kerneltest/e32test/mmu/t_imb.cia
author John Imhofe
Mon, 19 Oct 2009 15:55:17 +0100 (2009-10-19)
changeset 0 a41df078684a
permissions -rw-r--r--
Convert Kernelhwsrv package from SFL to EPL kernel\eka\compsupp is subject to the ARM EABI LICENSE userlibandfileserver\fatfilenameconversionplugins\unicodeTables is subject to the Unicode license kernel\eka\kernel\zlib is subject to the zlib license
// Copyright (c) 1995-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32test\mmu\t_imb.cia
// 
//

#include <e32test.h>
#include <u32std.h>
#include <e32math.h>

#ifdef __CPU_ARM
__NAKED__ TInt Sqrt(TReal& /*aDest*/, const TReal& /*aSrc*/)
	{
	// r0=address of aDest, r1=address of aSrc
	asm("stmfd sp!, {r4-r10,lr} ");
#ifdef __DOUBLE_WORDS_SWAPPED__
	asm("ldmia r1, {r3,r4} ");			// low mant into r4, sign:exp:high mant into r3
#else
	asm("ldr r3, [r1, #4] ");
	asm("ldr r4, [r1, #0] ");
#endif
	asm("bic r5, r3, #0xFF000000 ");
	asm("bic r5, r5, #0x00F00000 ");	// high word of mantissa into r5
	asm("mov r2, r3, lsr #20 ");
	asm("bics r2, r2, #0x800 ");		// exponent now in r2
	asm("beq fastsqrt1 ");				// branch if exponent zero (zero or denormal)
	asm("mov r6, #0xFF ");
	asm("orr r6, r6, #0x700 ");
	asm("cmp r2, r6 ");					// check for infinity or NaN
	asm("beq fastsqrt2 ");				// branch if infinity or NaN
	asm("movs r3, r3 ");				// test sign
	asm("bmi fastsqrtn ");				// branch if negative
	asm("sub r2, r2, #0xFF ");			// unbias the exponent
	asm("sub r2, r2, #0x300 ");			//
	asm("fastsqrtd1: ");
	asm("mov r1, #0x40000000 ");		// value for comparison
	asm("mov r3, #27 ");				// loop counter (number of bits/2)
	asm("movs r2, r2, asr #1 ");		// divide exponent by 2, LSB into CF
	asm("movcs r7, r5, lsl #11 ");		// mantissa into r6,r7 with MSB in MSB of r7
	asm("orrcs r7, r7, r4, lsr #21 ");
	asm("movcs r6, r4, lsl #11 ");
	asm("movcs r4, #0 ");				// r4, r5 will hold result mantissa
	asm("orrcs r7, r7, #0x80000000 ");	// if exponent odd, restore MSB of mantissa
	asm("movcc r7, r5, lsl #12 ");		// mantissa into r6,r7 with MSB in MSB of r7
	asm("orrcc r7, r7, r4, lsr #20 ");	// if exponent even, shift mantissa left an extra
	asm("movcc r6, r4, lsl #12 ");		// place, lose top bit, and
	asm("movcc r4, #1 ");				// set MSB of result, and
	asm("mov r5, #0 ");					// r4, r5 will hold result mantissa
	asm("mov r8, #0 ");					// r8, r9 will be comparison accumulator
	asm("mov r9, #0 ");
	asm("bcc fastsqrt4 ");				// if exponent even, calculate one less bit
										// as result MSB already known

