Convert Kernelhwsrv package from SFL to EPL
kernel\eka\compsupp is subject to the ARM EABI LICENSE
userlibandfileserver\fatfilenameconversionplugins\unicodeTables is subject to the Unicode license
kernel\eka\kernel\zlib is subject to the zlib license
// Copyright (c) 2008-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32test\system\t_atomic.cpp
//
//
#define __E32TEST_EXTENSION__
#include <e32test.h>
#include <e32atomics.h>
#include <u32hal.h>
#include "u32std.h"
#include <e32svr.h>
#include <hal.h>
RTest test(_L("T_ATOMIC"));
#include "t_atomic.h"
#ifdef __EPOC32__
RTestAtomic DD;
#endif
extern "C" {
extern const char* FuncName[];
extern const PFV AtomicFuncPtr[];
extern const PFV ControlFuncPtr[];
extern const TUint FuncAttr[];
}
class TestOverflowTruncate2 : public TDes16Overflow
{
public:
virtual void Overflow(TDes16 &aDes);
};
void TestOverflowTruncate2::Overflow(TDes16& /*aDes*/)
{
}
void UPrintf(const char* aFmt, ...)
{
// Print to a console screen.
TestOverflowTruncate2 overflow;
VA_LIST list;
VA_START(list, aFmt);
TBuf8<256> fmtBuf8((const TUint8*)aFmt);
TBuf<256> buf;
buf.AppendFormatList(fmtBuf8.Expand(), list, &overflow);
test.Printf(_L("%S\n"),&buf);
}
/******************************************************************************
* Single thread normal operation tests
******************************************************************************/
template<class T>
struct TD
{
T i0;
T i1;
T i2;
T i3;
TInt iF;
TInt iPadding;
};
struct TDG : public TDGBase
{
void Set(const TD<TUint8> aTD8, TInt aOrd);
void Set(const TD<TUint16> aTD16, TInt aOrd);
void Set(const TD<TUint32> aTD32, TInt aOrd);
void Set(const TD<TUint64> aTD64, TInt aOrd);
TInt ExecuteUser();
TInt ExecuteKernel();
};
TInt GetAtomicFuncIndex(TInt aFunc, TInt aSize, TInt aOrd)
{
test_NotNegative(aFunc);
test_Compare(aFunc,<,EAtomicFuncN);
test_NotNegative(aOrd);
test_Compare(aOrd,<,4);
aFunc *= 4;
switch(aSize)
{
case 1: break;
case 2: aFunc += INDEXES_PER_SIZE; break;
case 4: aFunc += 2*INDEXES_PER_SIZE; break;
case 8: aFunc += 3*INDEXES_PER_SIZE; break;
default: test_Equal(8,aSize); break;
}
aFunc += aOrd;
if (AtomicFuncPtr[aFunc])
return aFunc;
return -1;
}
void TDG::Set(const TD<TUint8> aTD8, TInt aOrd)
{
i0 = aTD8.i0;
i1 = aTD8.i1;
i2 = aTD8.i2;
i3 = aTD8.i3;
iIndex = GetAtomicFuncIndex(aTD8.iF, 1, aOrd);
#ifdef __EXTRA_DEBUG__
DEBUGPRINT(" 8: iF=%2d aOrd=%1d -> %d", aTD8.iF, aOrd, iIndex);
#endif
}
void TDG::Set(const TD<TUint16> aTD16, TInt aOrd)
{
i0 = aTD16.i0;
i1 = aTD16.i1;
i2 = aTD16.i2;
i3 = aTD16.i3;
iIndex = GetAtomicFuncIndex(aTD16.iF, 2, aOrd);
#ifdef __EXTRA_DEBUG__
DEBUGPRINT("16: iF=%2d aOrd=%1d -> %d", aTD16.iF, aOrd, iIndex);
#endif
}
void TDG::Set(const TD<TUint32> aTD32, TInt aOrd)
{
i0 = aTD32.i0;
i1 = aTD32.i1;
i2 = aTD32.i2;
i3 = aTD32.i3;
iIndex = GetAtomicFuncIndex(aTD32.iF, 4, aOrd);
#ifdef __EXTRA_DEBUG__
DEBUGPRINT("32: iF=%2d aOrd=%1d -> %d", aTD32.iF, aOrd, iIndex);
#endif
}
void TDG::Set(const TD<TUint64> aTD64, TInt aOrd)
{
i0 = aTD64.i0;
i1 = aTD64.i1;
i2 = aTD64.i2;
i3 = aTD64.i3;
iIndex = GetAtomicFuncIndex(aTD64.iF, 8, aOrd);
#ifdef __EXTRA_DEBUG__
DEBUGPRINT("64: iF=%2d aOrd=%1d -> %d", aTD64.iF, aOrd, iIndex);
#endif
}
TInt TDG::ExecuteUser()
{
return Execute();
}
#ifdef __EPOC32__
TInt TDG::ExecuteKernel()
{
return DD.TDGExecuteK(*this);
}
#endif
#define DCL_TEST_BLOCK(type,name) \
static const TD<type> name[] =
#define DCL_TEST1(type,func,a0) \
{ (type)(a0), (type)(0), (type)(0), (type)(0), (EAtomicFunc##func), 0 }
#define DCL_TEST2(type,func,a0,a1) \
{ (type)(a0), (type)(a1), (type)(0), (type)(0), (EAtomicFunc##func), 0 }
#define DCL_TEST3(type,func,a0,a1,a2) \
{ (type)(a0), (type)(a1), (type)(a2), (type)(0), (EAtomicFunc##func), 0 }
#define DCL_TEST4(type,func,a0,a1,a2,a3) \
{ (type)(a0), (type)(a1), (type)(a2), (type)(a3), (EAtomicFunc##func), 0 }
DCL_TEST_BLOCK(TUint8,TestData8)
{
DCL_TEST1(TUint8, LOAD, 0x00),
DCL_TEST1(TUint8, LOAD, 0xFF),
DCL_TEST2(TUint8, STORE, 0xBB, 0x00),
DCL_TEST2(TUint8, STORE, 0xBB, 0xFF),
