0] - a[1] * a[2];
}
void TestNMscS(const TReal32* a, TReal32* r)
{
Vfp::SetSReg(a[0], 0);
Vfp::SetSReg(a[1], 1);
Vfp::SetSReg(a[2], 2);
Vfp::NMscS();
r[0] = Vfp::SReg(0);
r[1] = -a[1] * a[2] - a[0];
}
void TestNMulS(const TReal32* a, TReal32* r)
{
Vfp::SetSReg(a[0], 1);
Vfp::SetSReg(a[1], 2);
Vfp::NMulS();
r[0] = Vfp::SReg(0);
TRealX x(a[0]);
TRealX y(a[1]);
x.MultEq(y);
r[1] = -(TReal32)x;
}
void TestSqrtS(const TReal32* a, TReal32* r)
{
Vfp::SetSReg(a[0], 1);
Vfp::SqrtS();
r[0] = Vfp::SReg(0);
TReal x = a[0];
TReal y;
Math::Sqrt(y, x);
r[1] = (TReal32)y;
}
void TestSubS(const TReal32* a, TReal32* r)
{
Vfp::SetSReg(a[0], 1);
Vfp::SetSReg(a[1], 2);
Vfp::SubS();
r[0] = Vfp::SReg(0);
r[1] = a[0] - a[1];
}
void TestAbsD(const TReal64* a, TReal64* r)
{
Vfp::SetDReg(a[0], 1);
Vfp::AbsD();
r[0] = Vfp::DReg(0);
r[1] = Abs(a[0]);
}
void TestAddD(const TReal64* a, TReal64* r)
{
Vfp::SetDReg(a[0], 1);
Vfp::SetDReg(a[1], 2);
Vfp::AddD();
r[0] = Vfp::DReg(0);
r[1] = a[0] + a[1];
}
void TestDivD(const TReal64* a, TReal64* r)
{
Vfp::SetDReg(a[0], 1);
Vfp::SetDReg(a[1], 2);
Vfp::DivD();
r[0] = Vfp::DReg(0);
TRealX x(a[0]);
TRealX y(a[1]);
x.DivEq(y);
r[1] = (TReal64)x;
}
void TestMacD(const TReal64* a, TReal64* r)
{
Vfp::SetDReg(a[0], 0);
Vfp::SetDReg(a[1], 1);
Vfp::SetDReg(a[2], 2);
Vfp::MacD();
r[0] = Vfp::DReg(0);
r[1] = a[0] + a[1] * a[2];
}
void TestMscD(const TReal64* a, TReal64* r)
{
Vfp::SetDReg(a[0], 0);
Vfp::SetDReg(a[1], 1);
Vfp::SetDReg(a[2], 2);
Vfp::MscD();
r[0] = Vfp::DReg(0);
r[1] = a[1] * a[2] - a[0];
}
void TestMulD(const TReal64* a, TReal64* r)
{
Vfp::SetDReg(a[0], 1);
Vfp::SetDReg(a[1], 2);
Vfp::MulD();
r[0] = Vfp::DReg(0);
TRealX x(a[0]);
TRealX y(a[1]);
x.MultEq(y);
r[1] = (TReal64)x;
}
void TestNegD(const TReal64* a, TReal64* r)
{
Vfp::SetDReg(a[0], 1);
Vfp::NegD();
r[0] = Vfp::DReg(0);
r[1] = -a[0];
}
void TestNMacD(const TReal64* a, TReal64* r)
{
Vfp::SetDReg(a[0], 0);
Vfp::SetDReg(a[1], 1);
Vfp::SetDReg(a[2], 2);
Vfp::NMacD();
r[0] = Vfp::DReg(0);
r[1] = a[0] - a[1] * a[2];
}
void TestNMscD(const TReal64* a, TReal64* r)
{
Vfp::SetDReg(a[0], 0);
Vfp::SetDReg(a[1], 1);
Vfp::SetDReg(a[2], 2);
Vfp::NMscD();
r[0] = Vfp::DReg(0);
r[1] = -a[1] * a[2] - a[0];
}
void TestNMulD(const TReal64* a, TReal64* r)
{
Vfp::SetDReg(a[0], 1);
Vfp::SetDReg(a[1], 2);
Vfp::NMulD();
r[0] = Vfp::DReg(0);
TRealX x(a[0]);
TRealX y(a[1]);
x.MultEq(y);
r[1] = -(TReal64)x;
}
void TestSqrtD(const TReal64* a, TReal64* r)
{
Vfp::SetDReg(a[0], 1);
Vfp::SqrtD();
r[0] = Vfp::DReg(0);
TReal x = a[0];
TReal y;
Math::Sqrt(y, x);
r[1] = (TReal64)y;
}
void TestSubD(const TReal64* a, TReal64* r)
{
Vfp::SetDReg(a[0], 1);
Vfp::SetDReg(a[1], 2);
Vfp::SubD();
r[0] = Vfp::DReg(0);
r[1] = a[0] - a[1];
}
#define DO_SGL_TEST1(name, func, a1) DoSglTest(name, __LINE__, func, a1)
#define DO_SGL_TEST2(name, func, a1, a2) DoSglTest(name, __LINE__, func, a1, a2)
#define DO_SGL_TEST3(name, func, a1, a2, a3) DoSglTest(name, __LINE__, func, a1, a2, a3)