	// Main mantissa square-root loop
	asm("fastsqrt3: ");					// START OF MAIN LOOP
	asm("subs r10, r7, r1 ");			// subtract result:01 from acc:mant
	asm("sbcs r12, r8, r4 ");			// result into r14:r12:r10
	asm("sbcs r14, r9, r5 ");
	asm("movcs r7, r10 ");				// if no borrow replace accumulator with result
	asm("movcs r8, r12 ");
	asm("movcs r9, r14 ");
	asm("adcs r4, r4, r4 ");			// shift result left one, putting in next bit
	asm("adcs r5, r5, r5 ");
	asm("mov r9, r9, lsl #2 ");			// shift acc:mant left by 2 bits
	asm("orr r9, r9, r8, lsr #30 ");
	asm("mov r8, r8, lsl #2 ");
	asm("orr r8, r8, r7, lsr #30 ");
	asm("mov r7, r7, lsl #2 ");
	asm("orr r7, r7, r6, lsr #30 ");
	asm("mov r6, r6, lsl #2 ");
	asm("fastsqrt4: ");					// Come in here if we need to do one less iteration
	asm("subs r10, r7, r1 ");			// subtract result:01 from acc:mant
	asm("sbcs r12, r8, r4 ");			// result into r14:r12:r10
	asm("sbcs r14, r9, r5 ");
	asm("movcs r7, r10 ");				// if no borrow replace accumulator with result
	asm("movcs r8, r12 ");
	asm("movcs r9, r14 ");
	asm("adcs r4, r4, r4 ");			// shift result left one, putting in next bit
	asm("adcs r5, r5, r5 ");
	asm("mov r9, r9, lsl #2 ");			// shift acc:mant left by 2 bits
	asm("orr r9, r9, r8, lsr #30 ");
	asm("mov r8, r8, lsl #2 ");
	asm("orr r8, r8, r7, lsr #30 ");
	asm("mov r7, r7, lsl #2 ");
	asm("orr r7, r7, r6, lsr #30 ");
	asm("mov r6, r6, lsl #2 ");
	asm("subs r3, r3, #1 ");			// decrement loop counter
	asm("bne fastsqrt3 ");				// do necessary number of iterations

	asm("movs r4, r4, lsr #1 ");		// shift result mantissa right 1 place
	asm("orr r4, r4, r5, lsl #31 ");	// LSB (=rounding bit) into carry
	asm("mov r5, r5, lsr #1 ");
	asm("adcs r4, r4, #0 ");			// round the mantissa to 53 bits
	asm("adcs r5, r5, #0 ");
	asm("cmp r5, #0x00200000 ");		// check for mantissa overflow
	asm("addeq r2, r2, #1 ");			// if so, increment exponent - can never overflow
	asm("bic r5, r5, #0x00300000 ");	// remove top bit of mantissa - it is implicit
	asm("add r2, r2, #0xFF ");			// re-bias the exponent
	asm("add r3, r2, #0x300 ");			// and move into r3
	asm("orr r3, r5, r3, lsl #20 ");	// r3 now contains exponent + top of mantissa
	asm("fastsqrt_ok: ");
#ifdef __DOUBLE_WORDS_SWAPPED__
	asm("stmia r0, {r3,r4} ");			// store the result
#else
	asm("str r3, [r0, #4] ");
	asm("str r4, [r0, #0] ");
#endif
	asm("mov r0, #0 ");					// error code KErrNone
	__POPRET("r4-r10,");

	asm("fastsqrt1: ");
	asm("orrs r6, r5, r4 ");			// exponent zero - test mantissa
	asm("beq fastsqrt_ok ");			// if zero, return 0

	asm("movs r3, r3 ");				// denormal - test sign
	asm("bmi fastsqrtn ");				// branch out if negative
	asm("sub r2, r2, #0xFE ");			// unbias the exponent
	asm("sub r2, r2, #0x300 ");			//
	asm("fastsqrtd: ");
	asm("adds r4, r4, r4 ");			// shift mantissa left
	asm("adcs r5, r5, r5 ");
	asm("sub r2, r2, #1 ");				// and decrement exponent
	asm("tst r5, #0x00100000 ");		// test if normalised
	asm("beq fastsqrtd ");				// loop until normalised
	asm("b fastsqrtd1 ");				// now treat as a normalised number
	asm("fastsqrt2: ");					// get here if infinity or NaN
	asm("orrs r6, r5, r4 ");			// if mantissa zero, infinity
	asm("bne fastsqrtnan ");			// branch if not - must be NaN
	asm("movs r3, r3 ");				// test sign of infinity
	asm("bmi fastsqrtn ");				// branch if -ve
#ifdef __DOUBLE_WORDS_SWAPPED__
	asm("stmia r0, {r3,r4} ");			// store the result
#else
	asm("str r3, [r0, #4] ");
	asm("str r4, [r0, #0] ");
#endif
	asm("mov r0, #-9 ");				// return KErrOverflow
	asm("b fastsqrt_end ");

