Convert Kernelhwsrv package from SFL to EPL
kernel\eka\compsupp is subject to the ARM EABI LICENSE
userlibandfileserver\fatfilenameconversionplugins\unicodeTables is subject to the Unicode license
kernel\eka\kernel\zlib is subject to the zlib license
// Copyright (c) 2006-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32test\nkernsa\fastmutex.cpp
//
//
#include <nktest/nkutils.h>
const TInt KReadCount = 100000;
//const TInt KReadCount = 2000000;
#ifdef __CPU_ARM
const TUint32 KTickLimit = (KReadCount>100000) ? (((TUint32)KReadCount)/10*18) : 180000u;
#else
const TUint32 KTickLimit = (KReadCount>100000) ? (((TUint32)KReadCount)/10*6) : 60000u;
#endif
class NFastMutexX
{
public:
TInt iRefCount;
NFastMutex* iMutex;
public:
NFastMutexX();
~NFastMutexX();
void Create();
TBool Open();
TBool Close();
TBool Wait();
TBool Signal();
TBool WaitFull();
TBool SignalFull();
};
NFastMutexX::NFastMutexX()
: iRefCount(0), iMutex(0)
{}
void NFastMutexX::Create()
{
iMutex = new NFastMutex;
TEST_OOM(iMutex);
__e32_atomic_store_rel32(&iRefCount, 1);
}
NFastMutexX::~NFastMutexX()
{
TEST_RESULT2(iRefCount==0, "Bad mutex ref count %d %08x", iRefCount, this);
memset(this, 0xbf, sizeof(*this));
}
TBool NFastMutexX::Open()
{
return __e32_atomic_tas_ord32(&iRefCount, 1, 1, 0) > 0;
}
TBool NFastMutexX::Close()
{
TInt r = __e32_atomic_tas_ord32(&iRefCount, 1, -1, 0);
if (r==1)
{
memset(iMutex, 0xbf, sizeof(NFastMutex));
delete iMutex;
iMutex = 0;
}
return r==1;
}
TBool NFastMutexX::Wait()
{
if (Open())
{
NKern::FMWait(iMutex);
return TRUE;
}
return FALSE;
}
TBool NFastMutexX::Signal()
{
NKern::FMSignal(iMutex);
return Close();
}
TBool NFastMutexX::WaitFull()
{
if (Open())
{
FMWaitFull(iMutex);
return TRUE;
}
return FALSE;
}
TBool NFastMutexX::SignalFull()
{
FMSignalFull(iMutex);
return Close();
}
void FMTest0()
{
TEST_PRINT("Testing non-contention case");
NFastMutex m;
TEST_RESULT(!m.HeldByCurrentThread(), "Mutex held by current thread");
TEST_RESULT(!NKern::HeldFastMutex(), "Current thread holds a fast mutex");
NKern::FMWait(&m);
TEST_RESULT(m.HeldByCurrentThread(), "Mutex not held by current thread");
TEST_RESULT(NKern::HeldFastMutex()==&m, "HeldFastMutex() incorrect");
NKern::FMSignal(&m);
TEST_RESULT(!m.HeldByCurrentThread(), "Mutex held by current thread");
TEST_RESULT(!NKern::HeldFastMutex(), "Current thread holds a fast mutex");
}
struct SFMTest1Info
{
NFastMutex iMutex;
volatile TUint32* iBlock;
TInt iBlockSize; // words
TInt iPriorityThreshold;
volatile TBool iStop;
NThread* iThreads[3*KMaxCpus];
};
void FMTest1Thread(TAny* a)
{
SFMTest1Info& info = *(SFMTest1Info*)a;
NThread* pC = NKern::CurrentThread();
TUint32 seed[2] = {(TUint32)pC, 0};
TBool wait = (pC->iPriority > info.iPriorityThreshold);
TBool thread0 = (pC==info.iThreads[0]);
TInt n = 0;
while (!info.iStop)
{
if (thread0)
NKern::ThreadSetPriority(pC, 11);
NKern::FMWait(&info.iMutex);
TBool ok = verify_block((TUint32*)info.iBlock, info.iBlockSize);
TEST_RESULT(ok, "Block corrupt");
++info.iBlock[0];
setup_block((TUint32*)info.iBlock, info.iBlockSize);
++n;
NKern::FMSignal(&info.iMutex);
if (wait)
{
TUint32 x = random(seed) & 1;
NKern::Sleep(x+1);
}
}
TEST_PRINT2("Thread %T ran %d times", pC, n);
}
void FMTest1PInterfererThread(TAny* a)
{
SFMTest1Info& info = *(SFMTest1Info*)a;
NThread* pC = NKern::CurrentThread();
TEST_PRINT1("Thread %T start", pC);
TUint32 seed[2] = {(TUint32)pC, 0};
NThread* t0 = info.iThreads[0];
TInt n = 0;
while (!__e32_atomic_load_acq32(&info.iStop))
{
while (!__e32_atomic_load_acq32(&info.iStop) && t0->iPriority != 11)
__chill();
TUint32 x = random(seed) & 2047;
while(x)
{
__e32_atomic_add_ord32(&x, TUint32(-1));
}
if (__e32_atomic_load_acq32(&info.iStop))
break;
NKern::ThreadSetPriority(t0, 9);
++n;
}
TEST_PRINT2("Thread %T ran %d times", pC, n);
}
void FMTest1()
{
TEST_PRINT("Testing mutual exclusion");
NFastSemaphore exitSem(0);
SFMTest1Info* pI = new SFMTest1Info;
TEST_OOM(pI);
memclr(pI, sizeof(SFMTest1Info));
pI->iBlockSize = 256;
pI->iBlock = (TUint32*)malloc(pI->iBlockSize*sizeof(TUint32));
TEST_OOM(pI->iBlock);
pI->iPriorityThreshold = 10;
pI->iBlock[0] = 0;
setup_block((TUint32*)pI->iBlock, pI->iBlockSize);
pI->iStop = FALSE;
TInt cpu;
TInt threads = 0;
for_each_cpu(cpu)
{