void DoSglTest(const char* aName, TInt aLine, TSglTest aFunc, TReal32 a1, TReal32 a2=0.0f, TReal32 a3=0.0f)
{
TPtrC8 name8((const TText8*)aName);
TBuf<128> name16;
name16.Copy(name8);
test.Printf(_L("%S(%g,%g,%g)\n"), &name16, a1, a2, a3);
TReal32 args[3] = {a1, a2, a3};
TReal32 results[2];
(*aFunc)(args, results);
if (IEEEMode)
{
if (*((TUint32*)&(results[0])) == *((TUint32*)&(results[1])))
return;
}
else
{
if (results[0] == results[1])
return;
}
const TUint32* pa = (const TUint32*)args;
const TUint32* pr = (const TUint32*)results;
test.Printf(_L("a1=%08x a2=%08x a3=%08x\n"), pa[0], pa[1], pa[2]);
test.Printf(_L("actual result = %08x (%g)\nexpected result = %08x (%g)\n"), pr[0], results[0], pr[1], results[1]);
test.Printf(_L("Test at line %d failed\n"), aLine);
test(0);
}
void DoSglTests()
{
// ABS
DO_SGL_TEST1("ABS", &TestAbsS, 1.0f);
DO_SGL_TEST1("ABS", &TestAbsS, -1.0f);
DO_SGL_TEST1("ABS", &TestAbsS, 0.0f);
DO_SGL_TEST1("ABS", &TestAbsS, -3.1415926536f);
// NEG
DO_SGL_TEST1("NEG", &TestNegS, 1.0f);
DO_SGL_TEST1("NEG", &TestNegS, -1.0f);
DO_SGL_TEST1("NEG", &TestNegS, 0.0f);
DO_SGL_TEST1("NEG", &TestNegS, -3.1415926536f);
// ADD
DO_SGL_TEST2("ADD", &TestAddS, 0.0f, 0.0f);
DO_SGL_TEST2("ADD", &TestAddS, 0.0f, 1.0f);
DO_SGL_TEST2("ADD", &TestAddS, -1.0f, 1.0f);
DO_SGL_TEST2("ADD", &TestAddS, 1.0f, 2.5f);
DO_SGL_TEST2("ADD", &TestAddS, 1.0f, 6.022045e23f);
DO_SGL_TEST2("ADD", &TestAddS, -7.3890561f, 1.414213562f);
DO_SGL_TEST2("ADD", &TestAddS, -7.3890561f, -1.414213562f);
// SUB
DO_SGL_TEST2("SUB", &TestSubS, 0.0f, 0.0f);
DO_SGL_TEST2("SUB", &TestSubS, 0.0f, 1.0f);
DO_SGL_TEST2("SUB", &TestSubS, 1.0f, 1.0f);
DO_SGL_TEST2("SUB", &TestSubS, 1.0f, 2.5f);
DO_SGL_TEST2("SUB", &TestSubS, 91.0f, 2.5f);
DO_SGL_TEST2("SUB", &TestSubS, 1.0f, 6.022045e23f);
DO_SGL_TEST2("SUB", &TestSubS, -7.3890561f, 1.414213562f);
DO_SGL_TEST2("SUB", &TestSubS, -7.3890561f, -1.414213562f);
// MUL
DO_SGL_TEST2("MUL", &TestMulS, 0.0f, 0.0f);
DO_SGL_TEST2("MUL", &TestMulS, 1.0f, 0.0f);
DO_SGL_TEST2("MUL", &TestMulS, 0.0f, 1.0f);
DO_SGL_TEST2("MUL", &TestMulS, 2.5f, 6.5f);
DO_SGL_TEST2("MUL", &TestMulS, -39.6f, 19.72f);
DO_SGL_TEST2("MUL", &TestMulS, -10.1f, -20.1f);
DO_SGL_TEST2("MUL", &TestMulS, 1e20f, 1e20f);
DO_SGL_TEST2("MUL", &TestMulS, 1e-30f, 1e-30f);
// DIV
DO_SGL_TEST2("DIV", &TestDivS, 0.0f, 1.0f);
DO_SGL_TEST2("DIV", &TestDivS, 1.0f, 5.0f);
DO_SGL_TEST2("DIV", &TestDivS, 1.0f, -5.0f);
DO_SGL_TEST2("DIV", &TestDivS, -1.0f, 5.0f);
DO_SGL_TEST2("DIV", &TestDivS, -1.0f, -5.0f);
DO_SGL_TEST2("DIV", &TestDivS, 7.3890561f, 2.7182818f);
DO_SGL_TEST2("DIV", &TestDivS, 1e20f, 1e-20f);
DO_SGL_TEST2("DIV", &TestDivS, 1e-30f, 1e30f);
// NMUL
DO_SGL_TEST2("NMUL", &TestNMulS, 0.0f, 0.0f);
DO_SGL_TEST2("NMUL", &TestNMulS, 1.0f, 0.0f);
DO_SGL_TEST2("NMUL", &TestNMulS, 0.0f, 1.0f);
DO_SGL_TEST2("NMUL", &TestNMulS, 2.5f, 6.5f);
DO_SGL_TEST2("NMUL", &TestNMulS, -39.6f, 19.72f);
DO_SGL_TEST2("NMUL", &TestNMulS, -10.1f, -20.1f);
DO_SGL_TEST2("NMUL", &TestNMulS, 1e20f, 1e20f);
DO_SGL_TEST2("NMUL", &TestNMulS, 1e-30f, 1e-30f);
