Convert Kernelhwsrv package from SFL to EPL
kernel\eka\compsupp is subject to the ARM EABI LICENSE
userlibandfileserver\fatfilenameconversionplugins\unicodeTables is subject to the Unicode license
kernel\eka\kernel\zlib is subject to the zlib license
// Copyright (c) 1995-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32test\mmu\t_imb.cia
//
//
#include <e32test.h>
#include <u32std.h>
#include <e32math.h>
#ifdef __CPU_ARM
__NAKED__ TInt Sqrt(TReal& /*aDest*/, const TReal& /*aSrc*/)
{
// r0=address of aDest, r1=address of aSrc
asm("stmfd sp!, {r4-r10,lr} ");
#ifdef __DOUBLE_WORDS_SWAPPED__
asm("ldmia r1, {r3,r4} "); // low mant into r4, sign:exp:high mant into r3
#else
asm("ldr r3, [r1, #4] ");
asm("ldr r4, [r1, #0] ");
#endif
asm("bic r5, r3, #0xFF000000 ");
asm("bic r5, r5, #0x00F00000 "); // high word of mantissa into r5
asm("mov r2, r3, lsr #20 ");
asm("bics r2, r2, #0x800 "); // exponent now in r2
asm("beq fastsqrt1 "); // branch if exponent zero (zero or denormal)
asm("mov r6, #0xFF ");
asm("orr r6, r6, #0x700 ");
asm("cmp r2, r6 "); // check for infinity or NaN
asm("beq fastsqrt2 "); // branch if infinity or NaN
asm("movs r3, r3 "); // test sign
asm("bmi fastsqrtn "); // branch if negative
asm("sub r2, r2, #0xFF "); // unbias the exponent
asm("sub r2, r2, #0x300 "); //
asm("fastsqrtd1: ");
asm("mov r1, #0x40000000 "); // value for comparison
asm("mov r3, #27 "); // loop counter (number of bits/2)
asm("movs r2, r2, asr #1 "); // divide exponent by 2, LSB into CF
asm("movcs r7, r5, lsl #11 "); // mantissa into r6,r7 with MSB in MSB of r7
asm("orrcs r7, r7, r4, lsr #21 ");
asm("movcs r6, r4, lsl #11 ");
asm("movcs r4, #0 "); // r4, r5 will hold result mantissa
asm("orrcs r7, r7, #0x80000000 "); // if exponent odd, restore MSB of mantissa
asm("movcc r7, r5, lsl #12 "); // mantissa into r6,r7 with MSB in MSB of r7
asm("orrcc r7, r7, r4, lsr #20 "); // if exponent even, shift mantissa left an extra
asm("movcc r6, r4, lsl #12 "); // place, lose top bit, and
asm("movcc r4, #1 "); // set MSB of result, and
asm("mov r5, #0 "); // r4, r5 will hold result mantissa
asm("mov r8, #0 "); // r8, r9 will be comparison accumulator
asm("mov r9, #0 ");
asm("bcc fastsqrt4 "); // if exponent even, calculate one less bit
// as result MSB already known
// Main mantissa square-root loop
asm("fastsqrt3: "); // START OF MAIN LOOP
asm("subs r10, r7, r1 "); // subtract result:01 from acc:mant
asm("sbcs r12, r8, r4 "); // result into r14:r12:r10
asm("sbcs r14, r9, r5 ");
asm("movcs r7, r10 "); // if no borrow replace accumulator with result
asm("movcs r8, r12 ");
asm("movcs r9, r14 ");
asm("adcs r4, r4, r4 "); // shift result left one, putting in next bit
asm("adcs r5, r5, r5 ");
asm("mov r9, r9, lsl #2 "); // shift acc:mant left by 2 bits
asm("orr r9, r9, r8, lsr #30 ");
asm("mov r8, r8, lsl #2 ");