CreateThreadSignalOnExit("FMTest1H", &FMTest1Thread, 11, pI, 0, KSmallTimeslice, &exitSem, cpu);
CreateThreadSignalOnExit("FMTest1L0", &FMTest1Thread, 10, pI, 0, KSmallTimeslice, &exitSem, cpu);
CreateThreadSignalOnExit("FMTest1L1", &FMTest1Thread, 10, pI, 0, KSmallTimeslice, &exitSem, cpu);
threads += 3;
}
FOREVER
{
NKern::Sleep(1000);
TEST_PRINT1("%d", pI->iBlock[0]);
if (pI->iBlock[0] > 65536)
{
pI->iStop = TRUE;
break;
}
}
while (threads--)
NKern::FSWait(&exitSem);
TEST_PRINT1("Total iterations %d", pI->iBlock[0]);
free((TAny*)pI->iBlock);
free(pI);
}
void FMTest1P()
{
TEST_PRINT("Testing priority change");
if (NKern::NumberOfCpus()==1)
return;
NFastSemaphore exitSem(0);
SFMTest1Info* pI = new SFMTest1Info;
TEST_OOM(pI);
memclr(pI, sizeof(SFMTest1Info));
TEST_PRINT1("Info@0x%08x", pI);
pI->iBlockSize = 256;
pI->iBlock = (TUint32*)malloc(pI->iBlockSize*sizeof(TUint32));
TEST_OOM(pI->iBlock);
pI->iPriorityThreshold = 9;
pI->iBlock[0] = 0;
setup_block((TUint32*)pI->iBlock, pI->iBlockSize);
pI->iStop = FALSE;
TInt cpu;
TInt threadCount = 0;
TInt pri = 9;
char name[16] = "FMTest1P.0";
for_each_cpu(cpu)
{
name[9] = (char)(threadCount + '0');
if (cpu==1)
pI->iThreads[threadCount] = CreateThreadSignalOnExit("FMTest1PInterferer", &FMTest1PInterfererThread, 12, pI, 0, KSmallTimeslice, &exitSem, 1);
else
pI->iThreads[threadCount] = CreateThreadSignalOnExit(name, &FMTest1Thread, pri, pI, 0, KSmallTimeslice, &exitSem, cpu);
pri = 10;
threadCount++;
}
TUint32 b0 = 0xffffffffu;
FOREVER
{
NKern::Sleep(1000);
TUint32 b = pI->iBlock[0];
TEST_PRINT1("%d", b);
if (b > 1048576)
{
pI->iStop = TRUE;
break;
}
if (b == b0)
{
__crash();
}
b0 = b;
}
while (threadCount--)
NKern::FSWait(&exitSem);
TEST_PRINT1("Total iterations %d", pI->iBlock[0]);
free((TAny*)pI->iBlock);
free(pI);
}
struct SFMTest2InfoC
{
NFastMutex iMutex;
TInt iMax;
TBool iStop;
};
struct SFMTest2InfoT
{
SFMTest2InfoC* iCommon;
TUint32 iMaxDelay;
TInt iIterations;
TUint32 iSpinTime;
TUint32 iBlockTimeMask;
TUint32 iBlockTimeOffset;
NThread* iThread;
union {
TUint8 iSpoiler;
TUint32 iDelayThreshold;
};
};
TBool StopTest = FALSE;
void FMTest2Thread(TAny* a)
{
SFMTest2InfoT& t = *(SFMTest2InfoT*)a;
SFMTest2InfoC& c = *t.iCommon;
NThreadBase* pC = NKern::CurrentThread();
TUint32 seed[2] = {(TUint32)pC, 0};
while (!c.iStop)
{
++t.iIterations;
if (t.iSpoiler)
{
nfcfspin(t.iSpinTime);
}
else
{
TUint32 initial = norm_fast_counter();
NKern::FMWait(&c.iMutex);
TUint32 final = norm_fast_counter();
TUint32 delay = final - initial;
if (delay > t.iMaxDelay)
{
t.iMaxDelay = delay;
__e32_atomic_add_ord32(&c.iMax, 1);
if (delay > t.iDelayThreshold)
__crash();
}
nfcfspin(t.iSpinTime);
NKern::FMSignal(&c.iMutex);
}
if (t.iBlockTimeMask)
{
TUint32 sleep = (random(seed) & t.iBlockTimeMask) + t.iBlockTimeOffset;
NKern::Sleep(sleep);
}
}
TEST_PRINT3("Thread %T %d iterations, max delay %d", pC, t.iIterations, t.iMaxDelay);
}
SFMTest2InfoT* CreateFMTest2Thread( const char* aName,
SFMTest2InfoC& aCommon,
TUint32 aSpinTime,
TUint32 aBlockTimeMask,
TUint32 aBlockTimeOffset,
TBool aSpoiler,
TInt aPri,
TInt aTimeslice,
NFastSemaphore& aExitSem,
TUint32 aCpu
)
{
SFMTest2InfoT* ti = new SFMTest2InfoT;
TEST_OOM(ti);
ti->iCommon = &aCommon;
ti->iMaxDelay = 0;
ti->iDelayThreshold = 0xffffffffu;
ti->iIterations = 0;
ti->iSpinTime = aSpinTime;
ti->iBlockTimeMask = aBlockTimeMask;
ti->iBlockTimeOffset = aBlockTimeOffset;
ti->iSpoiler = (TUint8)aSpoiler;
ti->iThread = 0;
NThread* t = CreateUnresumedThreadSignalOnExit(aName, &FMTest2Thread, aPri, ti, 0, aTimeslice, &aExitSem, aCpu);
ti->iThread = t;
DEBUGPRINT("Thread at %08x, Info at %08x", t, ti);
return ti;
}
extern void DebugPrint(const char*, int);
void FMTest2()
{
TEST_PRINT("Testing priority inheritance");
NFastSemaphore exitSem(0);
SFMTest2InfoC common;
common.iMax = 0;
common.iStop = FALSE;
TInt cpu;
TInt threads = 0;
SFMTest2InfoT* tinfo[32];
memset(tinfo, 0, sizeof(tinfo));
DEBUGPRINT("Common info at %08x", &common);
for_each_cpu(cpu)
{
tinfo[threads++] = CreateFMTest2Thread("FMTest2H", common, 500, 7, 7, FALSE, 60-cpu, KSmallTimeslice, exitSem, cpu);
tinfo[threads++] = CreateFMTest2Thread("FMTest2L", common, 500, 0, 0, FALSE, 11, KSmallTimeslice, exitSem, cpu);
tinfo[threads++] = CreateFMTest2Thread("FMTest2S", common, 10000, 15, 31, TRUE, 32, -1, exitSem, cpu);