// SQRT
DO_SGL_TEST1("SQRT", &TestSqrtS, 0.0f);
DO_SGL_TEST1("SQRT", &TestSqrtS, 1.0f);
DO_SGL_TEST1("SQRT", &TestSqrtS, 2.0f);
DO_SGL_TEST1("SQRT", &TestSqrtS, 3.0f);
DO_SGL_TEST1("SQRT", &TestSqrtS, 9096256.0f);
DO_SGL_TEST1("SQRT", &TestSqrtS, 1e36f);
DO_SGL_TEST1("SQRT", &TestSqrtS, 1e-36f);
// MAC
DO_SGL_TEST3("MAC", &TestMacS, 0.0f, 0.0f, 0.0f);
DO_SGL_TEST3("MAC", &TestMacS, 0.0f, 1.0f, 0.0f);
DO_SGL_TEST3("MAC", &TestMacS, 0.0f, 1.0f, 1.0f);
DO_SGL_TEST3("MAC", &TestMacS, -1.0f, 1.0f, 1.0f);
DO_SGL_TEST3("MAC", &TestMacS, 0.8f, 0.1f, 8.0f);
DO_SGL_TEST3("MAC", &TestMacS, 0.8f, -0.1f, 8.0f);
DO_SGL_TEST3("MAC", &TestMacS, -0.8f, -0.1f, -8.0f);
DO_SGL_TEST3("MAC", &TestMacS, 0.8f, 0.3333333333f, 3.1415926536f);
// MSC
DO_SGL_TEST3("MSC", &TestMscS, 0.0f, 0.0f, 0.0f);
DO_SGL_TEST3("MSC", &TestMscS, 0.0f, 1.0f, 0.0f);
DO_SGL_TEST3("MSC", &TestMscS, 0.0f, 1.0f, 1.0f);
DO_SGL_TEST3("MSC", &TestMscS, -1.0f, 1.0f, 1.0f);
DO_SGL_TEST3("MSC", &TestMscS, 0.8f, 0.1f, 8.0f);
DO_SGL_TEST3("MSC", &TestMscS, 0.8f, -0.1f, 8.0f);
DO_SGL_TEST3("MSC", &TestMscS, -0.8f, -0.1f, -8.0f);
DO_SGL_TEST3("MSC", &TestMscS, 0.8f, 0.3333333333f, 3.1415926536f);
// NMAC
DO_SGL_TEST3("NMAC", &TestNMacS, 0.0f, 0.0f, 0.0f);
DO_SGL_TEST3("NMAC", &TestNMacS, 0.0f, 1.0f, 0.0f);
DO_SGL_TEST3("NMAC", &TestNMacS, 0.0f, 1.0f, 1.0f);
DO_SGL_TEST3("NMAC", &TestNMacS, -1.0f, 1.0f, 1.0f);
DO_SGL_TEST3("NMAC", &TestNMacS, 0.8f, 0.1f, 8.0f);
DO_SGL_TEST3("NMAC", &TestNMacS, 0.8f, -0.1f, 8.0f);
DO_SGL_TEST3("NMAC", &TestNMacS, -0.8f, -0.1f, -8.0f);
DO_SGL_TEST3("NMAC", &TestNMacS, 0.8f, 0.3333333333f, 3.1415926536f);
// NMSC
DO_SGL_TEST3("NMSC", &TestNMscS, 0.0f, 0.0f, 0.0f);
DO_SGL_TEST3("NMSC", &TestNMscS, 0.0f, 1.0f, 0.0f);
DO_SGL_TEST3("NMSC", &TestNMscS, 0.0f, 1.0f, 1.0f);
DO_SGL_TEST3("NMSC", &TestNMscS, -1.0f, 1.0f, 1.0f);
DO_SGL_TEST3("NMSC", &TestNMscS, 0.8f, 0.1f, 8.0f);
DO_SGL_TEST3("NMSC", &TestNMscS, 0.8f, -0.1f, 8.0f);
DO_SGL_TEST3("NMSC", &TestNMscS, -0.8f, -0.1f, -8.0f);
DO_SGL_TEST3("NMSC", &TestNMscS, 0.8f, 0.3333333333f, 3.1415926536f);
}
#define DO_DBL_TEST1(name, func, a1) DoDblTest(name, __LINE__, func, a1)
#define DO_DBL_TEST2(name, func, a1, a2) DoDblTest(name, __LINE__, func, a1, a2)
#define DO_DBL_TEST3(name, func, a1, a2, a3) DoDblTest(name, __LINE__, func, a1, a2, a3)
void DoDblTest(const char* aName, TInt aLine, TDblTest aFunc, TReal64 a1, TReal64 a2=0.0, TReal64 a3=0.0)
{
TPtrC8 name8((const TText8*)aName);
TBuf<128> name16;
name16.Copy(name8);
test.Printf(_L("%S(%g,%g,%g)\n"), &name16, a1, a2, a3);
TReal64 args[3] = {a1, a2, a3};
TReal64 results[2];
SDouble sargs[3];
sargs[0] = a1;
sargs[1] = a2;
sargs[2] = a3;
(*aFunc)(args, results);
if (IEEEMode)
{
if (*((TUint64*)&(results[0])) == *((TUint64*)&(results[1])))
return;
}
else
{
if (results[0] == results[1])
return;
}
SDouble sres[3];
sres[0] = results[0];
sres[1] = results[1];
test.Printf(_L("a1=%08x %08x\na2=%08x %08x\na3=%08x %08x\n"), sargs[0].iData[1], sargs[0].iData[0],