DCL_TEST2(TUint8, SWP, 0xBB, 0x00),
DCL_TEST2(TUint8, SWP, 0xBB, 0xFF),
DCL_TEST2(TUint8, SWP, 0x55, 0x00),
DCL_TEST2(TUint8, SWP, 0x55, 0xFF),
DCL_TEST2(TUint8, ADD, 0x00, 0x01),
DCL_TEST2(TUint8, ADD, 0xFF, 0x01),
DCL_TEST2(TUint8, ADD, 0xFE, 0x01),
DCL_TEST2(TUint8, ADD, 0xFE, 0x02),
DCL_TEST2(TUint8, ADD, 0xFE, 0x03),
DCL_TEST2(TUint8, ADD, 0x12, 0x23),
DCL_TEST2(TUint8, AND, 0x00, 0x01),
DCL_TEST2(TUint8, AND, 0xFF, 0x01),
DCL_TEST2(TUint8, AND, 0xFE, 0x01),
DCL_TEST2(TUint8, AND, 0xFE, 0xFF),
DCL_TEST2(TUint8, AND, 0xFE, 0x03),
DCL_TEST2(TUint8, AND, 0x5F, 0xAF),
DCL_TEST2(TUint8, IOR, 0x00, 0x01),
DCL_TEST2(TUint8, IOR, 0xFF, 0x01),
DCL_TEST2(TUint8, IOR, 0xFE, 0x01),
DCL_TEST2(TUint8, IOR, 0x0D, 0x5F),
DCL_TEST2(TUint8, IOR, 0x30, 0x03),
DCL_TEST2(TUint8, IOR, 0x5F, 0xAF),
DCL_TEST2(TUint8, XOR, 0x00, 0x01),
DCL_TEST2(TUint8, XOR, 0xFF, 0x01),
DCL_TEST2(TUint8, XOR, 0xFE, 0x01),
DCL_TEST2(TUint8, XOR, 0xFE, 0xFF),
DCL_TEST2(TUint8, XOR, 0xFE, 0x03),
DCL_TEST2(TUint8, XOR, 0x5F, 0xAF),
DCL_TEST3(TUint8, AXO, 0x00, 0xFF, 0x00),
DCL_TEST3(TUint8, AXO, 0x00, 0xFF, 0x33),
DCL_TEST3(TUint8, AXO, 0x00, 0xFF, 0x7D),
DCL_TEST3(TUint8, AXO, 0x00, 0xFF, 0xBB),
DCL_TEST3(TUint8, AXO, 0xAA, 0x00, 0x00),
DCL_TEST3(TUint8, AXO, 0xAA, 0x00, 0x33),
DCL_TEST3(TUint8, AXO, 0xAA, 0x00, 0x7D),
DCL_TEST3(TUint8, AXO, 0xAA, 0x00, 0xBB),
DCL_TEST3(TUint8, AXO, 0xAA, 0x33, 0xF0),
DCL_TEST3(TUint8, AXO, 0xAA, 0x33, 0x0F),
DCL_TEST3(TUint8, AXO, 0xAA, 0xCC, 0xF0),
DCL_TEST3(TUint8, AXO, 0xAA, 0xCC, 0x0F),
DCL_TEST3(TUint8, CAS, 0x00, 0xFF, 0xEE),
DCL_TEST3(TUint8, CAS, 0x00, 0x01, 0x11),
DCL_TEST3(TUint8, CAS, 0x00, 0x00, 0xEE),
DCL_TEST3(TUint8, CAS, 0x00, 0x00, 0x23),
DCL_TEST3(TUint8, CAS, 0x2A, 0xFF, 0x2B),
DCL_TEST3(TUint8, CAS, 0x2A, 0x01, 0x2B),
DCL_TEST3(TUint8, CAS, 0x2A, 0x2A, 0x2B),
DCL_TEST3(TUint8, CAS, 0x2A, 0x2A, 0x3B),
DCL_TEST4(TUint8, TAU, 0x00, 0x00, 0x02, 0x03),
DCL_TEST4(TUint8, TAU, 0x01, 0x00, 0x02, 0x03),
DCL_TEST4(TUint8, TAU, 0xFF, 0x00, 0x02, 0x03),
DCL_TEST4(TUint8, TAU, 0x00, 0x01, 0x02, 0x03),
DCL_TEST4(TUint8, TAU, 0x01, 0x01, 0x02, 0x03),
DCL_TEST4(TUint8, TAU, 0x02, 0x01, 0x02, 0x03),
DCL_TEST4(TUint8, TAU, 0xFF, 0x01, 0x02, 0x03),
DCL_TEST4(TUint8, TAU, 0xFE, 0xFE, 0x23, 0x0B),
DCL_TEST4(TUint8, TAU, 0xEE, 0xFE, 0x23, 0x0B),
DCL_TEST4(TUint8, TAU, 0xFF, 0xFE, 0x23, 0x0B),
DCL_TEST4(TUint8, TAU, 0x00, 0xFE, 0x23, 0x0B),
DCL_TEST4(TUint8, TAU, 0xFE, 0xFE, 0x80, 0x7F),
DCL_TEST4(TUint8, TAU, 0xEE, 0xFE, 0x80, 0x7F),
DCL_TEST4(TUint8, TAU, 0xFF, 0xFE, 0x80, 0x7F),
DCL_TEST4(TUint8, TAU, 0x00, 0xFE, 0x80, 0x7F),
DCL_TEST4(TUint8, TAU, 0xFE, 0x80, 0x81, 0x7E),
DCL_TEST4(TUint8, TAU, 0x7F, 0x80, 0x81, 0x7E),
DCL_TEST4(TUint8, TAU, 0x80, 0x80, 0x81, 0x7E),
DCL_TEST4(TUint8, TAU, 0x81, 0x80, 0x81, 0x7E),
DCL_TEST4(TUint8, TAU, 0x00, 0x80, 0x81, 0x7E),
DCL_TEST4(TUint8, TAU, 0x7E, 0x7F, 0x81, 0x7E),
DCL_TEST4(TUint8, TAU, 0x7F, 0x7F, 0x81, 0x7E),
DCL_TEST4(TUint8, TAU, 0x80, 0x7F, 0x81, 0x7E),
DCL_TEST4(TUint8, TAU, 0x81, 0x7F, 0x81, 0x7E),
DCL_TEST4(TUint8, TAU, 0x00, 0x7F, 0x81, 0x7E),
DCL_TEST4(TUint8, TAS, 0x00, 0x00, 0x02, 0x03),
DCL_TEST4(TUint8, TAS, 0x01, 0x00, 0x02, 0x03),
DCL_TEST4(TUint8, TAS, 0xFF, 0x00, 0x02, 0x03),
DCL_TEST4(TUint8, TAS, 0x00, 0x01, 0x02, 0x03),
DCL_TEST4(TUint8, TAS, 0x01, 0x01, 0x02, 0x03),
DCL_TEST4(TUint8, TAS, 0x02, 0x01, 0x02, 0x03),
DCL_TEST4(TUint8, TAS, 0xFF, 0x01, 0x02, 0x03),
DCL_TEST4(TUint8, TAS, 0xFE, 0xFE, 0x23, 0x0B),
DCL_TEST4(TUint8, TAS, 0xEE, 0xFE, 0x23, 0x0B),
DCL_TEST4(TUint8, TAS, 0xFF, 0xFE, 0x23, 0x0B),
DCL_TEST4(TUint8, TAS, 0x00, 0xFE, 0x23, 0x0B),
DCL_TEST4(TUint8, TAS, 0xFE, 0xFE, 0x80, 0x7F),
DCL_TEST4(TUint8, TAS, 0xEE, 0xFE, 0x80, 0x7F),
DCL_TEST4(TUint8, TAS, 0xFF, 0xFE, 0x80, 0x7F),
DCL_TEST4(TUint8, TAS, 0x00, 0xFE, 0x80, 0x7F),
DCL_TEST4(TUint8, TAS, 0xFE, 0x80, 0x81, 0x7E),
DCL_TEST4(TUint8, TAS, 0x7F, 0x80, 0x81, 0x7E),
DCL_TEST4(TUint8, TAS, 0x80, 0x80, 0x81, 0x7E),
DCL_TEST4(TUint8, TAS, 0x81, 0x80, 0x81, 0x7E),
DCL_TEST4(TUint8, TAS, 0x00, 0x80, 0x81, 0x7E),