}
tinfo[0]->iDelayThreshold = 0x300;
TInt max = 0;
TInt i;
TInt iter = 0;
for (i=0; i<threads; ++i)
{
NKern::ThreadResume(tinfo[i]->iThread);
}
FOREVER
{
NKern::Sleep(5000);
DebugPrint(".",1); // only print one char since interrupts are disabled for entire time
TInt max_now = common.iMax;
if (max_now==max)
{
if (++iter==20)
break;
}
else
{
iter = 0;
max = max_now;
}
}
common.iStop = TRUE;
for (i=0; i<threads; ++i)
NKern::FSWait(&exitSem);
DebugPrint("\r\n",2);
for (i=0; i<threads; ++i)
{
TEST_PRINT3("%d: Iter %10d Max %10d", i, tinfo[i]->iIterations, tinfo[i]->iMaxDelay);
if (i==0)
{
TEST_RESULT(tinfo[0]->iMaxDelay < 700, "Thread 0 MaxDelay too high");
}
else if (i==3)
{
TEST_RESULT(tinfo[3]->iMaxDelay < 1200, "Thread 1 MaxDelay too high");
}
}
for (i=0; i<threads; ++i)
delete tinfo[i];
}
struct SWriterInfo
{
void DoInOp(TUint aWhich);
void DoOutOp(TUint aWhich);
TUint32* iBuf[6];
TInt iWords;
volatile TUint32 iWrites;
volatile TUint32 iIn;
volatile TBool iStop;
NFastMutex* iM;
NFastMutexX* iMX;
TUint32 iInSeq; // do nibble 0 followed by nibble 1 followed by nibble 2
TUint32 iOutSeq; // 0=nothing, 1=mutex, 2=freeze, 3=CS, 4=mutex the long way
// 5 = mutexX, 6 = mutexX the long way, 7=join frozen group
// 8 = join mutex-holding group, 9=join idle group
TInt iFrz;
TInt iPriority;
TInt iTimeslice;
TInt iCpu;
NFastSemaphore iHandshake;
TUint64 iInitFastCounter;
TUint32 iFastCounterDelta;
NThread* volatile iIvThrd;
#ifdef __SMP__
NThreadGroup* iGroup;
#endif
};
void SWriterInfo::DoInOp(TUint aWhich)
{
switch ((iInSeq>>(aWhich*4))&0xf)
{
case 0: break;
case 1: NKern::FMWait(iM); break;
case 2: iFrz=NKern::FreezeCpu(); break;
case 3: NKern::ThreadEnterCS(); break;
case 4: FMWaitFull(iM); break;
case 5: iMX->Wait(); break;
case 6: iMX->WaitFull(); break;
#ifdef __SMP__
case 7:
case 8:
case 9: NKern::JoinGroup(iGroup); break;
#endif
}
}
void SWriterInfo::DoOutOp(TUint aWhich)
{
switch ((iOutSeq>>(aWhich*4))&0xf)
{
case 0: break;
case 1: NKern::FMSignal(iM); break;
case 2: NKern::EndFreezeCpu(iFrz); break;
case 3: NKern::ThreadLeaveCS(); break;
case 4: FMSignalFull(iM); break;
case 5: iMX->Signal(); break;
case 6: iMX->SignalFull(); break;
#ifdef __SMP__
case 7:
case 8:
case 9: NKern::LeaveGroup(); break;
#endif
}
}
struct SReaderInfo
{
enum TTestType
{
ETimeslice,
ESuspend,
EKill,
EMigrate,
EInterlockedSuspend,
EInterlockedKill,
EInterlockedMigrate,
EMutexLifetime,
};
TUint32* iBuf[6];
TInt iWords;
volatile TUint32 iReads;
volatile TUint32 iFails[7];
volatile TBool iStop;
TUint32 iReadLimit;
NThread* volatile iWriter;
NThread* volatile iReader;
NThread* volatile iIvThrd;
NThread* iGroupThrd;
SWriterInfo* iWriterInfo;
TInt iTestType;
NFastSemaphore iExitSem;
volatile TUint32 iCapturedIn;
volatile TBool iSuspendResult;
};
void WriterThread(TAny* a)
{
SWriterInfo& info = *(SWriterInfo*)a;
// TEST_PRINT(">WR");
while (!info.iStop)
{
NThread* t = (NThread*)__e32_atomic_swp_ord_ptr(&info.iIvThrd, 0);
if (t)
NKern::ThreadRequestSignal(t);
if (!info.iFastCounterDelta)
info.iInitFastCounter = fast_counter();
TInt n = ++info.iWrites;
info.DoInOp(0);
info.iBuf[0][0] = n;
setup_block_cpu(info.iBuf[0], info.iWords);
info.DoInOp(1);
info.iBuf[1][0] = n;
setup_block_cpu(info.iBuf[1], info.iWords);
info.DoInOp(2);
if (NKern::CurrentCpu() == info.iCpu)
++info.iIn;
info.iBuf[2][0] = n;
setup_block_cpu(info.iBuf[2], info.iWords);
info.DoOutOp(0);
info.iBuf[3][0] = n;
setup_block_cpu(info.iBuf[3], info.iWords);
info.DoOutOp(1);
info.iBuf[4][0] = n;
setup_block_cpu(info.iBuf[4], info.iWords);
info.DoOutOp(2);
info.iBuf[5][0] = n;
setup_block_cpu(info.iBuf[5], info.iWords);
if (!info.iFastCounterDelta)
info.iFastCounterDelta = (TUint32)(fast_counter() - info.iInitFastCounter);
if (NKern::CurrentCpu() != info.iCpu)
{
NKern::FSSignal(&info.iHandshake);
NKern::WaitForAnyRequest();
}
}
// TEST_PRINT("<WR");
}
void ReaderThread(TAny* a)
{
SReaderInfo& info = *(SReaderInfo*)a;
SWriterInfo& winfo = *info.iWriterInfo;
TInt this_cpu = NKern::CurrentCpu();
NThread* pC = NKern::CurrentThread();
info.iReader = pC;
// TInt my_pri = pC->i_NThread_BasePri;
TBool create_writer = TRUE;
NKern::FSSetOwner(&winfo.iHandshake, 0);
NFastSemaphore exitSem(0);
TUint32 seed[2] = {0,7};
TUint32 modulus = 0;
TUint32 offset = 0;