sargs[1].iData[1], sargs[1].iData[0], sargs[2].iData[1], sargs[2].iData[0]);
test.Printf(_L("actual result = %08x %08x (%g)\nexpected result = %08x %08x (%g)\n"),
sres[0].iData[1], sres[0].iData[0], results[0], sres[1].iData[1], sres[1].iData[0], results[1]);
test.Printf(_L("Test at line %d failed\n"), aLine);
test(0);
}
void DoDblTests()
{
// ABS
DO_DBL_TEST1("ABS", &TestAbsD, 1.0);
DO_DBL_TEST1("ABS", &TestAbsD, -1.0);
DO_DBL_TEST1("ABS", &TestAbsD, 0.0);
DO_DBL_TEST1("ABS", &TestAbsD, -3.1415926536);
// NEG
DO_DBL_TEST1("NEG", &TestNegD, 1.0);
DO_DBL_TEST1("NEG", &TestNegD, -1.0);
DO_DBL_TEST1("NEG", &TestNegD, 0.0);
DO_DBL_TEST1("NEG", &TestNegD, -3.1415926536);
// ADD
DO_DBL_TEST2("ADD", &TestAddD, 0.0, 0.0);
DO_DBL_TEST2("ADD", &TestAddD, 0.0, 1.0);
DO_DBL_TEST2("ADD", &TestAddD, -1.0, 1.0);
DO_DBL_TEST2("ADD", &TestAddD, 1.0, 2.5);
DO_DBL_TEST2("ADD", &TestAddD, 1.0, 6.022045e23);
DO_DBL_TEST2("ADD", &TestAddD, -7.3890561, 1.414213562);
DO_DBL_TEST2("ADD", &TestAddD, -7.3890561, -1.414213562);
// SUB
DO_DBL_TEST2("SUB", &TestSubD, 0.0, 0.0);
DO_DBL_TEST2("SUB", &TestSubD, 0.0, 1.0);
DO_DBL_TEST2("SUB", &TestSubD, 1.0, 1.0);
DO_DBL_TEST2("SUB", &TestSubD, 1.0, 2.5);
DO_DBL_TEST2("SUB", &TestSubD, 91.0, 2.5);
DO_DBL_TEST2("SUB", &TestSubD, 1.0, 6.022045e23);
DO_DBL_TEST2("SUB", &TestSubD, -7.3890561, 1.414213562);
DO_DBL_TEST2("SUB", &TestSubD, -7.3890561, -1.414213562);
// MUL
DO_DBL_TEST2("MUL", &TestMulD, 0.0, 0.0);
DO_DBL_TEST2("MUL", &TestMulD, 1.0, 0.0);
DO_DBL_TEST2("MUL", &TestMulD, 0.0, 1.0);
DO_DBL_TEST2("MUL", &TestMulD, 2.5, 6.5);
DO_DBL_TEST2("MUL", &TestMulD, -39.6, 19.72);
DO_DBL_TEST2("MUL", &TestMulD, -10.1, -20.1);
DO_DBL_TEST2("MUL", &TestMulD, 1e20, 1e20);
DO_DBL_TEST2("MUL", &TestMulD, 1e100, 1e300);
DO_DBL_TEST2("MUL", &TestMulD, 1e-20, 1e-20);
DO_DBL_TEST2("MUL", &TestMulD, 1e-200, 1e-300);
// DIV
DO_DBL_TEST2("DIV", &TestDivD, 0.0, 1.0);
DO_DBL_TEST2("DIV", &TestDivD, 1.0, 5.0);
DO_DBL_TEST2("DIV", &TestDivD, 1.0, -5.0);
DO_DBL_TEST2("DIV", &TestDivD, -1.0, 5.0);
DO_DBL_TEST2("DIV", &TestDivD, -1.0, -5.0);
DO_DBL_TEST2("DIV", &TestDivD, 7.3890561, 2.7182818);
DO_DBL_TEST2("DIV", &TestDivD, 1e20, 1e-20);
DO_DBL_TEST2("DIV", &TestDivD, 1e-20, 1e20);
DO_DBL_TEST2("DIV", &TestDivD, 1e-50, 1e300);
// NMUL
DO_DBL_TEST2("NMUL", &TestNMulD, 0.0, 0.0);
DO_DBL_TEST2("NMUL", &TestNMulD, 1.0, 0.0);
DO_DBL_TEST2("NMUL", &TestNMulD, 0.0, 1.0);
DO_DBL_TEST2("NMUL", &TestNMulD, 2.5, 6.5);
DO_DBL_TEST2("NMUL", &TestNMulD, -39.6, 19.72);
DO_DBL_TEST2("NMUL", &TestNMulD, -10.1, -20.1);
DO_DBL_TEST2("NMUL", &TestNMulD, 1e20, 1e20);
DO_DBL_TEST2("NMUL", &TestNMulD, 1e100, 1e300);
DO_DBL_TEST2("NMUL", &TestNMulD, 1e-20, 1e-20);
DO_DBL_TEST2("NMUL", &TestNMulD, 1e-200, 1e-300);
// SQRT
DO_DBL_TEST1("SQRT", &TestSqrtD, 0.0);
DO_DBL_TEST1("SQRT", &TestSqrtD, 1.0);
DO_DBL_TEST1("SQRT", &TestSqrtD, 2.0);
DO_DBL_TEST1("SQRT", &TestSqrtD, 3.0);
DO_DBL_TEST1("SQRT", &TestSqrtD, 9096256.0);
DO_DBL_TEST1("SQRT", &TestSqrtD, 1e36);
DO_DBL_TEST1("SQRT", &TestSqrtD, 1e-36);
// MAC