asm("orr r8, r8, r7, lsr #30 ");
asm("mov r7, r7, lsl #2 ");
asm("orr r7, r7, r6, lsr #30 ");
asm("mov r6, r6, lsl #2 ");
asm("fastsqrt4: "); // Come in here if we need to do one less iteration
asm("subs r10, r7, r1 "); // subtract result:01 from acc:mant
asm("sbcs r12, r8, r4 "); // result into r14:r12:r10
asm("sbcs r14, r9, r5 ");
asm("movcs r7, r10 "); // if no borrow replace accumulator with result
asm("movcs r8, r12 ");
asm("movcs r9, r14 ");
asm("adcs r4, r4, r4 "); // shift result left one, putting in next bit
asm("adcs r5, r5, r5 ");
asm("mov r9, r9, lsl #2 "); // shift acc:mant left by 2 bits
asm("orr r9, r9, r8, lsr #30 ");
asm("mov r8, r8, lsl #2 ");
asm("orr r8, r8, r7, lsr #30 ");
asm("mov r7, r7, lsl #2 ");
asm("orr r7, r7, r6, lsr #30 ");
asm("mov r6, r6, lsl #2 ");
asm("subs r3, r3, #1 "); // decrement loop counter
asm("bne fastsqrt3 "); // do necessary number of iterations
asm("movs r4, r4, lsr #1 "); // shift result mantissa right 1 place
asm("orr r4, r4, r5, lsl #31 "); // LSB (=rounding bit) into carry
asm("mov r5, r5, lsr #1 ");
asm("adcs r4, r4, #0 "); // round the mantissa to 53 bits
asm("adcs r5, r5, #0 ");
asm("cmp r5, #0x00200000 "); // check for mantissa overflow
asm("addeq r2, r2, #1 "); // if so, increment exponent - can never overflow
asm("bic r5, r5, #0x00300000 "); // remove top bit of mantissa - it is implicit
asm("add r2, r2, #0xFF "); // re-bias the exponent
asm("add r3, r2, #0x300 "); // and move into r3
asm("orr r3, r5, r3, lsl #20 "); // r3 now contains exponent + top of mantissa
asm("fastsqrt_ok: ");
#ifdef __DOUBLE_WORDS_SWAPPED__
asm("stmia r0, {r3,r4} "); // store the result
#else
asm("str r3, [r0, #4] ");
asm("str r4, [r0, #0] ");
#endif
asm("mov r0, #0 "); // error code KErrNone
__POPRET("r4-r10,");
asm("fastsqrt1: ");
asm("orrs r6, r5, r4 "); // exponent zero - test mantissa
asm("beq fastsqrt_ok "); // if zero, return 0
asm("movs r3, r3 "); // denormal - test sign
asm("bmi fastsqrtn "); // branch out if negative
asm("sub r2, r2, #0xFE "); // unbias the exponent
asm("sub r2, r2, #0x300 "); //
asm("fastsqrtd: ");
asm("adds r4, r4, r4 "); // shift mantissa left
asm("adcs r5, r5, r5 ");
asm("sub r2, r2, #1 "); // and decrement exponent
asm("tst r5, #0x00100000 "); // test if normalised
asm("beq fastsqrtd "); // loop until normalised
asm("b fastsqrtd1 "); // now treat as a normalised number
asm("fastsqrt2: "); // get here if infinity or NaN
asm("orrs r6, r5, r4 "); // if mantissa zero, infinity
asm("bne fastsqrtnan "); // branch if not - must be NaN
asm("movs r3, r3 "); // test sign of infinity
asm("bmi fastsqrtn "); // branch if -ve
#ifdef __DOUBLE_WORDS_SWAPPED__
asm("stmia r0, {r3,r4} "); // store the result
#else
asm("str r3, [r0, #4] ");
asm("str r4, [r0, #0] ");
#endif
asm("mov r0, #-9 "); // return KErrOverflow
asm("b fastsqrt_end ");