DCL_TEST4(TUint8, TAS, 0x7E, 0x7F, 0x81, 0x7E),
DCL_TEST4(TUint8, TAS, 0x7F, 0x7F, 0x81, 0x7E),
DCL_TEST4(TUint8, TAS, 0x80, 0x7F, 0x81, 0x7E),
DCL_TEST4(TUint8, TAS, 0x81, 0x7F, 0x81, 0x7E),
DCL_TEST4(TUint8, TAS, 0x00, 0x7F, 0x81, 0x7E)
};
DCL_TEST_BLOCK(TUint16,TestData16)
{
DCL_TEST1(TUint16, LOAD, 0x0055),
DCL_TEST1(TUint16, LOAD, 0xFFAA),
DCL_TEST2(TUint16, STORE, 0xBBBB, 0x0055),
DCL_TEST2(TUint16, STORE, 0xBBBB, 0xFFAA),
DCL_TEST2(TUint16, SWP, 0xBBCC, 0x0055),
DCL_TEST2(TUint16, SWP, 0xBBCC, 0xFFAA),
DCL_TEST2(TUint16, SWP, 0x55AA, 0x0033),
DCL_TEST2(TUint16, SWP, 0x55AA, 0xFFCC),
DCL_TEST2(TUint16, ADD, 0x0000, 0x0001),
DCL_TEST2(TUint16, ADD, 0xFFFF, 0x0001),
DCL_TEST2(TUint16, ADD, 0xFFFE, 0x0001),
DCL_TEST2(TUint16, ADD, 0xFFFE, 0x0002),
DCL_TEST2(TUint16, ADD, 0xFFFE, 0x0003),
DCL_TEST2(TUint16, ADD, 0x0012, 0x0023),
DCL_TEST2(TUint16, ADD, 0x0012, 0xBCFF),
DCL_TEST2(TUint16, AND, 0x0000, 0x0001),
DCL_TEST2(TUint16, AND, 0xFFFF, 0x0001),
DCL_TEST2(TUint16, AND, 0xFFFE, 0x0001),
DCL_TEST2(TUint16, AND, 0xFFFE, 0xFFFF),
DCL_TEST2(TUint16, AND, 0xFFFE, 0x0F03),
DCL_TEST2(TUint16, AND, 0xBC5F, 0x14AF),
DCL_TEST2(TUint16, IOR, 0x0000, 0x0001),
DCL_TEST2(TUint16, IOR, 0xFFFF, 0x0001),
DCL_TEST2(TUint16, IOR, 0xFFFE, 0x0001),
DCL_TEST2(TUint16, IOR, 0x000D, 0x005F),
DCL_TEST2(TUint16, IOR, 0x8030, 0x0803),
DCL_TEST2(TUint16, IOR, 0x145F, 0x56AF),
DCL_TEST2(TUint16, XOR, 0x0000, 0x0001),
DCL_TEST2(TUint16, XOR, 0xFFFF, 0x0001),
DCL_TEST2(TUint16, XOR, 0xFFFE, 0x0001),
DCL_TEST2(TUint16, XOR, 0xFFFE, 0xFFFF),
DCL_TEST2(TUint16, XOR, 0xFFFE, 0x0003),
DCL_TEST2(TUint16, XOR, 0x145F, 0xBCAF),
DCL_TEST3(TUint16, AXO, 0x0000, 0xFFFF, 0x0000),
DCL_TEST3(TUint16, AXO, 0x0000, 0xFFFF, 0x6633),
DCL_TEST3(TUint16, AXO, 0x0000, 0xFFFF, 0x827D),
DCL_TEST3(TUint16, AXO, 0x0000, 0xFFFF, 0xCCBB),
DCL_TEST3(TUint16, AXO, 0xAAAA, 0x0000, 0x0000),
DCL_TEST3(TUint16, AXO, 0xAAAA, 0x0000, 0x6633),
DCL_TEST3(TUint16, AXO, 0xAAAA, 0x0000, 0x827D),
DCL_TEST3(TUint16, AXO, 0xAAAA, 0x0000, 0xCCBB),
DCL_TEST3(TUint16, AXO, 0xAAAA, 0xCC33, 0x0FF0),
DCL_TEST3(TUint16, AXO, 0xAAAA, 0xCC33, 0xF00F),
DCL_TEST3(TUint16, AXO, 0xAAAA, 0x33CC, 0x0FF0),
DCL_TEST3(TUint16, AXO, 0xAAAA, 0x33CC, 0xF00F),
DCL_TEST3(TUint16, CAS, 0x0000, 0x00FF, 0x99EE),
DCL_TEST3(TUint16, CAS, 0x0000, 0x0001, 0x7711),
DCL_TEST3(TUint16, CAS, 0x0000, 0x0000, 0x99EE),
DCL_TEST3(TUint16, CAS, 0x0000, 0x0000, 0x1123),
DCL_TEST3(TUint16, CAS, 0x832A, 0xFFFF, 0x832B),
DCL_TEST3(TUint16, CAS, 0x832A, 0x0001, 0x832B),
DCL_TEST3(TUint16, CAS, 0x832A, 0x822A, 0x832B),
DCL_TEST3(TUint16, CAS, 0x832A, 0x832B, 0x943B),
DCL_TEST3(TUint16, CAS, 0x832A, 0x832A, 0x832B),
DCL_TEST3(TUint16, CAS, 0x832A, 0x832A, 0x943B),
DCL_TEST4(TUint16, TAU, 0x0000, 0x0000, 0x0002, 0x0003),
DCL_TEST4(TUint16, TAU, 0x0001, 0x0000, 0x0002, 0x0003),
DCL_TEST4(TUint16, TAU, 0xFFFF, 0x0000, 0x0002, 0x0003),
DCL_TEST4(TUint16, TAU, 0x0000, 0x0001, 0x0002, 0x0003),
DCL_TEST4(TUint16, TAU, 0x0001, 0x0001, 0x0002, 0x0003),
DCL_TEST4(TUint16, TAU, 0x0002, 0x0001, 0x0002, 0x0003),
DCL_TEST4(TUint16, TAU, 0xFFFF, 0x0001, 0x0002, 0x0003),
DCL_TEST4(TUint16, TAU, 0xFFFE, 0xFFFE, 0x1023, 0x000B),
DCL_TEST4(TUint16, TAU, 0xFFEE, 0xFFFE, 0x1423, 0x000B),
DCL_TEST4(TUint16, TAU, 0xFFFF, 0xFFFE, 0x1423, 0x000B),
DCL_TEST4(TUint16, TAU, 0x0000, 0xFFFE, 0x1423, 0x000B),
DCL_TEST4(TUint16, TAU, 0xFFFE, 0xFFFE, 0x8000, 0x7FFF),
DCL_TEST4(TUint16, TAU, 0xFFEE, 0xFFFE, 0x8000, 0x7FFF),
DCL_TEST4(TUint16, TAU, 0xFFFF, 0xFFFE, 0x8000, 0x7FFF),
DCL_TEST4(TUint16, TAU, 0x0000, 0xFFFE, 0x8000, 0x7FFF),
DCL_TEST4(TUint16, TAU, 0xFFFE, 0x8000, 0x8001, 0x7FFE),
DCL_TEST4(TUint16, TAU, 0x7FFF, 0x8000, 0x8001, 0x7FFE),
DCL_TEST4(TUint16, TAU, 0x8000, 0x8000, 0x8001, 0x7FFE),
DCL_TEST4(TUint16, TAU, 0x8001, 0x8000, 0x8001, 0x7FFE),
DCL_TEST4(TUint16, TAU, 0x0000, 0x8000, 0x8001, 0x7FFE),
DCL_TEST4(TUint16, TAU, 0x7FFE, 0x7FFF, 0x8001, 0x7FFE),
DCL_TEST4(TUint16, TAU, 0x7FFF, 0x7FFF, 0x8001, 0x7FFE),
DCL_TEST4(TUint16, TAU, 0x8000, 0x7FFF, 0x8001, 0x7FFE),