DO_DBL_TEST3("MAC", &TestMacD, 0.0, 0.0, 0.0);
DO_DBL_TEST3("MAC", &TestMacD, 0.0, 1.0, 0.0);
DO_DBL_TEST3("MAC", &TestMacD, 0.0, 1.0, 1.0);
DO_DBL_TEST3("MAC", &TestMacD, -1.0, 1.0, 1.0);
DO_DBL_TEST3("MAC", &TestMacD, 0.8, 0.1, 8.0);
DO_DBL_TEST3("MAC", &TestMacD, 0.8, -0.1, 8.0);
DO_DBL_TEST3("MAC", &TestMacD, -0.8, -0.1, -8.0);
DO_DBL_TEST3("MAC", &TestMacD, 0.8, 0.3333333333, 3.1415926536);
// MSC
DO_DBL_TEST3("MSC", &TestMscD, 0.0, 0.0, 0.0);
DO_DBL_TEST3("MSC", &TestMscD, 0.0, 1.0, 0.0);
DO_DBL_TEST3("MSC", &TestMscD, 0.0, 1.0, 1.0);
DO_DBL_TEST3("MSC", &TestMscD, -1.0, 1.0, 1.0);
DO_DBL_TEST3("MSC", &TestMscD, 0.8, 0.1, 8.0);
DO_DBL_TEST3("MSC", &TestMscD, 0.8, -0.1, 8.0);
DO_DBL_TEST3("MSC", &TestMscD, -0.8, -0.1, -8.0);
DO_DBL_TEST3("MSC", &TestMscD, 0.8, 0.3333333333, 3.1415926536);
// NMAC
DO_DBL_TEST3("NMAC", &TestNMacD, 0.0, 0.0, 0.0);
DO_DBL_TEST3("NMAC", &TestNMacD, 0.0, 1.0, 0.0);
DO_DBL_TEST3("NMAC", &TestNMacD, 0.0, 1.0, 1.0);
DO_DBL_TEST3("NMAC", &TestNMacD, -1.0, 1.0, 1.0);
DO_DBL_TEST3("NMAC", &TestNMacD, 0.8, 0.1, 8.0);
DO_DBL_TEST3("NMAC", &TestNMacD, 0.8, -0.1, 8.0);
DO_DBL_TEST3("NMAC", &TestNMacD, -0.8, -0.1, -8.0);
DO_DBL_TEST3("NMAC", &TestNMacD, 0.8, 0.3333333333, 3.1415926536);
// NMSC
DO_DBL_TEST3("NMSC", &TestNMscD, 0.0, 0.0, 0.0);
DO_DBL_TEST3("NMSC", &TestNMscD, 0.0, 1.0, 0.0);
DO_DBL_TEST3("NMSC", &TestNMscD, 0.0, 1.0, 1.0);
DO_DBL_TEST3("NMSC", &TestNMscD, -1.0, 1.0, 1.0);
DO_DBL_TEST3("NMSC", &TestNMscD, 0.8, 0.1, 8.0);
DO_DBL_TEST3("NMSC", &TestNMscD, 0.8, -0.1, 8.0);
DO_DBL_TEST3("NMSC", &TestNMscD, -0.8, -0.1, -8.0);
DO_DBL_TEST3("NMSC", &TestNMscD, 0.8, 0.3333333333, 3.1415926536);
}
void DoBounceTests()
{
test.Next(_L("Test denormal handling - single"));
DO_SGL_TEST2("ADD", &TestAddS, 1e-39f, 1e-39f);
test.Next(_L("Test potential underflow - single"));
DO_SGL_TEST2("MUL", &TestMulS, 3.162e-20f, 3.162e-20f);
// fails on VFPv2 hardware. ARM's library should be fixed
// test.Next(_L("Test NaN input - single"));
// TReal32 aSingleNaN;
// *((TUint32*)&aSingleNaN) = 0x7F9ABCDE;
// Vfp::SetSReg(aSingleNaN, 1);
// Vfp::SetSReg(aSingleNaN, 2);
// Vfp::AddS();
// TReal32 aSingleResult = Vfp::SReg(0);
// test(*((TUint32*)&aSingleResult) == 0x7FDABCDE);
if (Double)
{
test.Next(_L("Test denormal handling - double"));
DO_DBL_TEST2("ADD", &TestAddD, 3.1234e-322, 3.1234e-322);
test.Next(_L("Test potential underflow - double"));
DO_DBL_TEST2("MUL", &TestMulD, 1.767e-161, 1.767e-161);
// fails on VFPv2 hardware. ARM's library should be fixed
// test.Next(_L("Test NaN input - double"));
// TReal64 aDoubleNaN;
// *((TUint64*)&aDoubleNaN) = 0x7FF0123456789ABCll;
// Vfp::SetDReg(aDoubleNaN, 1);
// Vfp::SetDReg(aDoubleNaN, 2);
// Vfp::AddD();
// TReal64 aDoubleResult = Vfp::DReg(0);
// test(*((TUint64*)&aDoubleResult) == 0x7FF8123456789ABC);
}
}
void DoRunFastTests()
{
test.Next(_L("Test flushing denormals to zero - single"));
Vfp::SetSReg(1e-39f, 1);
Vfp::SetSReg(1e-39f, 2);
Vfp::AddS();
test(Vfp::SReg(0)==0);