asm("fastsqrtn: "); // get here if negative or QNaN operand
asm("mov r3, #0xFF000000 "); // generate "real indefinite" QNaN
asm("orr r3, r3, #0x00F80000 "); // sign=1, exp=7FF, mantissa = 1000...0
asm("mov r4, #0 ");
asm("fastsqrtxa: ");
#ifdef __DOUBLE_WORDS_SWAPPED__
asm("stmia r0, {r3,r4} "); // store the result
#else
asm("str r3, [r0, #4] ");
asm("str r4, [r0, #0] ");
#endif
asm("mov r0, #-6 "); // return KErrArgument
asm("fastsqrt_end: ");
__POPRET("r4-r10,");
asm("fastsqrtnan: "); // operand is a NaN
asm("tst r5, #0x00080000 "); // test MSB of mantissa
asm("bne fastsqrtn "); // if set it is a QNaN - so return "real indefinite"
asm("bic r3, r3, #0x00080000 "); // else convert SNaN to QNaN
asm("b fastsqrtxa "); // and return KErrArgument
asm("Sqrt__FRdRCd_end: ");
}
__NAKED__ TUint Sqrt_Length()
{
asm("adr r0, Sqrt__FRdRCd_end ");
asm("adr r1, Sqrt__FRdRCd ");
asm("sub r0, r0, r1 ");
__JUMP(,lr);
}
__NAKED__ TInt Divide(TRealX& /*aDividend*/, const TRealX& /*aDivisor*/)
{
asm("stmfd sp!, {r0,r4-r9,lr} ");
asm("ldmia r1, {r4,r5,r6} ");
asm("ldmia r0, {r1,r2,r3} ");
asm("bl TRealXDivide ");
asm("ldmfd sp!, {r0,r4-r9,lr} ");
asm("stmia r0, {r1,r2,r3} ");
asm("mov r0, r12 ");
__JUMP(,lr);
// TRealX division r1,r2,r3 / r4,r5,r6 result in r1,r2,r3
// Error code returned in r12
// Registers r0-r9,r12 modified
// NB This function is purely internal to EUSER and therefore IS ONLY EVER CALLED IN ARM MODE.
asm("TRealXDivide: ");
asm("mov r12, #0 "); // initialise return value to KErrNone
asm("bic r3, r3, #0x300 "); // clear rounding flags
asm("tst r6, #1 ");
asm("eorne r3, r3, #1 "); // Exclusive-OR signs
asm("cmn r3, #0x10000 "); // check if dividend is NaN or infinity
asm("bcs TRealXDivide1 "); // branch if it is
asm("cmn r6, #0x10000 "); // check if divisor is NaN or infinity
asm("bcs TRealXDivide2 "); // branch if it is
asm("cmp r6, #0x10000 "); // check if divisor zero
asm("bcc TRealXDivide3 "); // branch if it is
asm("cmp r3, #0x10000 "); // check if dividend zero
__JUMP(cc,lr); // if zero, exit
asm("tst r3, #1 ");
asm("orrne lr, lr, #1 "); // save sign in bottom bit of lr
// calculate result exponent
asm("mov r0, r3, lsr #16 "); // r0=dividend exponent
asm("sub r0, r0, r6, lsr #16 "); // r0=dividend exponent - divisor exponent
asm("add r0, r0, #0x7F00 ");
asm("add r0, r0, #0x00FF "); // r0 now contains result exponent
asm("mov r6, r1 "); // move dividend into r6,r7,r8
asm("mov r7, r2 ");
asm("mov r8, #0 "); // use r8 to hold extra bit shifted up
// r2:r1 will hold result mantissa
asm("mov r2, #1 "); // we will make sure first bit is 1
asm("cmp r7, r5 "); // compare dividend mantissa to divisor mantissa
asm("cmpeq r6, r4 ");
asm("bcs TRealXDivide4 "); // branch if dividend >= divisor
asm("adds r6, r6, r6 "); // else shift dividend left one
asm("adcs r7, r7, r7 "); // ignore carry here