	asm("fastsqrtn: ");					// get here if negative or QNaN operand
	asm("mov r3, #0xFF000000 ");		// generate "real indefinite" QNaN
	asm("orr r3, r3, #0x00F80000 ");	// sign=1, exp=7FF, mantissa = 1000...0
	asm("mov r4, #0 ");
	asm("fastsqrtxa: ");
#ifdef __DOUBLE_WORDS_SWAPPED__
	asm("stmia r0, {r3,r4} ");			// store the result
#else
	asm("str r3, [r0, #4] ");
	asm("str r4, [r0, #0] ");
#endif
	asm("mov r0, #-6 ");				// return KErrArgument
	asm("fastsqrt_end: ");
	__POPRET("r4-r10,");

	asm("fastsqrtnan: ");				// operand is a NaN
	asm("tst r5, #0x00080000 ");		// test MSB of mantissa
	asm("bne fastsqrtn ");				// if set it is a QNaN - so return "real indefinite"
	asm("bic r3, r3, #0x00080000 ");	// else convert SNaN to QNaN
	asm("b fastsqrtxa ");				// and return KErrArgument

	asm("Sqrt__FRdRCd_end: ");

	}

__NAKED__ TUint Sqrt_Length()
	{
	asm("adr r0, Sqrt__FRdRCd_end ");
	asm("adr r1, Sqrt__FRdRCd ");
	asm("sub r0, r0, r1 ");
	__JUMP(,lr);
	}

__NAKED__ TInt Divide(TRealX& /*aDividend*/, const TRealX& /*aDivisor*/)
	{
	asm("stmfd sp!, {r0,r4-r9,lr} ");
	asm("ldmia r1, {r4,r5,r6} ");
	asm("ldmia r0, {r1,r2,r3} ");
	asm("bl TRealXDivide ");
	asm("ldmfd sp!, {r0,r4-r9,lr} ");
	asm("stmia r0, {r1,r2,r3} ");
	asm("mov r0, r12 ");
	__JUMP(,lr);

	// TRealX division r1,r2,r3 / r4,r5,r6 result in r1,r2,r3
	// Error code returned in r12
	// Registers r0-r9,r12 modified
	// NB This function is purely internal to EUSER and therefore IS ONLY EVER CALLED IN ARM MODE.
	asm("TRealXDivide: ");
	asm("mov r12, #0 ");					// initialise return value to KErrNone
	asm("bic r3, r3, #0x300 ");				// clear rounding flags
	asm("tst r6, #1 ");
	asm("eorne r3, r3, #1 ");				// Exclusive-OR signs
	asm("cmn r3, #0x10000 ");				// check if dividend is NaN or infinity
	asm("bcs TRealXDivide1 ");				// branch if it is
	asm("cmn r6, #0x10000 ");				// check if divisor is NaN or infinity
	asm("bcs TRealXDivide2 ");				// branch if it is
	asm("cmp r6, #0x10000 ");				// check if divisor zero
	asm("bcc TRealXDivide3 ");				// branch if it is
	asm("cmp r3, #0x10000 ");				// check if dividend zero
	__JUMP(cc,lr);					// if zero, exit
	asm("tst r3, #1 ");
	asm("orrne lr, lr, #1 ");				// save sign in bottom bit of lr

	// calculate result exponent
	asm("mov r0, r3, lsr #16 ");			// r0=dividend exponent
	asm("sub r0, r0, r6, lsr #16 ");		// r0=dividend exponent - divisor exponent
	asm("add r0, r0, #0x7F00 ");
	asm("add r0, r0, #0x00FF ");			// r0 now contains result exponent
	asm("mov r6, r1 ");						// move dividend into r6,r7,r8
	asm("mov r7, r2 ");
	asm("mov r8, #0 ");						// use r8 to hold extra bit shifted up
											// r2:r1 will hold result mantissa
	asm("mov r2, #1 ");						// we will make sure first bit is 1
	asm("cmp r7, r5 ");						// compare dividend mantissa to divisor mantissa
	asm("cmpeq r6, r4 ");
	asm("bcs TRealXDivide4 ");				// branch if dividend >= divisor
	asm("adds r6, r6, r6 ");				// else shift dividend left one
	asm("adcs r7, r7, r7 ");				// ignore carry here
	asm("sub r0, r0, #1 ");					// decrement result exponent by one
	asm("TRealXDivide4: ");
	asm("subs r6, r6, r4 ");				// subtract divisor from dividend
	asm("sbcs r7, r7, r5 ");