// TEST_PRINT1(">RD%d",info.iTestType);
while (!info.iStop)
{
TInt i;
if (create_writer)
goto do_create_writer;
if (info.iTestType==SReaderInfo::EMigrate || info.iTestType==SReaderInfo::EInterlockedMigrate)
{
NKern::FSWait(&winfo.iHandshake);
}
for (i=0; i<6; ++i)
{
TInt cpu = verify_block_cpu_no_trace(info.iBuf[i], info.iWords);
if (cpu<0)
++info.iFails[i];
}
++info.iReads;
switch (info.iTestType)
{
case SReaderInfo::ETimeslice:
NKern::ThreadSetTimeslice(info.iWriter, (random(seed) % modulus + offset) );
NKern::YieldTimeslice();
break;
case SReaderInfo::ESuspend:
winfo.iIvThrd = info.iIvThrd;
NKern::ThreadResume(info.iWriter);
break;
case SReaderInfo::EKill:
NKern::FSWait(&exitSem);
create_writer = TRUE;
break;
case SReaderInfo::EMigrate:
NKern::ThreadSetCpuAffinity(info.iWriter, this_cpu);
if (info.iGroupThrd)
NKern::ThreadSetCpuAffinity(info.iGroupThrd, this_cpu);
NKern::ThreadRequestSignal(info.iIvThrd);
NKern::ThreadRequestSignal(info.iWriter);
break;
case SReaderInfo::EInterlockedSuspend:
NKern::WaitForAnyRequest();
NKern::FMWait(winfo.iM);
if (winfo.iIn != info.iCapturedIn && info.iSuspendResult)
++info.iFails[6];
winfo.iIvThrd = info.iIvThrd;
NKern::ThreadResume(info.iWriter, winfo.iM);
break;
case SReaderInfo::EInterlockedKill:
NKern::WaitForAnyRequest();
NKern::FSWait(&exitSem);
if (winfo.iIn != info.iCapturedIn)
++info.iFails[6];
create_writer = TRUE;
break;
case SReaderInfo::EInterlockedMigrate:
NKern::WaitForAnyRequest();
if (winfo.iIn != info.iCapturedIn)
++info.iFails[6];
NKern::ThreadSetCpuAffinity(info.iWriter, this_cpu);
if (info.iGroupThrd)
NKern::ThreadSetCpuAffinity(info.iGroupThrd, this_cpu);
NKern::ThreadRequestSignal(info.iIvThrd);
NKern::ThreadRequestSignal(info.iWriter);
break;
}
do_create_writer:
if (create_writer)
{
create_writer = FALSE;
winfo.iCpu = this_cpu;
info.iWriter = CreateUnresumedThreadSignalOnExit("Writer", &WriterThread, winfo.iPriority, &winfo, 0, winfo.iTimeslice, &exitSem, this_cpu);
TEST_OOM(info.iWriter);
winfo.iIvThrd = info.iIvThrd;
NKern::ThreadResume(info.iWriter);
while (!winfo.iFastCounterDelta)
NKern::Sleep(1);
modulus = __fast_counter_to_timeslice_ticks(3*winfo.iFastCounterDelta);
// offset = __microseconds_to_timeslice_ticks(64);
offset = 1;
}
}
winfo.iStop = TRUE;
NKern::FSWait(&exitSem);
// TEST_PRINT1("<RD%d",info.iTestType);
}
void InterventionThread(TAny* a)
{
SReaderInfo& info = *(SReaderInfo*)a;
SWriterInfo& winfo = *info.iWriterInfo;
TInt this_cpu = NKern::CurrentCpu();
TUint32 seed[2] = {1,0};
while (!winfo.iFastCounterDelta)
NKern::Sleep(1);
TUint32 modulus = 3*winfo.iFastCounterDelta;
TUint32 offset = TUint32(fast_counter_freq() / TUint64(100000));
NThread* w = info.iWriter;
TUint32 lw = 0;
TUint32 tc = NKern::TickCount();
NKern::FSSetOwner(&info.iExitSem, 0);
TEST_PRINT3(">IV%d %d %d", info.iTestType, modulus, offset);
FOREVER
{
if (this_cpu == winfo.iCpu)
{
NKern::Sleep(1);
}
else
{
TUint32 count = random(seed) % modulus;
count += offset;
fcfspin(count);
}
if (info.iReads >= info.iReadLimit)
{
info.iStop = TRUE;
winfo.iStop = TRUE;
NKern::FSWait(&info.iExitSem);
break;
}
if (winfo.iWrites >= lw + 3*info.iReadLimit)
{
lw += 3*info.iReadLimit;
TEST_PRINT1("#W=%d",winfo.iWrites);
}
TUint32 tc2 = NKern::TickCount();
if ( (tc2 - (tc+KTickLimit)) < 0x80000000 )
{
tc = tc2;
TEST_PRINT1("##W=%d",winfo.iWrites);
DumpMemory("WriterThread", w, 0x400);
}
switch (info.iTestType)
{
case SReaderInfo::ETimeslice:
break;
case SReaderInfo::ESuspend:
NKern::ThreadSuspend(info.iWriter, 1);
NKern::WaitForAnyRequest();
break;
case SReaderInfo::EKill:
{
w = info.iWriter;
info.iWriter = 0;
NKern::ThreadKill(w);
NKern::WaitForAnyRequest();
break;
}
case SReaderInfo::EMigrate:
NKern::ThreadSetCpuAffinity(info.iWriter, this_cpu);
if (info.iGroupThrd)
NKern::ThreadSetCpuAffinity(info.iGroupThrd, this_cpu);
NKern::WaitForAnyRequest();
break;
case SReaderInfo::EInterlockedSuspend:
{
#if 0
extern TLinAddr __LastIrqRet;
extern TLinAddr __LastSSP;
extern TLinAddr __SSTop;
extern TUint32 __CaptureStack[1024];
extern TLinAddr __InterruptedThread;
extern TUint32 __CaptureThread[1024];
#endif
NKern::FMWait(winfo.iM);
info.iCapturedIn = winfo.iIn;
info.iSuspendResult = NKern::ThreadSuspend(info.iWriter, 1);
NKern::FMSignal(winfo.iM);