asm("sub r0, r0, #1 "); // decrement result exponent by one
asm("TRealXDivide4: ");
asm("subs r6, r6, r4 "); // subtract divisor from dividend
asm("sbcs r7, r7, r5 ");
// Main mantissa division code
// First calculate the top 32 bits of the result
// Top bit is 1, do 10 lots of 3 bits the one more bit
asm("mov r12, #10 ");
asm("TRealXDivide5: ");
asm("adds r6, r6, r6 "); // shift accumulator left by one
asm("adcs r7, r7, r7 ");
asm("adcs r8, r8, r8 ");
asm("subs r9, r6, r4 "); // subtract divisor from accumulator, result in r9,r3
asm("sbcs r3, r7, r5 ");
asm("movccs r8, r8, lsr #1 "); // if borrow, check for carry from shift
asm("movcs r6, r9 "); // if no borrow, replace accumulator with result
asm("movcs r7, r3 ");
asm("adcs r2, r2, r2 "); // shift in new result bit
asm("adds r6, r6, r6 "); // shift accumulator left by one
asm("adcs r7, r7, r7 ");
asm("adcs r8, r8, r8 ");
asm("subs r9, r6, r4 "); // subtract divisor from accumulator, result in r9,r3
asm("sbcs r3, r7, r5 ");
asm("movccs r8, r8, lsr #1 "); // if borrow, check for carry from shift
asm("movcs r6, r9 "); // if no borrow, replace accumulator with result
asm("movcs r7, r3 ");
asm("adcs r2, r2, r2 "); // shift in new result bit
asm("adds r6, r6, r6 "); // shift accumulator left by one
asm("adcs r7, r7, r7 ");
asm("adcs r8, r8, r8 ");
asm("subs r9, r6, r4 "); // subtract divisor from accumulator, result in r9,r3
asm("sbcs r3, r7, r5 ");
asm("movccs r8, r8, lsr #1 "); // if borrow, check for carry from shift
asm("movcs r6, r9 "); // if no borrow, replace accumulator with result
asm("movcs r7, r3 ");
asm("adcs r2, r2, r2 "); // shift in new result bit
asm("subs r12, r12, #1 ");
asm("bne TRealXDivide5 "); // iterate the loop
asm("adds r6, r6, r6 "); // shift accumulator left by one
asm("adcs r7, r7, r7 ");
asm("adcs r8, r8, r8 ");
asm("subs r9, r6, r4 "); // subtract divisor from accumulator, result in r9,r3
asm("sbcs r3, r7, r5 ");
asm("movccs r8, r8, lsr #1 "); // if borrow, check for carry from shift
asm("movcs r6, r9 "); // if no borrow, replace accumulator with result
asm("movcs r7, r3 ");
asm("adcs r2, r2, r2 "); // shift in new result bit - now have 32 bits
// Now calculate the bottom 32 bits of the result
// Do 8 lots of 4 bits
asm("mov r12, #8 ");
asm("TRealXDivide5a: ");
asm("adds r6, r6, r6 "); // shift accumulator left by one
asm("adcs r7, r7, r7 ");
asm("adcs r8, r8, r8 ");
asm("subs r9, r6, r4 "); // subtract divisor from accumulator, result in r9,r3
asm("sbcs r3, r7, r5 ");
asm("movccs r8, r8, lsr #1 "); // if borrow, check for carry from shift
asm("movcs r6, r9 "); // if no borrow, replace accumulator with result
asm("movcs r7, r3 ");
asm("adcs r1, r1, r1 "); // shift in new result bit
asm("adds r6, r6, r6 "); // shift accumulator left by one
asm("adcs r7, r7, r7 ");
asm("adcs r8, r8, r8 ");