	// Main mantissa division code
	// First calculate the top 32 bits of the result
	// Top bit is 1, do 10 lots of 3 bits the one more bit
	asm("mov r12, #10 ");
	asm("TRealXDivide5: ");
	asm("adds r6, r6, r6 ");				// shift accumulator left by one
	asm("adcs r7, r7, r7 ");
	asm("adcs r8, r8, r8 ");
	asm("subs r9, r6, r4 ");				// subtract divisor from accumulator, result in r9,r3
	asm("sbcs r3, r7, r5 ");
	asm("movccs r8, r8, lsr #1 ");			// if borrow, check for carry from shift
	asm("movcs r6, r9 ");					// if no borrow, replace accumulator with result
	asm("movcs r7, r3 ");
	asm("adcs r2, r2, r2 ");				// shift in new result bit
	asm("adds r6, r6, r6 ");				// shift accumulator left by one
	asm("adcs r7, r7, r7 ");
	asm("adcs r8, r8, r8 ");
	asm("subs r9, r6, r4 ");				// subtract divisor from accumulator, result in r9,r3
	asm("sbcs r3, r7, r5 ");
	asm("movccs r8, r8, lsr #1 ");			// if borrow, check for carry from shift
	asm("movcs r6, r9 ");					// if no borrow, replace accumulator with result
	asm("movcs r7, r3 ");
	asm("adcs r2, r2, r2 ");				// shift in new result bit
	asm("adds r6, r6, r6 ");				// shift accumulator left by one
	asm("adcs r7, r7, r7 ");
	asm("adcs r8, r8, r8 ");
	asm("subs r9, r6, r4 ");				// subtract divisor from accumulator, result in r9,r3
	asm("sbcs r3, r7, r5 ");
	asm("movccs r8, r8, lsr #1 ");			// if borrow, check for carry from shift
	asm("movcs r6, r9 ");					// if no borrow, replace accumulator with result
	asm("movcs r7, r3 ");
	asm("adcs r2, r2, r2 ");				// shift in new result bit
	asm("subs r12, r12, #1 ");
	asm("bne TRealXDivide5 ");				// iterate the loop
	asm("adds r6, r6, r6 ");				// shift accumulator left by one
	asm("adcs r7, r7, r7 ");
	asm("adcs r8, r8, r8 ");
	asm("subs r9, r6, r4 ");				// subtract divisor from accumulator, result in r9,r3
	asm("sbcs r3, r7, r5 ");
	asm("movccs r8, r8, lsr #1 ");			// if borrow, check for carry from shift
	asm("movcs r6, r9 ");					// if no borrow, replace accumulator with result
	asm("movcs r7, r3 ");
	asm("adcs r2, r2, r2 ");				// shift in new result bit - now have 32 bits

	// Now calculate the bottom 32 bits of the result
	// Do 8 lots of 4 bits
	asm("mov r12, #8 ");
	asm("TRealXDivide5a: ");
	asm("adds r6, r6, r6 ");				// shift accumulator left by one
	asm("adcs r7, r7, r7 ");
	asm("adcs r8, r8, r8 ");
	asm("subs r9, r6, r4 ");				// subtract divisor from accumulator, result in r9,r3
	asm("sbcs r3, r7, r5 ");
	asm("movccs r8, r8, lsr #1 ");			// if borrow, check for carry from shift
	asm("movcs r6, r9 ");					// if no borrow, replace accumulator with result
	asm("movcs r7, r3 ");
	asm("adcs r1, r1, r1 ");				// shift in new result bit
	asm("adds r6, r6, r6 ");				// shift accumulator left by one
	asm("adcs r7, r7, r7 ");
	asm("adcs r8, r8, r8 ");
	asm("subs r9, r6, r4 ");				// subtract divisor from accumulator, result in r9,r3
	asm("sbcs r3, r7, r5 ");
	asm("movccs r8, r8, lsr #1 ");			// if borrow, check for carry from shift
	asm("movcs r6, r9 ");					// if no borrow, replace accumulator with result
	asm("movcs r7, r3 ");
	asm("adcs r1, r1, r1 ");				// shift in new result bit
	asm("adds r6, r6, r6 ");				// shift accumulator left by one
	asm("adcs r7, r7, r7 ");
	asm("adcs r8, r8, r8 ");
	asm("subs r9, r6, r4 ");				// subtract divisor from accumulator, result in r9,r3
	asm("sbcs r3, r7, r5 ");
	asm("movccs r8, r8, lsr #1 ");			// if borrow, check for carry from shift
	asm("movcs r6, r9 ");					// if no borrow, replace accumulator with result
	asm("movcs r7, r3 ");
	asm("adcs r1, r1, r1 ");				// shift in new result bit
	asm("adds r6, r6, r6 ");				// shift accumulator left by one
	asm("adcs r7, r7, r7 ");
	asm("adcs r8, r8, r8 ");
	asm("subs r9, r6, r4 ");				// subtract divisor from accumulator, result in r9,r3
	asm("sbcs r3, r7, r5 ");
	asm("movccs r8, r8, lsr #1 ");			// if borrow, check for carry from shift
	asm("movcs r6, r9 ");					// if no borrow, replace accumulator with result
	asm("movcs r7, r3 ");
	asm("adcs r1, r1, r1 ");				// shift in new result bit
	asm("subs r12, r12, #1 ");
	asm("bne TRealXDivide5a ");				// iterate the loop