test.Next(_L("Test flushing underflow to zero - single"));
Vfp::SetSReg(3.162e-20f, 1);
Vfp::SetSReg(3.162e-20f, 2);
Vfp::MulS();
test(Vfp::SReg(0)==0);
test.Next(_L("Test default NaNs - single"));
TReal32 aSingleNaN;
*((TUint32*)&aSingleNaN) = 0x7F9ABCDE;
Vfp::SetSReg(aSingleNaN, 1);
Vfp::SetSReg(aSingleNaN, 2);
Vfp::AddS();
TReal32 aSingleResult = Vfp::SReg(0);
test(*((TUint32*)&aSingleResult) == 0x7FC00000);
if (Double)
{
test.Next(_L("Test flushing denormals to zero - double"));
Vfp::SetDReg(3.1234e-322, 1);
Vfp::SetDReg(3.1234e-322, 2);
Vfp::AddD();
test(Vfp::DReg(0)==0);
test.Next(_L("Test flushing underflow to zero - double"));
Vfp::SetDReg(1.767e-161, 1);
Vfp::SetDReg(1.767e-161, 2);
Vfp::MulD();
test(Vfp::DReg(0)==0);
test.Next(_L("Test default NaNs - double"));
TReal64 aDoubleNaN;
*((TUint64*)&aDoubleNaN) = 0x7FF0123456789ABCll;
Vfp::SetDReg(aDoubleNaN, 1);
Vfp::SetDReg(aDoubleNaN, 2);
Vfp::AddD();
TReal64 aDoubleResult = Vfp::DReg(0);
test(*((TUint64*)&aDoubleResult) == 0x7FF8000000000000ll);
}
}
void TestAddSResult(const TReal32 a, const TReal32 b, const TReal32 r)
{
Vfp::SetSReg(a, 1);
Vfp::SetSReg(b, 2);
Vfp::AddS();
test(Vfp::SReg(0) == r);
}
void DoRoundingTests()
{
TFloatingPointMode fpmode = IEEEMode ? EFpModeIEEENoExceptions : EFpModeRunFast;
test.Next(_L("Check default rounding to nearest"));
test(User::SetFloatingPointMode(fpmode) == KErrNone);
test.Next(_L("Check nearest-downward"));
TestAddSResult(16777215, 0.49f, 16777215);
test.Next(_L("Check nearest-upward"));
TestAddSResult(16777215, 0.51f, 16777216);
test.Next(_L("Set rounding mode to toward-plus-infinity"));
test(User::SetFloatingPointMode(fpmode, EFpRoundToPlusInfinity) == KErrNone);
test.Next(_L("Check positive rounding goes upward"));
TestAddSResult(16777215, 0.49f, 16777216);
test.Next(_L("Check negative rounding goes upward"));
TestAddSResult(-16777215, -0.51f, -16777215);
test.Next(_L("Set rounding mode to toward-minus-infinity"));
test(User::SetFloatingPointMode(fpmode, EFpRoundToMinusInfinity) == KErrNone);
test.Next(_L("Check positive rounding goes downward"));
TestAddSResult(16777215, 0.51f, 16777215);
test.Next(_L("Check negative rounding goes downward"));
TestAddSResult(-16777215, -0.49f, -16777216);
test.Next(_L("Set rounding mode to toward-zero"));
test(User::SetFloatingPointMode(fpmode, EFpRoundToZero) == KErrNone);
test.Next(_L("Check positive rounding goes downward"));
TestAddSResult(16777215, 0.51f, 16777215);
test.Next(_L("Check negative rounding goes upward"));
TestAddSResult(-16777215, -0.51f, -16777215);
}
TInt RunFastThread(TAny* /*unused*/)
{
Vfp::SetSReg(1e-39f, 1);
Vfp::SetSReg(1e-39f, 2);
Vfp::AddS();
return (Vfp::SReg(0)==0) ? KErrNone : KErrGeneral;
}
TInt IEEECompliantThread(TAny* /*unused*/)
{
Vfp::SetSReg(1e-39f, 1);
Vfp::SetSReg(1e-39f, 2);
Vfp::AddS();
return (Vfp::SReg(0)==2e-39f) ? KErrNone : KErrGeneral;
}
void TestVFPModeInheritance()
{
test.Printf(_L("Set floating point mode to RunFast\n"));
test(User::SetFloatingPointMode(EFpModeRunFast)==KErrNone);