asm("subs r9, r6, r4 "); // subtract divisor from accumulator, result in r9,r3
asm("sbcs r3, r7, r5 ");
asm("movccs r8, r8, lsr #1 "); // if borrow, check for carry from shift
asm("movcs r6, r9 "); // if no borrow, replace accumulator with result
asm("movcs r7, r3 ");
asm("adcs r1, r1, r1 "); // shift in new result bit
asm("adds r6, r6, r6 "); // shift accumulator left by one
asm("adcs r7, r7, r7 ");
asm("adcs r8, r8, r8 ");
asm("subs r9, r6, r4 "); // subtract divisor from accumulator, result in r9,r3
asm("sbcs r3, r7, r5 ");
asm("movccs r8, r8, lsr #1 "); // if borrow, check for carry from shift
asm("movcs r6, r9 "); // if no borrow, replace accumulator with result
asm("movcs r7, r3 ");
asm("adcs r1, r1, r1 "); // shift in new result bit
asm("adds r6, r6, r6 "); // shift accumulator left by one
asm("adcs r7, r7, r7 ");
asm("adcs r8, r8, r8 ");
asm("subs r9, r6, r4 "); // subtract divisor from accumulator, result in r9,r3
asm("sbcs r3, r7, r5 ");
asm("movccs r8, r8, lsr #1 "); // if borrow, check for carry from shift
asm("movcs r6, r9 "); // if no borrow, replace accumulator with result
asm("movcs r7, r3 ");
asm("adcs r1, r1, r1 "); // shift in new result bit
asm("subs r12, r12, #1 ");
asm("bne TRealXDivide5a "); // iterate the loop
// r2:r1 now contains a 64-bit normalised mantissa
// need to do rounding now
asm("and r3, lr, #1 "); // result sign back into r3
asm("orrs r9, r6, r7 "); // check if accumulator zero
asm("beq TRealXDivide6 "); // if it is, result is exact, else generate next bit
asm("adds r6, r6, r6 "); // shift accumulator left by one
asm("adcs r7, r7, r7 ");
asm("adcs r8, r8, r8 ");
asm("subs r6, r6, r4 "); // subtract divisor from accumulator
asm("sbcs r7, r7, r5 ");
asm("movccs r8, r8, lsr #1 "); // if borrow, check for carry from shift
asm("orrcc r3, r3, #0x100 "); // if borrow, round down and set round-down flag
asm("bcc TRealXDivide6 ");
asm("orrs r9, r6, r7 "); // if no borrow, check if exactly half-way
asm("moveqs r9, r1, lsr #1 "); // if exactly half-way, round to even
asm("orrcc r3, r3, #0x100 "); // if C=0, round result down and set round-down flag
asm("bcc TRealXDivide6 ");
asm("orr r3, r3, #0x200 "); // else set round-up flag
asm("adds r1, r1, #1 "); // and round mantissa up
asm("adcs r2, r2, #0 ");
asm("movcs r2, #0x80000000 "); // if carry, mantissa = 80000000 00000000
asm("addcs r0, r0, #1 "); // and increment exponent
// check for overflow or underflow and assemble final result
asm("TRealXDivide6: ");
asm("add r4, r0, #1 "); // need to add 1 to get usable threshold
asm("cmp r4, #0x10000 "); // check if exponent >= 0xFFFF
asm("bge TRealXMultiply6 "); // if so, overflow
asm("cmp r0, #0 "); // check for underflow
asm("orrgt r3, r3, r0, lsl #16 "); // if no underflow, result exponent into r3, ...
asm("movgt r12, #0 "); // ... return KErrNone ...