NKern::ThreadRequestSignal(info.iReader);
#if 0
NThread* pC = NKern::CurrentThread();
TUint32 tc0 = NKern::TickCount();
tc0+=1000;
FOREVER
{
TUint32 tc1 = NKern::TickCount();
if ((tc1-tc0)<0x80000000u)
{
DEBUGPRINT("__LastIrqRet = %08x", __LastIrqRet);
DEBUGPRINT("__LastSSP = %08x", __LastSSP);
DEBUGPRINT("__SSTop = %08x", __SSTop);
DumpMemory("WriterStack", __CaptureStack, __SSTop - __LastSSP);
DumpMemory("CaptureThread", __CaptureThread, sizeof(NThread));
DumpMemory("Writer", info.iWriter, sizeof(NThread));
DumpMemory("Reader", info.iReader, sizeof(NThread));
DumpMemory("SubSched0", &TheSubSchedulers[0], sizeof(TSubScheduler));
}
if (pC->iRequestSemaphore.iCount>0)
break;
}
#endif
NKern::WaitForAnyRequest();
break;
}
case SReaderInfo::EInterlockedKill:
{
NKern::FMWait(winfo.iM);
info.iCapturedIn = winfo.iIn;
w = info.iWriter;
info.iWriter = 0;
NKern::ThreadKill(w, winfo.iM);
NKern::ThreadRequestSignal(info.iReader);
NKern::WaitForAnyRequest();
break;
}
case SReaderInfo::EInterlockedMigrate:
NKern::FMWait(winfo.iM);
info.iCapturedIn = winfo.iIn;
NKern::ThreadSetCpuAffinity(info.iWriter, this_cpu);
if (info.iGroupThrd)
NKern::ThreadSetCpuAffinity(info.iGroupThrd, this_cpu);
NKern::FMSignal(winfo.iM);
NKern::ThreadRequestSignal(info.iReader);
NKern::WaitForAnyRequest();
break;
}
}
TEST_PRINT1("<IV%d",info.iTestType);
}
// State bits 0-7 show how many times timeslices are blocked
// State bits 8-15 show how many times suspend/kill are blocked
// State bits 16-23 show how many times migration is blocked
// State bit 24 set if in CS when fast mutex held
// State bit 25 set if CPU frozen when fast mutex held
TUint32 UpdateState(TUint32 aS, TUint32 aOp, TBool aOut)
{
TUint32 x = 0;
if (aS & 0xff00)
x |= 0x01000000;
if (aS & 0xff0000)
x |= 0x02000000;
if (aOut)
{
switch (aOp)
{
case 0:
case 9:
return aS;
case 2:
case 7:
case 8:
return aS-0x010000;
case 3:
return aS-0x000100;
case 1:
case 4:
return aS-0x010101;
}
}
else
{
switch (aOp)
{
case 0:
case 9:
return aS;
case 2:
case 7:
case 8:
return aS+0x010000;
case 3:
return aS+0x000100;
case 1:
case 4:
return (aS+0x010101)|x;
}
}
return aS;
}
void CheckResults(SReaderInfo& info)
{
SWriterInfo& winfo = *info.iWriterInfo;
TUint32 state[7];
char c[72];
memset(c, 32, sizeof(c)), c[71]=0;
state[0] = UpdateState(0, (winfo.iInSeq)&0xf, FALSE);
state[1] = UpdateState(state[0], (winfo.iInSeq>>4)&0xf, FALSE);
state[2] = UpdateState(state[1], (winfo.iInSeq>>8)&0xf, FALSE);
state[3] = UpdateState(state[2], (winfo.iOutSeq)&0xf, TRUE);
state[4] = UpdateState(state[3], (winfo.iOutSeq>>4)&0xf, TRUE);
state[5] = UpdateState(state[4], (winfo.iOutSeq>>8)&0xf, TRUE);
state[6] = (state[5] & 0xff000000) ^ 0x07000000;
TInt i;
for (i=0; i<6; ++i)
state[i] &= 0x00ffffff;
TEST_PRINT2("Reads %d Writes %d", info.iReads, winfo.iWrites);
for(i=0; i<6; ++i)
{
if (state[i] & 0xff00)
c[i*10] = 'S';
if (state[i] & 0xff0000)
c[i*10+1] = 'M';
if (state[i] & 0xff)
c[i*10+2] = 'T';
}
TEST_PRINT1("%s",c);
TEST_PRINT7("F0 %6d F1 %6d F2 %6d F3 %6d F4 %6d F5 %6d F6 %6d", info.iFails[0], info.iFails[1], info.iFails[2], info.iFails[3], info.iFails[4], info.iFails[5], info.iFails[6]);
memset(c, 32, sizeof(c)), c[71]=0;
TUint32 mask=0;
switch(info.iTestType)
{
case SReaderInfo::ETimeslice: mask = 0x040000ff; break;
case SReaderInfo::ESuspend: mask = 0x0400ff00; break;
case SReaderInfo::EKill: mask = 0x0400ff00; break;
case SReaderInfo::EMigrate: mask = 0x04ff0000; break;
case SReaderInfo::EInterlockedSuspend: mask = 0x0400ff00; break;
case SReaderInfo::EInterlockedKill: mask = 0x0100ff00; break;
case SReaderInfo::EInterlockedMigrate: mask = 0x02ff0000; break;
}
TUint32 limit = info.iReads/10;
TInt fail=0;
for(i=0; i<7; ++i)
{
TBool bad = FALSE;
if (state[i] & mask)
bad = (info.iFails[i] > 0);
else
bad = (info.iFails[i] < limit);
if (bad)
{
++fail;
char* p = c+i*10+3;
*p++ = '-';
*p++ = '-';
*p++ = '-';
*p++ = '-';
*p++ = '-';
*p++ = '-';
}
}
if (fail)
{
c[0] = 'E';
c[1] = 'R';
c[2] = 'R';
TEST_PRINT1("%s",c);
TEST_RESULT(0,"FAILED");
}
}
struct SGroupThreadInfo
{
TUint32 iInSeq;
TUint32 iRun;
};
void GroupThread(TAny* a)
{
SGroupThreadInfo& info = *(SGroupThreadInfo*)a;
TInt i, frz;
NFastMutex mutex;
for (i = 0; i<3; ++i)
{
// Find the first nibble that asks for a group option
// and do what it asks for.