RThread t;
TInt r = t.Create(KNullDesC, &RunFastThread, 0x1000, NULL, NULL);
test(r==KErrNone);
TRequestStatus s;
t.Logon(s);
test.Printf(_L("Run RunFast test in another thread...\n"));
t.Resume();
test.Printf(_L("Wait for other thread to terminate\n"));
User::WaitForRequest(s);
test(t.ExitType() == EExitKill);
test(s == KErrNone);
CLOSE_AND_WAIT(t);
test.Printf(_L("Set floating point mode to IEEE\n"));
test(User::SetFloatingPointMode(EFpModeIEEENoExceptions)==KErrNone);
r = t.Create(KNullDesC, &IEEECompliantThread, 0x1000, NULL, NULL);
test(r==KErrNone);
t.Logon(s);
test.Printf(_L("Run IEEE test in another thread...\n"));
t.Resume();
test.Printf(_L("Wait for other thread to terminate\n"));
User::WaitForRequest(s);
test(t.ExitType() == EExitKill);
test(s == KErrNone);
CLOSE_AND_WAIT(t);
}
void TestVFPv3()
{
test.Next(_L("Transferring to and from fixed point"));
Vfp::SetSReg(2.5f, 0);
test(Vfp::SReg(0)==2.5f);
Vfp::ToFixedS(3); // Convert to fixed (3) precision
test(Vfp::SRegInt(0)==0x14); // 10.100 in binary fixed(3) format
Vfp::FromFixedS(3); //Convert from fixed (3) precision
test(Vfp::SReg(0)==2.5f);
test.Next(_L("Setting immediate value to floating point registers"));
Vfp::SetSReg(5.0f, 0);
test(Vfp::SReg(0) == 5.0f);
Vfp::TconstS2();
test(Vfp::SReg(0) == 2.0f);
Vfp::SetSReg(5.0f, 0);
Vfp::TconstS2_8();
test(Vfp::SReg(0) == 2.875f);
Vfp::SetDReg(5.0f, 0);
test(Vfp::DReg(0) == 5.0f);
Vfp::TconstD2();
test(Vfp::DReg(0) == 2.0f);
Vfp::TconstD2_8();
test(Vfp::DReg(0) == 2.875f);
}
void TestNEON()
{
RThread t;
TRequestStatus s;
test.Next(_L("Test creating a thread to execute an F2-prefix instruction"));
test_KErrNone(t.Create(KNullDesC, &NeonWithF2, 0x1000, NULL, NULL));
t.Logon(s);
t.Resume();
User::WaitForRequest(s);
test(t.ExitType() == EExitKill);
test(s == KErrNone);
t.Close();
test.Next(_L("Test creating a thread to execute an F3-prefix instruction"));
test_KErrNone(t.Create(KNullDesC, &NeonWithF3, 0x1000, NULL, NULL));
t.Logon(s);
t.Resume();
User::WaitForRequest(s);
test(t.ExitType() == EExitKill);
test(s == KErrNone);
t.Close();
test.Next(_L("Test creating a thread to execute an F4x-prefix instruction"));
test_KErrNone(t.Create(KNullDesC, &NeonWithF4x, 0x1000, NULL, NULL));
t.Logon(s);
t.Resume();
User::WaitForRequest(s);
test(t.ExitType() == EExitKill);
test(s == KErrNone);
t.Close();
}
void TestThumb()
{
RThread t;
TRequestStatus s;
TInt testStep = 0;
do {
test_KErrNone(t.Create(KNullDesC, &ThumbMode, 0x1000, NULL, (TAny*)testStep++));
t.Logon(s);
t.Resume();
User::WaitForRequest(s);
test(s == KErrNone || s == 1);
test(t.ExitType() == EExitKill);
t.Close();
}
while (s == KErrNone);
test(s == 1);
test(testStep == 7);
}
TInt E32Main()
{
test.Title();
test.Start(_L("Ask HAL if we have hardware floating point"));
CPUs = UserSvr::HalFunction(EHalGroupKernel, EKernelHalNumLogicalCpus, 0, 0);
TInt supportedTypes;
TInt HalVfp = HAL::Get(HALData::EHardwareFloatingPoint, supportedTypes);
if (HalVfp == KErrNone)
{
if (supportedTypes == EFpTypeVFPv2)