DCL_TEST4(TUint16, TAU, 0x8001, 0x7FFF, 0x8001, 0x7FFE),
DCL_TEST4(TUint16, TAU, 0x0000, 0x7FFF, 0x8001, 0x7FFE),
DCL_TEST4(TUint16, TAS, 0x0000, 0x0000, 0x0002, 0x0003),
DCL_TEST4(TUint16, TAS, 0x0001, 0x0000, 0x0002, 0x0003),
DCL_TEST4(TUint16, TAS, 0xFFFF, 0x0000, 0x0002, 0x0003),
DCL_TEST4(TUint16, TAS, 0x0000, 0x0001, 0x0002, 0x0003),
DCL_TEST4(TUint16, TAS, 0x0001, 0x0001, 0x0002, 0x0003),
DCL_TEST4(TUint16, TAS, 0x0002, 0x0001, 0x0002, 0x0003),
DCL_TEST4(TUint16, TAS, 0xFFFF, 0x0001, 0x0002, 0x0003),
DCL_TEST4(TUint16, TAS, 0xFFFE, 0xFFFE, 0x1023, 0x000B),
DCL_TEST4(TUint16, TAS, 0xFFEE, 0xFFFE, 0x1423, 0x000B),
DCL_TEST4(TUint16, TAS, 0xFFFF, 0xFFFE, 0x1423, 0x000B),
DCL_TEST4(TUint16, TAS, 0x0000, 0xFFFE, 0x1423, 0x000B),
DCL_TEST4(TUint16, TAS, 0xFFFE, 0xFFFE, 0x8000, 0x7FFF),
DCL_TEST4(TUint16, TAS, 0xFFEE, 0xFFFE, 0x8000, 0x7FFF),
DCL_TEST4(TUint16, TAS, 0xFFFF, 0xFFFE, 0x8000, 0x7FFF),
DCL_TEST4(TUint16, TAS, 0x0000, 0xFFFE, 0x8000, 0x7FFF),
DCL_TEST4(TUint16, TAS, 0xFFFE, 0x8000, 0x8001, 0x7FFE),
DCL_TEST4(TUint16, TAS, 0x7FFF, 0x8000, 0x8001, 0x7FFE),
DCL_TEST4(TUint16, TAS, 0x8000, 0x8000, 0x8001, 0x7FFE),
DCL_TEST4(TUint16, TAS, 0x8001, 0x8000, 0x8001, 0x7FFE),
DCL_TEST4(TUint16, TAS, 0x0000, 0x8000, 0x8001, 0x7FFE),
DCL_TEST4(TUint16, TAS, 0x7FFE, 0x7FFF, 0x8001, 0x7FFE),
DCL_TEST4(TUint16, TAS, 0x7FFF, 0x7FFF, 0x8001, 0x7FFE),
DCL_TEST4(TUint16, TAS, 0x8000, 0x7FFF, 0x8001, 0x7FFE),
DCL_TEST4(TUint16, TAS, 0x8001, 0x7FFF, 0x8001, 0x7FFE),
DCL_TEST4(TUint16, TAS, 0x0000, 0x7FFF, 0x8001, 0x7FFE)
};
DCL_TEST_BLOCK(TUint32,TestData32)
{
DCL_TEST1(TUint32, LOAD, 0x00334455),
DCL_TEST1(TUint32, LOAD, 0xFFCCBBAA),
DCL_TEST2(TUint32, STORE, 0xBBBBBBBB, 0x00334455),
DCL_TEST2(TUint32, STORE, 0xBBBBBBBB, 0xFFCCBBAA),
DCL_TEST2(TUint32, SWP, 0xBB1234CC, 0x00EDCB55),
DCL_TEST2(TUint32, SWP, 0xBB1234CC, 0xFF9876AA),
DCL_TEST2(TUint32, SWP, 0x551971AA, 0x00112233),
DCL_TEST2(TUint32, SWP, 0x551971AA, 0xFFEEDDCC),
DCL_TEST2(TUint32, ADD, 0x00000000, 0x00000001),
DCL_TEST2(TUint32, ADD, 0xFFFFFFFF, 0x00000001),
DCL_TEST2(TUint32, ADD, 0xFFFFFFFE, 0x00000001),
DCL_TEST2(TUint32, ADD, 0xFFFFFFFE, 0x00000002),
DCL_TEST2(TUint32, ADD, 0xFFFFFFFE, 0x00000003),
DCL_TEST2(TUint32, ADD, 0x00009912, 0x00000023),
DCL_TEST2(TUint32, ADD, 0x00009912, 0x4937BCFF),
DCL_TEST2(TUint32, AND, 0x00000000, 0x00000001),
DCL_TEST2(TUint32, AND, 0xFFFFFFFF, 0x00000001),
DCL_TEST2(TUint32, AND, 0xFFFFFFFE, 0x00000001),
DCL_TEST2(TUint32, AND, 0xFFFFFFFE, 0xFFFFFFFF),
DCL_TEST2(TUint32, AND, 0xFFFFFFFE, 0x00000F03),
DCL_TEST2(TUint32, AND, 0xEDCBBC5F, 0xDCBA14AF),
DCL_TEST2(TUint32, IOR, 0x00000000, 0x00000001),
DCL_TEST2(TUint32, IOR, 0xFFFFFFFF, 0x00000001),
DCL_TEST2(TUint32, IOR, 0xFFFFFFFE, 0x00000001),
DCL_TEST2(TUint32, IOR, 0x0000000D, 0x0000005F),
DCL_TEST2(TUint32, IOR, 0x80000030, 0x00000803),
DCL_TEST2(TUint32, IOR, 0x89AB145F, 0x415256AF),
DCL_TEST2(TUint32, XOR, 0x00000000, 0x00000001),
DCL_TEST2(TUint32, XOR, 0xFFFFFFFF, 0x00000001),
DCL_TEST2(TUint32, XOR, 0xFFFFFFFE, 0x00000001),
DCL_TEST2(TUint32, XOR, 0xFFFFFFFE, 0xFFFFFFFF),
DCL_TEST2(TUint32, XOR, 0xFFFFFFFE, 0x00000003),
DCL_TEST2(TUint32, XOR, 0x89AB145F, 0x4152BCAF),
DCL_TEST3(TUint32, AXO, 0x00000000, 0xFFFFFFFF, 0x00000000),
DCL_TEST3(TUint32, AXO, 0x00000000, 0xFFFFFFFF, 0x99CC6633),
DCL_TEST3(TUint32, AXO, 0x00000000, 0xFFFFFFFF, 0x8000027D),
DCL_TEST3(TUint32, AXO, 0x00000000, 0xFFFFFFFF, 0xEEDDCCBB),
DCL_TEST3(TUint32, AXO, 0xAAAAAAAA, 0x00000000, 0x00000000),
DCL_TEST3(TUint32, AXO, 0xAAAAAAAA, 0x00000000, 0x99CC6633),
DCL_TEST3(TUint32, AXO, 0xAAAAAAAA, 0x00000000, 0x8000027D),
DCL_TEST3(TUint32, AXO, 0xAAAAAAAA, 0x00000000, 0xEEDDCCBB),
DCL_TEST3(TUint32, AXO, 0xAAAAAAAA, 0x9966CC33, 0x0FF00FF0),
DCL_TEST3(TUint32, AXO, 0xAAAAAAAA, 0x9966CC33, 0xF00FF00F),
DCL_TEST3(TUint32, AXO, 0xAAAAAAAA, 0x669933CC, 0x0FF00FF0),
DCL_TEST3(TUint32, AXO, 0xAAAAAAAA, 0x669933CC, 0xF00FF00F),
DCL_TEST3(TUint32, CAS, 0x00000000, 0x000000FF, 0x99ABCDEE),