switch ((info.iInSeq>>(i*4))&0xf)
{
case 7:
frz = NKern::FreezeCpu();
NKern::WaitForAnyRequest();
NKern::EndFreezeCpu(frz);
return;
case 8:
NKern::FMWait(&mutex);
while (__e32_atomic_load_acq32(&info.iRun))
nfcfspin(10);
NKern::FMSignal(&mutex);
return;
}
}
// We weren't needed, but we have to wait to die anyway to avoid lifetime issues
NKern::WaitForAnyRequest();
}
void DoRWTest(TInt aTestType, TUint32 aReadLimit, TUint32 aInSeq, TUint32 aOutSeq, TInt aRWCpu, TInt aICpu)
{
NFastMutex mutex;
SWriterInfo* winfo = new SWriterInfo;
TEST_OOM(winfo);
memclr(winfo, sizeof(SWriterInfo));
SReaderInfo* info = new SReaderInfo;
TEST_OOM(info);
memclr(info, sizeof(SReaderInfo));
SGroupThreadInfo* gtinfo = new SGroupThreadInfo;
TEST_OOM(gtinfo);
memclr(gtinfo, sizeof(SGroupThreadInfo));
TUint32 bufwords = 256;
TUint32* buf = (TUint32*)malloc(6 * bufwords * sizeof(TUint32));
TEST_OOM(buf);
memclr(buf, 6 * bufwords * sizeof(TUint32));
TInt i;
for (i=0; i<6; ++i)
{
info->iBuf[i] = buf + i * bufwords;
winfo->iBuf[i] = buf + i * bufwords;
}
winfo->iWords = bufwords;
winfo->iM = &mutex;
winfo->iInSeq = aInSeq;
winfo->iOutSeq = aOutSeq;
winfo->iPriority = 11;
winfo->iTimeslice = __microseconds_to_timeslice_ticks(10000);
winfo->iCpu = aRWCpu;
NFastSemaphore localExit(0);
#ifdef __SMP__
NThreadGroup group;
SNThreadGroupCreateInfo ginfo;
ginfo.iCpuAffinity = aRWCpu;
TInt r = NKern::GroupCreate(&group, ginfo);
TEST_RESULT(r==KErrNone, "");
winfo->iGroup = &group;
gtinfo->iRun = 1;
gtinfo->iInSeq = aInSeq;
NThread* groupThrd = CreateThreadSignalOnExit("GroupThrd", &GroupThread, 1, gtinfo, 0, KSmallTimeslice, &localExit, aRWCpu, &group);
TEST_OOM(groupThrd);
info->iGroupThrd = groupThrd;
NKern::Sleep(100);
#endif
info->iWords = bufwords;
info->iReadLimit = aReadLimit;
info->iWriterInfo = winfo;
info->iTestType = aTestType;
TInt rpri = (aTestType == SReaderInfo::ETimeslice) ? 11 : 10;
NThread* reader = CreateThreadSignalOnExit("Reader", &ReaderThread, rpri, info, 0, -1, &info->iExitSem, aRWCpu);
TEST_OOM(reader);
info->iReader = reader;
NKern::Sleep(10);
NThread* ivt = CreateThreadSignalOnExit("Intervention", &InterventionThread, 12, info, 0, KSmallTimeslice, &localExit, aICpu);
TEST_OOM(ivt);
info->iIvThrd = ivt;
NKern::FSWait(&localExit);
#ifdef __SMP__
NKern::ThreadRequestSignal(groupThrd);
#endif
__e32_atomic_store_rel32(>info->iRun, 0);
NKern::FSWait(&localExit);
#ifdef __SMP__
NKern::GroupDestroy(&group);
#endif
free(buf);
TEST_PRINT6("Type %d RL %d ISEQ %03x OSEQ %03x RWCPU %d ICPU %d", aTestType, aReadLimit, aInSeq, aOutSeq, aRWCpu, aICpu);
CheckResults(*info);
free(info);
free(winfo);
free(gtinfo);
}
void TestFastMutex()
{
TEST_PRINT("Testing Fast Mutexes...");
FMTest0();
FMTest1();
FMTest1P();
FMTest2();
}
void TestSuspendKillMigrate()
{
TEST_PRINT("Testing Suspend/Kill/Migrate...");
DoRWTest(SReaderInfo::ETimeslice, KReadCount, 0x000, 0x000, 0, 1);
DoRWTest(SReaderInfo::ETimeslice, KReadCount, 0x010, 0x100, 0, 1);
DoRWTest(SReaderInfo::ETimeslice, KReadCount, 0x040, 0x400, 0, 1);
DoRWTest(SReaderInfo::ETimeslice, KReadCount, 0x132, 0x231, 0, 1);
DoRWTest(SReaderInfo::ETimeslice, KReadCount, 0x432, 0x234, 0, 1);
DoRWTest(SReaderInfo::ETimeslice, KReadCount, 0x310, 0x310, 0, 1);
DoRWTest(SReaderInfo::ETimeslice, KReadCount, 0x340, 0x340, 0, 1);
DoRWTest(SReaderInfo::ESuspend, KReadCount, 0x000, 0x000, 0, 1);
DoRWTest(SReaderInfo::ESuspend, KReadCount, 0x010, 0x100, 0, 1);
DoRWTest(SReaderInfo::ESuspend, KReadCount, 0x040, 0x400, 0, 1);
DoRWTest(SReaderInfo::ESuspend, KReadCount, 0x132, 0x231, 0, 1);
DoRWTest(SReaderInfo::ESuspend, KReadCount, 0x432, 0x234, 0, 1);
DoRWTest(SReaderInfo::ESuspend, KReadCount, 0x310, 0x310, 0, 1);
DoRWTest(SReaderInfo::ESuspend, KReadCount, 0x340, 0x340, 0, 1);
DoRWTest(SReaderInfo::EKill, KReadCount, 0x000, 0x000, 0, 1);
DoRWTest(SReaderInfo::EKill, KReadCount, 0x010, 0x100, 0, 1);
DoRWTest(SReaderInfo::EKill, KReadCount, 0x040, 0x400, 0, 1);
DoRWTest(SReaderInfo::EKill, KReadCount, 0x132, 0x231, 0, 1);
DoRWTest(SReaderInfo::EKill, KReadCount, 0x432, 0x234, 0, 1);
DoRWTest(SReaderInfo::EKill, KReadCount, 0x310, 0x310, 0, 1);
DoRWTest(SReaderInfo::EKill, KReadCount, 0x340, 0x340, 0, 1);
DoRWTest(SReaderInfo::EMigrate, KReadCount, 0x000, 0x000, 0, 1);
DoRWTest(SReaderInfo::EMigrate, KReadCount, 0x132, 0x231, 0, 1);