	// r2:r1 now contains a 64-bit normalised mantissa
	// need to do rounding now
	asm("and r3, lr, #1 ");					// result sign back into r3
	asm("orrs r9, r6, r7 ");				// check if accumulator zero
	asm("beq TRealXDivide6 ");				// if it is, result is exact, else generate next bit
	asm("adds r6, r6, r6 ");				// shift accumulator left by one
	asm("adcs r7, r7, r7 ");
	asm("adcs r8, r8, r8 ");
	asm("subs r6, r6, r4 ");				// subtract divisor from accumulator
	asm("sbcs r7, r7, r5 ");
	asm("movccs r8, r8, lsr #1 ");			// if borrow, check for carry from shift
	asm("orrcc r3, r3, #0x100 ");			// if borrow, round down and set round-down flag
	asm("bcc TRealXDivide6 ");
	asm("orrs r9, r6, r7 ");				// if no borrow, check if exactly half-way
	asm("moveqs r9, r1, lsr #1 ");			// if exactly half-way, round to even
	asm("orrcc r3, r3, #0x100 ");			// if C=0, round result down and set round-down flag
	asm("bcc TRealXDivide6 ");
	asm("orr r3, r3, #0x200 ");				// else set round-up flag
	asm("adds r1, r1, #1 ");				// and round mantissa up
	asm("adcs r2, r2, #0 ");
	asm("movcs r2, #0x80000000 ");			// if carry, mantissa = 80000000 00000000
	asm("addcs r0, r0, #1 ");				// and increment exponent

	// check for overflow or underflow and assemble final result
	asm("TRealXDivide6: ");
	asm("add r4, r0, #1 ");					// need to add 1 to get usable threshold
	asm("cmp r4, #0x10000 ");				// check if exponent >= 0xFFFF
	asm("bge TRealXMultiply6 ");			// if so, overflow
	asm("cmp r0, #0 ");						// check for underflow
	asm("orrgt r3, r3, r0, lsl #16 ");		// if no underflow, result exponent into r3, ...
	asm("movgt r12, #0 ");					// ... return KErrNone ...
	__JUMP(gt,lr);

	// underflow
	asm("and r3, r3, #1 ");					// set exponent=0, keep sign
	asm("mvn r12, #9 ");					// return KErrUnderflow
	__JUMP(,lr);

	// come here if divisor is zero, dividend finite
	asm("TRealXDivide3: ");
	asm("cmp r3, #0x10000 ");				// check if dividend also zero
	asm("bcc TRealXRealIndefinite ");		// if so, return 'real indefinite'
	asm("orr r3, r3, #0xFF000000 ");		// else return infinity with xor sign
	asm("orr r3, r3, #0x00FF0000 ");
	asm("mov r2, #0x80000000 ");
	asm("mov r1, #0 ");
	asm("mvn r12, #40 ");					// return KErrDivideByZero
	__JUMP(,lr);