DCL_TEST3(TUint32, CAS, 0x00000000, 0x00000001, 0x7FFFF711),
DCL_TEST3(TUint32, CAS, 0x00000000, 0x00000000, 0x99ABCDEE),
DCL_TEST3(TUint32, CAS, 0x00000000, 0x00000000, 0x11234567),
DCL_TEST3(TUint32, CAS, 0x8000032A, 0xFFFFFFFF, 0x8000032B),
DCL_TEST3(TUint32, CAS, 0x8000032A, 0x00000001, 0x8000032B),
DCL_TEST3(TUint32, CAS, 0x8000032A, 0x8000022A, 0x8000032B),
DCL_TEST3(TUint32, CAS, 0x8000032A, 0x8000032B, 0x943BFCD1),
DCL_TEST3(TUint32, CAS, 0x8000032A, 0x8000032A, 0x8000032B),
DCL_TEST3(TUint32, CAS, 0x8000032A, 0x8000032A, 0x943BFCD1),
DCL_TEST4(TUint32, TAU, 0x00000000, 0x00000000, 0x00000002, 0x00000003),
DCL_TEST4(TUint32, TAU, 0x00000001, 0x00000000, 0x00000002, 0x00000003),
DCL_TEST4(TUint32, TAU, 0xFFFFFFFF, 0x00000000, 0x00000002, 0x00000003),
DCL_TEST4(TUint32, TAU, 0x00000000, 0x00000001, 0x00000002, 0x00000003),
DCL_TEST4(TUint32, TAU, 0x00000001, 0x00000001, 0x00000002, 0x00000003),
DCL_TEST4(TUint32, TAU, 0x00000002, 0x00000001, 0x00000002, 0x00000003),
DCL_TEST4(TUint32, TAU, 0xFFFFFFFF, 0x00000001, 0x00000002, 0x00000003),
DCL_TEST4(TUint32, TAU, 0xFFFFFFFE, 0xFFFFFFFE, 0x1023144F, 0x0000000B),
DCL_TEST4(TUint32, TAU, 0xFFFFFFEE, 0xFFFFFFFE, 0x1423144F, 0x0000000B),
DCL_TEST4(TUint32, TAU, 0xFFFFFFFF, 0xFFFFFFFE, 0x1423144F, 0x0000000B),
DCL_TEST4(TUint32, TAU, 0x00000000, 0xFFFFFFFE, 0x1423144F, 0x0000000B),
DCL_TEST4(TUint32, TAU, 0xFFFFFFFE, 0xFFFFFFFE, 0x80000000, 0x7FFFFFFF),
DCL_TEST4(TUint32, TAU, 0xFFFFFFEE, 0xFFFFFFFE, 0x80000000, 0x7FFFFFFF),
DCL_TEST4(TUint32, TAU, 0xFFFFFFFF, 0xFFFFFFFE, 0x80000000, 0x7FFFFFFF),
DCL_TEST4(TUint32, TAU, 0x00000000, 0xFFFFFFFE, 0x80000000, 0x7FFFFFFF),
DCL_TEST4(TUint32, TAU, 0xFFFFFFFE, 0x80000000, 0x80000001, 0x7FFFFFFE),
DCL_TEST4(TUint32, TAU, 0x7FFFFFFF, 0x80000000, 0x80000001, 0x7FFFFFFE),
DCL_TEST4(TUint32, TAU, 0x80000000, 0x80000000, 0x80000001, 0x7FFFFFFE),
DCL_TEST4(TUint32, TAU, 0x80000001, 0x80000000, 0x80000001, 0x7FFFFFFE),
DCL_TEST4(TUint32, TAU, 0x00000000, 0x80000000, 0x80000001, 0x7FFFFFFE),
DCL_TEST4(TUint32, TAU, 0x7FFFFFFE, 0x7FFFFFFF, 0x80000001, 0x7FFFFFFE),
DCL_TEST4(TUint32, TAU, 0x7FFFFFFF, 0x7FFFFFFF, 0x80000001, 0x7FFFFFFE),
DCL_TEST4(TUint32, TAU, 0x80000000, 0x7FFFFFFF, 0x80000001, 0x7FFFFFFE),
DCL_TEST4(TUint32, TAU, 0x80000001, 0x7FFFFFFF, 0x80000001, 0x7FFFFFFE),
DCL_TEST4(TUint32, TAU, 0x00000000, 0x7FFFFFFF, 0x80000001, 0x7FFFFFFE),
DCL_TEST4(TUint32, TAS, 0x00000000, 0x00000000, 0x00000002, 0x00000003),
DCL_TEST4(TUint32, TAS, 0x00000001, 0x00000000, 0x00000002, 0x00000003),
DCL_TEST4(TUint32, TAS, 0xFFFFFFFF, 0x00000000, 0x00000002, 0x00000003),
DCL_TEST4(TUint32, TAS, 0x00000000, 0x00000001, 0x00000002, 0x00000003),
DCL_TEST4(TUint32, TAS, 0x00000001, 0x00000001, 0x00000002, 0x00000003),
DCL_TEST4(TUint32, TAS, 0x00000002, 0x00000001, 0x00000002, 0x00000003),
DCL_TEST4(TUint32, TAS, 0xFFFFFFFF, 0x00000001, 0x00000002, 0x00000003),
DCL_TEST4(TUint32, TAS, 0xFFFFFFFE, 0xFFFFFFFE, 0x1023144F, 0x0000000B),
DCL_TEST4(TUint32, TAS, 0xFFFFFFEE, 0xFFFFFFFE, 0x1423144F, 0x0000000B),
DCL_TEST4(TUint32, TAS, 0xFFFFFFFF, 0xFFFFFFFE, 0x1423144F, 0x0000000B),
DCL_TEST4(TUint32, TAS, 0x00000000, 0xFFFFFFFE, 0x1423144F, 0x0000000B),
DCL_TEST4(TUint32, TAS, 0xFFFFFFFE, 0xFFFFFFFE, 0x80000000, 0x7FFFFFFF),
DCL_TEST4(TUint32, TAS, 0xFFFFFFEE, 0xFFFFFFFE, 0x80000000, 0x7FFFFFFF),
DCL_TEST4(TUint32, TAS, 0xFFFFFFFF, 0xFFFFFFFE, 0x80000000, 0x7FFFFFFF),
DCL_TEST4(TUint32, TAS, 0x00000000, 0xFFFFFFFE, 0x80000000, 0x7FFFFFFF),
DCL_TEST4(TUint32, TAS, 0xFFFFFFFE, 0x80000000, 0x80000001, 0x7FFFFFFE),
DCL_TEST4(TUint32, TAS, 0x7FFFFFFF, 0x80000000, 0x80000001, 0x7FFFFFFE),
DCL_TEST4(TUint32, TAS, 0x80000000, 0x80000000, 0x80000001, 0x7FFFFFFE),
DCL_TEST4(TUint32, TAS, 0x80000001, 0x80000000, 0x80000001, 0x7FFFFFFE),
DCL_TEST4(TUint32, TAS, 0x00000000, 0x80000000, 0x80000001, 0x7FFFFFFE),
DCL_TEST4(TUint32, TAS, 0x7FFFFFFE, 0x7FFFFFFF, 0x80000001, 0x7FFFFFFE),
DCL_TEST4(TUint32, TAS, 0x7FFFFFFF, 0x7FFFFFFF, 0x80000001, 0x7FFFFFFE),
DCL_TEST4(TUint32, TAS, 0x80000000, 0x7FFFFFFF, 0x80000001, 0x7FFFFFFE),