__JUMP(gt,lr);
// underflow
asm("and r3, r3, #1 "); // set exponent=0, keep sign
asm("mvn r12, #9 "); // return KErrUnderflow
__JUMP(,lr);
// come here if divisor is zero, dividend finite
asm("TRealXDivide3: ");
asm("cmp r3, #0x10000 "); // check if dividend also zero
asm("bcc TRealXRealIndefinite "); // if so, return 'real indefinite'
asm("orr r3, r3, #0xFF000000 "); // else return infinity with xor sign
asm("orr r3, r3, #0x00FF0000 ");
asm("mov r2, #0x80000000 ");
asm("mov r1, #0 ");
asm("mvn r12, #40 "); // return KErrDivideByZero
__JUMP(,lr);
// Dividend is NaN or infinity
asm("TRealXDivide1: ");
asm("cmp r2, #0x80000000 "); // check for infinity
asm("cmpeq r1, #0 ");
asm("bne TRealXBinOpNan "); // branch if NaN
asm("cmn r6, #0x10000 "); // check 2nd operand for NaN/infinity
asm("mvncc r12, #8 "); // if not, return KErrOverflow
__JUMP(cc,lr);
// Dividend=infinity, divisor=NaN or infinity
asm("cmp r5, #0x80000000 "); // check 2nd operand for infinity
asm("cmpeq r4, #0 ");
asm("bne TRealXBinOpNan "); // branch if NaN
asm("b TRealXRealIndefinite "); // else return 'real indefinite'
// Divisor is NaN or infinity, dividend finite
asm("TRealXDivide2: ");
asm("cmp r5, #0x80000000 "); // check for infinity
asm("cmpeq r4, #0 ");
asm("bne TRealXBinOpNan "); // branch if NaN
asm("and r3, r3, #1 "); // else return zero with xor sign
__JUMP(,lr);
asm("TRealXBinOpNan: "); // generic routine to process NaNs in binary
// operations
asm("cmn r3, #0x10000 "); // check if first operand is NaN
asm("movcc r0, r1 "); // if not, swap the operands
asm("movcc r1, r4 ");
asm("movcc r4, r0 ");
asm("movcc r0, r2 ");
asm("movcc r2, r5 ");
asm("movcc r5, r0 ");
asm("movcc r0, r3 ");
asm("movcc r3, r6 ");
asm("movcc r6, r0 ");
asm("cmn r6, #0x10000 "); // both operands NaNs?
asm("bcc TRealXBinOpNan1 "); // skip if not
asm("cmp r2, r5 "); // if so, compare the significands
asm("cmpeq r1, r4 ");
asm("movcc r1, r4 "); // r1,r2,r3 will get NaN with larger significand
asm("movcc r2, r5 ");
asm("movcc r3, r6 ");
asm("TRealXBinOpNan1: ");
asm("orr r2, r2, #0x40000000 "); // convert an SNaN to a QNaN
asm("mvn r12, #5 "); // return KErrArgument
__JUMP(,lr);
// Return 'real indefinite'
asm("TRealXRealIndefinite: ");
asm("ldr r3, __RealIndefiniteExponent ");
asm("mov r2, #0xC0000000 ");
asm("mov r1, #0 ");
asm("mvn r12, #5 "); // return KErrArgument
__JUMP(,lr);
// overflow
asm("TRealXMultiply6: ");
asm("bic r3, r3, #0x0000FF00 "); // clear rounding flags
asm("orr r3, r3, #0xFF000000 "); // make exponent FFFF for infinity
asm("orr r3, r3, #0x00FF0000 ");
asm("mov r2, #0x80000000 "); // mantissa = 80000000 00000000
asm("mov r1, #0 ");
asm("mvn r12, #8 "); // return KErrOverflow
__JUMP(,lr);
asm("__RealIndefiniteExponent: ");
asm(".word 0xFFFF0001 ");
asm("Divide__FR6TRealXRC6TRealX_end: ");
}
__NAKED__ TUint Divide_Length()
{
asm("adr r0, Divide__FR6TRealXRC6TRealX_end ");
asm("adr r1, Divide__FR6TRealXRC6TRealX ");
asm("sub r0, r0, r1 ");
__JUMP(,lr);
}
__NAKED__ TInt SDummy(TInt)
{
__JUMP(,lr);
asm("SDummy__Fi_end: ");
}
__NAKED__ TUint SDummy_Length()
{
asm("adr r0, SDummy__Fi_end ");
asm("adr r1, SDummy__Fi ");
asm("sub r0, r0, r1 ");
__JUMP(,lr);
}
__NAKED__ TInt Increment(TInt)
{
asm("add r0, r0, #1 ");
__JUMP(,lr);
asm("Increment__Fi_end: ");
}
__NAKED__ TUint Increment_Length()
{
asm("adr r0, Increment__Fi_end ");
asm("adr r1, Increment__Fi ");
asm("sub r0, r0, r1 ");
__JUMP(,lr);
}
#endif