DoRWTest(SReaderInfo::EMigrate, KReadCount, 0x432, 0x234, 0, 1);
DoRWTest(SReaderInfo::EMigrate, KReadCount, 0x020, 0x200, 0, 1);
DoRWTest(SReaderInfo::EMigrate, KReadCount, 0x010, 0x100, 0, 1);
DoRWTest(SReaderInfo::EMigrate, KReadCount, 0x040, 0x400, 0, 1);
DoRWTest(SReaderInfo::EMigrate, KReadCount, 0x030, 0x300, 0, 1);
DoRWTest(SReaderInfo::EInterlockedSuspend, KReadCount, 0x432, 0x234, 0, 1);
DoRWTest(SReaderInfo::EInterlockedSuspend, KReadCount, 0x040, 0x400, 0, 1);
DoRWTest(SReaderInfo::EInterlockedSuspend, KReadCount, 0x010, 0x100, 0, 1);
DoRWTest(SReaderInfo::EInterlockedSuspend, KReadCount, 0x340, 0x340, 0, 1);
DoRWTest(SReaderInfo::EInterlockedSuspend, KReadCount, 0x310, 0x310, 0, 1);
DoRWTest(SReaderInfo::EInterlockedSuspend, KReadCount, 0x132, 0x231, 0, 1);
DoRWTest(SReaderInfo::EInterlockedKill, KReadCount, 0x040, 0x400, 0, 1);
DoRWTest(SReaderInfo::EInterlockedKill, KReadCount, 0x010, 0x100, 0, 1);
DoRWTest(SReaderInfo::EInterlockedKill, KReadCount, 0x432, 0x234, 0, 1);
DoRWTest(SReaderInfo::EInterlockedKill, KReadCount, 0x340, 0x340, 0, 1);
DoRWTest(SReaderInfo::EInterlockedKill, KReadCount, 0x132, 0x231, 0, 1);
DoRWTest(SReaderInfo::EInterlockedKill, KReadCount, 0x310, 0x310, 0, 1);
DoRWTest(SReaderInfo::EInterlockedMigrate, KReadCount, 0x040, 0x400, 0, 1);
DoRWTest(SReaderInfo::EInterlockedMigrate, KReadCount, 0x010, 0x100, 0, 1);
DoRWTest(SReaderInfo::EInterlockedMigrate, KReadCount, 0x310, 0x310, 0, 1);
DoRWTest(SReaderInfo::EInterlockedMigrate, KReadCount, 0x340, 0x340, 0, 1);
DoRWTest(SReaderInfo::EInterlockedMigrate, KReadCount, 0x132, 0x231, 0, 1);
DoRWTest(SReaderInfo::EInterlockedMigrate, KReadCount, 0x432, 0x234, 0, 1);
DoRWTest(SReaderInfo::EInterlockedMigrate, KReadCount, 0x120, 0x210, 0, 1);
DoRWTest(SReaderInfo::EInterlockedMigrate, KReadCount, 0x420, 0x240, 0, 1);
#ifdef __SMP__
// Tests from above that involve freezing, except by joining a frozen group instead
DoRWTest(SReaderInfo::ETimeslice, KReadCount, 0x137, 0x731, 0, 1);
DoRWTest(SReaderInfo::ETimeslice, KReadCount, 0x437, 0x734, 0, 1);
DoRWTest(SReaderInfo::ESuspend, KReadCount, 0x137, 0x731, 0, 1);
DoRWTest(SReaderInfo::ESuspend, KReadCount, 0x437, 0x734, 0, 1);
DoRWTest(SReaderInfo::EKill, KReadCount, 0x137, 0x731, 0, 1);
DoRWTest(SReaderInfo::EKill, KReadCount, 0x437, 0x734, 0, 1);
DoRWTest(SReaderInfo::EMigrate, KReadCount, 0x137, 0x731, 0, 1);
DoRWTest(SReaderInfo::EMigrate, KReadCount, 0x437, 0x734, 0, 1);
DoRWTest(SReaderInfo::EMigrate, KReadCount, 0x070, 0x700, 0, 1);
DoRWTest(SReaderInfo::EInterlockedSuspend, KReadCount, 0x437, 0x734, 0, 1);
DoRWTest(SReaderInfo::EInterlockedSuspend, KReadCount, 0x137, 0x731, 0, 1);
DoRWTest(SReaderInfo::EInterlockedKill, KReadCount, 0x437, 0x734, 0, 1);
DoRWTest(SReaderInfo::EInterlockedKill, KReadCount, 0x137, 0x731, 0, 1);
DoRWTest(SReaderInfo::EInterlockedMigrate, KReadCount, 0x137, 0x731, 0, 1);
DoRWTest(SReaderInfo::EInterlockedMigrate, KReadCount, 0x437, 0x734, 0, 1);
DoRWTest(SReaderInfo::EInterlockedMigrate, KReadCount, 0x170, 0x710, 0, 1);
DoRWTest(SReaderInfo::EInterlockedMigrate, KReadCount, 0x470, 0x740, 0, 1);
// Tests from above that involve freezing, except by joining a group with a mutex-holder instead
DoRWTest(SReaderInfo::ETimeslice, KReadCount, 0x138, 0x831, 0, 1);
DoRWTest(SReaderInfo::ETimeslice, KReadCount, 0x438, 0x834, 0, 1);
DoRWTest(SReaderInfo::ESuspend, KReadCount, 0x138, 0x831, 0, 1);
DoRWTest(SReaderInfo::ESuspend, KReadCount, 0x438, 0x834, 0, 1);
DoRWTest(SReaderInfo::EKill, KReadCount, 0x138, 0x831, 0, 1);
DoRWTest(SReaderInfo::EKill, KReadCount, 0x438, 0x834, 0, 1);
DoRWTest(SReaderInfo::EMigrate, KReadCount, 0x138, 0x831, 0, 1);
DoRWTest(SReaderInfo::EMigrate, KReadCount, 0x438, 0x834, 0, 1);
DoRWTest(SReaderInfo::EMigrate, KReadCount, 0x080, 0x800, 0, 1);
DoRWTest(SReaderInfo::EInterlockedSuspend, KReadCount, 0x438, 0x834, 0, 1);
DoRWTest(SReaderInfo::EInterlockedSuspend, KReadCount, 0x138, 0x831, 0, 1);
DoRWTest(SReaderInfo::EInterlockedKill, KReadCount, 0x438, 0x834, 0, 1);
DoRWTest(SReaderInfo::EInterlockedKill, KReadCount, 0x138, 0x831, 0, 1);
DoRWTest(SReaderInfo::EInterlockedMigrate, KReadCount, 0x138, 0x831, 0, 1);
DoRWTest(SReaderInfo::EInterlockedMigrate, KReadCount, 0x438, 0x834, 0, 1);
DoRWTest(SReaderInfo::EInterlockedMigrate, KReadCount, 0x180, 0x810, 0, 1);