DCL_TEST4(TUint32, TAS, 0x80000001, 0x7FFFFFFF, 0x80000001, 0x7FFFFFFE),
DCL_TEST4(TUint32, TAS, 0x00000000, 0x7FFFFFFF, 0x80000001, 0x7FFFFFFE)
};
DCL_TEST_BLOCK(TUint64,TestData64)
{
DCL_TEST1(TUint64, LOAD, MAKE_TUINT64(0x00000000,0x00000000)),
DCL_TEST1(TUint64, LOAD, MAKE_TUINT64(0xFEDCBA98,0x76543210)),
DCL_TEST2(TUint64, STORE, MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0xFCD1CC9F,0xDB27CC8B)),
DCL_TEST2(TUint64, STORE, MAKE_TUINT64(0xFEDCBA98,0x76543210), MAKE_TUINT64(0x06931471,0x80559945)),
DCL_TEST2(TUint64, SWP, MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0xFCD1CC9F,0xDB27CC8B)),
DCL_TEST2(TUint64, SWP, MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xFCD1CC9F,0xDB27CC8B)),
DCL_TEST2(TUint64, SWP, MAKE_TUINT64(0xDEADBEEF,0xBAD0BEEF), MAKE_TUINT64(0x06931471,0x80559945)),
DCL_TEST2(TUint64, SWP, MAKE_TUINT64(0xFEDCBA98,0x76543210), MAKE_TUINT64(0x06931471,0x80559945)),
DCL_TEST2(TUint64, ADD, MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0x00000000,0x00000001)),
DCL_TEST2(TUint64, ADD, MAKE_TUINT64(0x00000000,0xFFFFFFFF), MAKE_TUINT64(0x00000000,0x00000001)),
DCL_TEST2(TUint64, ADD, MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0xFCD1CC9F,0xDB27CC8B)),
DCL_TEST2(TUint64, ADD, MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xFCD1CC9F,0xDB27CC8B)),
DCL_TEST2(TUint64, AND, MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0x00000000,0x00000001)),
DCL_TEST2(TUint64, AND, MAKE_TUINT64(0x00000000,0xFFFFFFFF), MAKE_TUINT64(0x00000000,0x00000001)),
DCL_TEST2(TUint64, AND, MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0xFCD1CC9F,0xDB27CC8B)),
DCL_TEST2(TUint64, AND, MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xFCD1CC9F,0xDB27CC8B)),
DCL_TEST2(TUint64, IOR, MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0x00000000,0x00000001)),
DCL_TEST2(TUint64, IOR, MAKE_TUINT64(0x00000000,0xFFFFFFFF), MAKE_TUINT64(0x00000000,0x00000001)),
DCL_TEST2(TUint64, IOR, MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0xFCD1CC9F,0xDB27CC8B)),
DCL_TEST2(TUint64, IOR, MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xFCD1CC9F,0xDB27CC8B)),
DCL_TEST2(TUint64, IOR, MAKE_TUINT64(0x11111111,0x22222222), MAKE_TUINT64(0x44444444,0x55555555)),
DCL_TEST2(TUint64, XOR, MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0x00000000,0x00000001)),
DCL_TEST2(TUint64, XOR, MAKE_TUINT64(0x00000000,0xFFFFFFFF), MAKE_TUINT64(0x00000000,0x00000001)),
DCL_TEST2(TUint64, XOR, MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0xFCD1CC9F,0xDB27CC8B)),
DCL_TEST2(TUint64, XOR, MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xFCD1CC9F,0xDB27CC8B)),
DCL_TEST2(TUint64, XOR, MAKE_TUINT64(0x11111111,0x22222222), MAKE_TUINT64(0x44444444,0x77777777)),
DCL_TEST3(TUint64, AXO, MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0xFFFFFFFF,0xFFFFFFFF), MAKE_TUINT64(0x00000000,0x00000001)),
DCL_TEST3(TUint64, AXO, MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0xFFFFFFFF,0xFFFFFFFF), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED)),
DCL_TEST3(TUint64, AXO, MAKE_TUINT64(0xFFFFFFFF,0xFFFFFFFF), MAKE_TUINT64(0xFFFFFFFF,0xFFFFFFFF), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED)),
DCL_TEST3(TUint64, AXO, MAKE_TUINT64(0xFFFFFFFF,0xFFFFFFFF), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED)),
DCL_TEST3(TUint64, AXO, MAKE_TUINT64(0xFFFFFFFF,0xFFFFFFFF), MAKE_TUINT64(0xFACEFEED,0xFEEDFACE), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED)),
DCL_TEST3(TUint64, AXO, MAKE_TUINT64(0xBAD8BEEF,0xDEADDEAD), MAKE_TUINT64(0xFACEFEED,0xFEEDFACE), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED)),
DCL_TEST3(TUint64, CAS, MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0x00000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED)),
DCL_TEST3(TUint64, CAS, MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0x00000001,0x00000000), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED)),