	// Dividend is NaN or infinity
	asm("TRealXDivide1: ");
	asm("cmp r2, #0x80000000 ");			// check for infinity
	asm("cmpeq r1, #0 ");
	asm("bne TRealXBinOpNan ");				// branch if NaN
	asm("cmn r6, #0x10000 ");				// check 2nd operand for NaN/infinity
	asm("mvncc r12, #8 ");					// if not, return KErrOverflow
	__JUMP(cc,lr);

	// Dividend=infinity, divisor=NaN or infinity
	asm("cmp r5, #0x80000000 ");			// check 2nd operand for infinity
	asm("cmpeq r4, #0 ");
	asm("bne TRealXBinOpNan ");				// branch if NaN
	asm("b TRealXRealIndefinite ");			// else return 'real indefinite'

	// Divisor is NaN or infinity, dividend finite
	asm("TRealXDivide2: ");
	asm("cmp r5, #0x80000000 ");			// check for infinity
	asm("cmpeq r4, #0 ");
	asm("bne TRealXBinOpNan ");				// branch if NaN
	asm("and r3, r3, #1 ");					// else return zero with xor sign
	__JUMP(,lr);

	asm("TRealXBinOpNan: ");				// generic routine to process NaNs in binary
											// operations
	asm("cmn r3, #0x10000 ");				// check if first operand is NaN
	asm("movcc r0, r1 ");					// if not, swap the operands
	asm("movcc r1, r4 ");
	asm("movcc r4, r0 ");
	asm("movcc r0, r2 ");
	asm("movcc r2, r5 ");
	asm("movcc r5, r0 ");
	asm("movcc r0, r3 ");
	asm("movcc r3, r6 ");
	asm("movcc r6, r0 ");
	asm("cmn r6, #0x10000 ");				// both operands NaNs?
	asm("bcc TRealXBinOpNan1 ");			// skip if not
	asm("cmp r2, r5 ");						// if so, compare the significands
	asm("cmpeq r1, r4 ");
	asm("movcc r1, r4 ");					// r1,r2,r3 will get NaN with larger significand
	asm("movcc r2, r5 ");
	asm("movcc r3, r6 ");
	asm("TRealXBinOpNan1: ");
	asm("orr r2, r2, #0x40000000 ");		// convert an SNaN to a QNaN
	asm("mvn r12, #5 ");					// return KErrArgument
	__JUMP(,lr);

	// Return 'real indefinite'
	asm("TRealXRealIndefinite: ");
	asm("ldr r3, __RealIndefiniteExponent ");
	asm("mov r2, #0xC0000000 ");
	asm("mov r1, #0 ");
	asm("mvn r12, #5 ");					// return KErrArgument
	__JUMP(,lr);

	// overflow
	asm("TRealXMultiply6: ");
	asm("bic r3, r3, #0x0000FF00 ");		// clear rounding flags
	asm("orr r3, r3, #0xFF000000 ");		// make exponent FFFF for infinity
	asm("orr r3, r3, #0x00FF0000 ");
	asm("mov r2, #0x80000000 ");			// mantissa = 80000000 00000000
	asm("mov r1, #0 ");
	asm("mvn r12, #8 ");					// return KErrOverflow
	__JUMP(,lr);

	asm("__RealIndefiniteExponent: ");
	asm(".word 0xFFFF0001 ");

	asm("Divide__FR6TRealXRC6TRealX_end: ");
	}

__NAKED__ TUint Divide_Length()
	{
	asm("adr r0, Divide__FR6TRealXRC6TRealX_end ");
	asm("adr r1, Divide__FR6TRealXRC6TRealX ");
	asm("sub r0, r0, r1 ");
	__JUMP(,lr);
	}

__NAKED__ TInt SDummy(TInt)
	{
	__JUMP(,lr);
	asm("SDummy__Fi_end: ");
	}

__NAKED__ TUint SDummy_Length()
	{
	asm("adr r0, SDummy__Fi_end ");
	asm("adr r1, SDummy__Fi ");
	asm("sub r0, r0, r1 ");
	__JUMP(,lr);
	}

__NAKED__ TInt Increment(TInt)
	{
	asm("add r0, r0, #1 ");
	__JUMP(,lr);
	asm("Increment__Fi_end: ");
	}

__NAKED__ TUint Increment_Length()
	{
	asm("adr r0, Increment__Fi_end ");
	asm("adr r1, Increment__Fi ");
	asm("sub r0, r0, r1 ");
	__JUMP(,lr);
	}

#endif