{
test.Printf(_L("HAL reports VFPv2\n"));
}
else if (supportedTypes == EFpTypeVFPv3)
{
test.Printf(_L("HAL reports VFPv3\n"));
}
else if (supportedTypes == EFpTypeVFPv3D16)
{
test.Printf(_L("HAL reports VFPv3-D16\n"));
}
else
{
test.Printf(_L("HAL reports an unknown floating point type\n"));
test(0);
}
}
else
{
test.Printf(_L("HAL reports no VFP support\n"));
}
test.Next(_L("Check VFP present"));
TBool present = DetectVFP();
if (!present)
{
test.Printf(_L("No VFP detected\n"));
test(HalVfp == KErrNotSupported ||
((supportedTypes != EFpTypeVFPv2) &&
(supportedTypes != EFpTypeVFPv3) &&
(supportedTypes != EFpTypeVFPv3D16))
);
test.End();
return 0;
}
test.Printf(_L("VFP detected. FPSID = %08x\n"), FPSID);
test(HalVfp == KErrNone);
// Verify that the HAL architecture ID matches the FPSID values
// ARMv7 redefines some of these bits so the masks are different :(
if (supportedTypes == EFpTypeVFPv2)
{
// assume armv5/6's bit definitions, where 19:16 are the arch version
// and 20 is the single-precision-only bit
ArchVersion = (FPSID >> 16) & 0xf;
test(ArchVersion == ARCH_VERSION_VFPV2);
Double = !(FPSID & VFP_FPSID_SNG);
}
else if (supportedTypes == EFpTypeVFPv3 || supportedTypes == EFpTypeVFPv3D16)
{
// assume armv7's bit definitions, where 22:16 are the arch version
ArchVersion = (FPSID >> 16) & 0x7f;
test(ArchVersion == ARCH_VERSION_VFPV3_SUBARCH_V2
|| ArchVersion == ARCH_VERSION_VFPV3_SUBARCH_NULL
|| ArchVersion == ARCH_VERSION_VFPV3_SUBARCH_V3);
// there are bits for this in MVFR0 but ARM implementations should always have it?
Double = ETrue;
}
if (Double)
test.Printf(_L("Both single and double precision supported\n"), FPSID);
else
test.Printf(_L("Only single precision supported\n"), FPSID);
test.Next(_L("Test VFP Initial State"));
TestVFPInitialState();
test.Next(_L("Test setting VFP to IEEE no exceptions mode"));
IEEEMode = User::SetFloatingPointMode(EFpModeIEEENoExceptions) == KErrNone;
if (!IEEEMode)
test.Printf(_L("IEEE no exceptions mode not supported, continuing in RunFast\n"));
test.Next(_L("Test VFP calculations - single"));
DoSglTests();
if (Double)
{
test.Next(_L("Test VFP calculations - double"));
DoDblTests();
}
test.Next(_L("Test VFP Context Save"));
TestVFPContextSave();
if (IEEEMode)
{
test.Next(_L("Test bounce handling"));
DoBounceTests();
test.Next(_L("Test bouncing while context switching"));
DoBounceContextSwitchTests();
test.Next(_L("Test setting VFP to RunFast mode"));
test(User::SetFloatingPointMode(EFpModeRunFast) == KErrNone);
DoRunFastTests();
}
test.Next(_L("Test VFP rounding modes"));
DoRoundingTests();
if (IEEEMode)
{
test.Next(_L("Test VFP mode inheritance between threads"));
TestVFPModeInheritance();
}
if (supportedTypes == EFpTypeVFPv3 || supportedTypes == EFpTypeVFPv3D16)
{
test.Next(_L("Test VFPv3"));
TestVFPv3();
if (supportedTypes == EFpTypeVFPv3)
{
test.Next(_L("Test NEON"));
TestNEON();
#if defined(__SUPPORT_THUMB_INTERWORKING)
test.Next(_L("Test Thumb Decode"));
TestThumb();
#endif
}
}
test.End();
return 0;
}