DoRWTest(SReaderInfo::EInterlockedMigrate, KReadCount, 0x480, 0x840, 0, 1);
// Tests from above that have a noop, except join a group that's doing nothing instead
// Most of these do "join group, other op, leave group, undo other op" - this is
// supposed to work, even though you can't *join* a group while frozen or holding a mutex
DoRWTest(SReaderInfo::ETimeslice, KReadCount, 0x090, 0x900, 0, 1);
DoRWTest(SReaderInfo::ETimeslice, KReadCount, 0x019, 0x190, 0, 1);
DoRWTest(SReaderInfo::ETimeslice, KReadCount, 0x049, 0x490, 0, 1);
DoRWTest(SReaderInfo::ETimeslice, KReadCount, 0x319, 0x319, 0, 1);
DoRWTest(SReaderInfo::ETimeslice, KReadCount, 0x349, 0x349, 0, 1);
DoRWTest(SReaderInfo::ESuspend, KReadCount, 0x090, 0x900, 0, 1);
DoRWTest(SReaderInfo::ESuspend, KReadCount, 0x019, 0x190, 0, 1);
DoRWTest(SReaderInfo::ESuspend, KReadCount, 0x049, 0x490, 0, 1);
DoRWTest(SReaderInfo::ESuspend, KReadCount, 0x319, 0x319, 0, 1);
DoRWTest(SReaderInfo::ESuspend, KReadCount, 0x349, 0x349, 0, 1);
DoRWTest(SReaderInfo::EKill, KReadCount, 0x090, 0x900, 0, 1);
DoRWTest(SReaderInfo::EKill, KReadCount, 0x019, 0x190, 0, 1);
DoRWTest(SReaderInfo::EKill, KReadCount, 0x049, 0x490, 0, 1);
DoRWTest(SReaderInfo::EKill, KReadCount, 0x319, 0x319, 0, 1);
DoRWTest(SReaderInfo::EKill, KReadCount, 0x349, 0x349, 0, 1);
DoRWTest(SReaderInfo::EMigrate, KReadCount, 0x090, 0x900, 0, 1);
DoRWTest(SReaderInfo::EMigrate, KReadCount, 0x029, 0x290, 0, 1);
DoRWTest(SReaderInfo::EMigrate, KReadCount, 0x019, 0x190, 0, 1);
DoRWTest(SReaderInfo::EMigrate, KReadCount, 0x049, 0x490, 0, 1);
DoRWTest(SReaderInfo::EMigrate, KReadCount, 0x039, 0x390, 0, 1);
DoRWTest(SReaderInfo::EInterlockedSuspend, KReadCount, 0x049, 0x490, 0, 1);
DoRWTest(SReaderInfo::EInterlockedSuspend, KReadCount, 0x019, 0x190, 0, 1);
DoRWTest(SReaderInfo::EInterlockedSuspend, KReadCount, 0x349, 0x349, 0, 1);
DoRWTest(SReaderInfo::EInterlockedSuspend, KReadCount, 0x319, 0x319, 0, 1);
DoRWTest(SReaderInfo::EInterlockedKill, KReadCount, 0x049, 0x490, 0, 1);
DoRWTest(SReaderInfo::EInterlockedKill, KReadCount, 0x019, 0x190, 0, 1);
DoRWTest(SReaderInfo::EInterlockedKill, KReadCount, 0x349, 0x349, 0, 1);
DoRWTest(SReaderInfo::EInterlockedKill, KReadCount, 0x319, 0x319, 0, 1);
DoRWTest(SReaderInfo::EInterlockedMigrate, KReadCount, 0x049, 0x490, 0, 1);
DoRWTest(SReaderInfo::EInterlockedMigrate, KReadCount, 0x019, 0x190, 0, 1);
DoRWTest(SReaderInfo::EInterlockedMigrate, KReadCount, 0x319, 0x319, 0, 1);
DoRWTest(SReaderInfo::EInterlockedMigrate, KReadCount, 0x349, 0x349, 0, 1);
DoRWTest(SReaderInfo::EInterlockedMigrate, KReadCount, 0x129, 0x219, 0, 1);
DoRWTest(SReaderInfo::EInterlockedMigrate, KReadCount, 0x429, 0x249, 0, 1);
// Test freezing or acquiring a mutex while in a group that also does one of those things
// and then leave the group.
DoRWTest(SReaderInfo::ETimeslice, KReadCount, 0x017, 0x170, 0, 1);
DoRWTest(SReaderInfo::ETimeslice, KReadCount, 0x018, 0x180, 0, 1);
DoRWTest(SReaderInfo::ETimeslice, KReadCount, 0x027, 0x270, 0, 1);
DoRWTest(SReaderInfo::ETimeslice, KReadCount, 0x028, 0x280, 0, 1);
DoRWTest(SReaderInfo::ESuspend, KReadCount, 0x017, 0x170, 0, 1);
DoRWTest(SReaderInfo::ESuspend, KReadCount, 0x018, 0x180, 0, 1);
DoRWTest(SReaderInfo::ESuspend, KReadCount, 0x027, 0x270, 0, 1);
DoRWTest(SReaderInfo::ESuspend, KReadCount, 0x028, 0x280, 0, 1);
DoRWTest(SReaderInfo::EKill, KReadCount, 0x017, 0x170, 0, 1);
DoRWTest(SReaderInfo::EKill, KReadCount, 0x018, 0x180, 0, 1);
DoRWTest(SReaderInfo::EKill, KReadCount, 0x027, 0x270, 0, 1);
DoRWTest(SReaderInfo::EKill, KReadCount, 0x028, 0x280, 0, 1);
DoRWTest(SReaderInfo::EMigrate, KReadCount, 0x017, 0x170, 0, 1);
DoRWTest(SReaderInfo::EMigrate, KReadCount, 0x018, 0x180, 0, 1);
DoRWTest(SReaderInfo::EMigrate, KReadCount, 0x027, 0x270, 0, 1);
DoRWTest(SReaderInfo::EMigrate, KReadCount, 0x028, 0x280, 0, 1);
DoRWTest(SReaderInfo::EInterlockedSuspend, KReadCount, 0x017, 0x170, 0, 1);
DoRWTest(SReaderInfo::EInterlockedSuspend, KReadCount, 0x018, 0x180, 0, 1);
DoRWTest(SReaderInfo::EInterlockedKill, KReadCount, 0x017, 0x170, 0, 1);
DoRWTest(SReaderInfo::EInterlockedKill, KReadCount, 0x018, 0x180, 0, 1);
DoRWTest(SReaderInfo::EInterlockedMigrate, KReadCount, 0x017, 0x170, 0, 1);
DoRWTest(SReaderInfo::EInterlockedMigrate, KReadCount, 0x018, 0x180, 0, 1);
#endif
}