DCL_TEST3(TUint64, CAS, MAKE_TUINT64(0x00000000,0x00000001), MAKE_TUINT64(0x00000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED)),
DCL_TEST3(TUint64, CAS, MAKE_TUINT64(0x00000000,0x00000001), MAKE_TUINT64(0x00000001,0x00000000), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED)),
DCL_TEST3(TUint64, CAS, MAKE_TUINT64(0x00000001,0x00000000), MAKE_TUINT64(0x00000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED)),
DCL_TEST3(TUint64, CAS, MAKE_TUINT64(0x00000001,0x00000000), MAKE_TUINT64(0x00000001,0x00000000), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED)),
DCL_TEST4(TUint64, TAU, MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAU, MAKE_TUINT64(0x00000000,0x00000001), MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAU, MAKE_TUINT64(0xFFFFFFFF,0xFFFFFFFF), MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAU, MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0x00000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAU, MAKE_TUINT64(0x00000000,0x00000001), MAKE_TUINT64(0x00000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAU, MAKE_TUINT64(0x00000000,0x00000002), MAKE_TUINT64(0x00000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAU, MAKE_TUINT64(0xFFFFFFFF,0xFFFFFFFF), MAKE_TUINT64(0x00000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAU, MAKE_TUINT64(0xFFFFFFFF,0x00000000), MAKE_TUINT64(0x00000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAU, MAKE_TUINT64(0x80000000,0x00000000), MAKE_TUINT64(0x80000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAU, MAKE_TUINT64(0x80000000,0x00000001), MAKE_TUINT64(0x80000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAU, MAKE_TUINT64(0x80000000,0x00000002), MAKE_TUINT64(0x80000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAU, MAKE_TUINT64(0x7FFFFFFF,0xFFFFFFFF), MAKE_TUINT64(0x80000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAU, MAKE_TUINT64(0x7FFFFFFF,0x00000000), MAKE_TUINT64(0x80000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAU, MAKE_TUINT64(0x7FFFFFFF,0x80000001), MAKE_TUINT64(0x7FFFFFFF,0x80000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAU, MAKE_TUINT64(0x7FFFFFFF,0x80000000), MAKE_TUINT64(0x7FFFFFFF,0x80000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAU, MAKE_TUINT64(0x7FFFFFFF,0x80000002), MAKE_TUINT64(0x7FFFFFFF,0x80000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAU, MAKE_TUINT64(0x7FFFFFFF,0xFFFFFFFF), MAKE_TUINT64(0x7FFFFFFF,0x80000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAU, MAKE_TUINT64(0x7FFFFFFF,0x7FFFFFFF), MAKE_TUINT64(0x7FFFFFFF,0x80000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAU, MAKE_TUINT64(0x80000000,0x00000000), MAKE_TUINT64(0x7FFFFFFF,0x80000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAU, MAKE_TUINT64(0x80000000,0x80000000), MAKE_TUINT64(0x7FFFFFFF,0x80000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAU, MAKE_TUINT64(0x80000000,0x80000001), MAKE_TUINT64(0x7FFFFFFF,0x80000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAU, MAKE_TUINT64(0x80000000,0x80000002), MAKE_TUINT64(0x7FFFFFFF,0x80000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAS, MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAS, MAKE_TUINT64(0x00000000,0x00000001), MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAS, MAKE_TUINT64(0xFFFFFFFF,0xFFFFFFFF), MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAS, MAKE_TUINT64(0x00000000,0x00000000), MAKE_TUINT64(0x00000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAS, MAKE_TUINT64(0x00000000,0x00000001), MAKE_TUINT64(0x00000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAS, MAKE_TUINT64(0x00000000,0x00000002), MAKE_TUINT64(0x00000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAS, MAKE_TUINT64(0xFFFFFFFF,0xFFFFFFFF), MAKE_TUINT64(0x00000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAS, MAKE_TUINT64(0xFFFFFFFF,0x00000000), MAKE_TUINT64(0x00000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAS, MAKE_TUINT64(0x80000000,0x00000000), MAKE_TUINT64(0x80000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAS, MAKE_TUINT64(0x80000000,0x00000001), MAKE_TUINT64(0x80000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAS, MAKE_TUINT64(0x80000000,0x00000002), MAKE_TUINT64(0x80000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAS, MAKE_TUINT64(0x7FFFFFFF,0xFFFFFFFF), MAKE_TUINT64(0x80000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAS, MAKE_TUINT64(0x7FFFFFFF,0x00000000), MAKE_TUINT64(0x80000000,0x00000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAS, MAKE_TUINT64(0x7FFFFFFF,0x80000001), MAKE_TUINT64(0x7FFFFFFF,0x80000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAS, MAKE_TUINT64(0x7FFFFFFF,0x80000000), MAKE_TUINT64(0x7FFFFFFF,0x80000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAS, MAKE_TUINT64(0x7FFFFFFF,0x80000002), MAKE_TUINT64(0x7FFFFFFF,0x80000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAS, MAKE_TUINT64(0x7FFFFFFF,0xFFFFFFFF), MAKE_TUINT64(0x7FFFFFFF,0x80000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAS, MAKE_TUINT64(0x7FFFFFFF,0x7FFFFFFF), MAKE_TUINT64(0x7FFFFFFF,0x80000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAS, MAKE_TUINT64(0x80000000,0x00000000), MAKE_TUINT64(0x7FFFFFFF,0x80000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAS, MAKE_TUINT64(0x80000000,0x80000000), MAKE_TUINT64(0x7FFFFFFF,0x80000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAS, MAKE_TUINT64(0x80000000,0x80000001), MAKE_TUINT64(0x7FFFFFFF,0x80000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5)),
DCL_TEST4(TUint64, TAS, MAKE_TUINT64(0x80000000,0x80000002), MAKE_TUINT64(0x7FFFFFFF,0x80000001), MAKE_TUINT64(0xFEEDFACE,0xFACEFEED), MAKE_TUINT64(0xBAD9BEEF,0x00FAECE5))
};
template<class T>
void DoTestBlock(const TD<T>* aTests, TInt aCount)
{
const TD<T>* p = aTests;
const TD<T>* e = aTests + aCount;
for (; p<e; ++p)
{
TInt ord;
for (ord=EOrderRelaxed; ord<=EOrderOrdered; ++ord)
{
TDG tdg;
tdg.Set(*p, ord);
if (tdg.iIndex<0)
continue;
#ifdef __EXTRA_DEBUG__
TPtrC8 fname8((const TText8*)FuncName[tdg.iIndex]);
TBuf<64> fname;
fname.Copy(fname8);
test.Printf(_L("%S\n"), &fname);
#endif
TInt res;
res = tdg.ExecuteUser();
if (res!=0)
{
tdg.Dump("ExecuteUser");
test.Printf(_L("FAIL %d\n"),res);
test(0);
}
#ifdef __EPOC32__
#ifdef __EXTRA_DEBUG__
test.Printf(_L("%S K\n"), &fname);
#endif
res = tdg.ExecuteKernel();
if (res!=0)
{
tdg.Dump("ExecuteKernel");
test.Printf(_L("FAIL %d\n"),res);
test(0);
}
#endif
}
}
}
#define DO_TEST_BLOCK(type,array) \
DoTestBlock<type>(&(array)[0],(TInt)(sizeof(array)/sizeof(TD<type>)))
void TestSingleThread()
{
test.Next(_L("8 bit, single thread"));
DO_TEST_BLOCK(TUint8, TestData8);
test.Next(_L("16 bit, single thread"));
DO_TEST_BLOCK(TUint16, TestData16);
test.Next(_L("32 bit, single thread"));
DO_TEST_BLOCK(TUint32, TestData32);
test.Next(_L("64 bit, single thread"));
DO_TEST_BLOCK(TUint64, TestData64);
}
/******************************************************************************
* Test invalid address handling when called from user mode
******************************************************************************/
const TLinAddr KSpecialAddr = 0x100u;
const TInt KIndexRead = -1;
const TInt KIndexReadWrite = -2;
struct TE
{
static TInt Execute(TInt aIndex, TAny* aPtr1, TAny* aPtr2, TInt aResult);
TInt DoExecute();
static TInt ThreadFn(TAny*);
TInt iIndex;
TAny* iPtr1;
TAny* iPtr2;
};
template<class T> TInt DoLoadErrorTest(TInt aIndex, const T* aPtr)
{
typename TLoadFn<T>::F atomic = (typename TLoadFn<T>::F)AtomicFuncPtr[aIndex];
atomic(aPtr);
return 0;
}
template<class T> TInt DoRmw1ErrorTest(TInt aIndex, T* aPtr)
{
typename TRmw1Fn<T>::F atomic = (typename TRmw1Fn<T>::F)AtomicFuncPtr[aIndex];
T a1 = 0;
atomic(aPtr, a1);
return 0;
}
template<class T> TInt DoRmw2ErrorTest(TInt aIndex, T* aPtr)
{
typename TRmw2Fn<T>::F atomic = (typename TRmw2Fn<T>::F)AtomicFuncPtr[aIndex];
T a1 = 0;
T a2 = 0;
atomic(aPtr, a1, a2);
return 0;
}
template<class T> TInt DoRmw3ErrorTest(TInt aIndex, T* aPtr)
{
typename TRmw3Fn<T>::F atomic = (typename TRmw3Fn<T>::F)AtomicFuncPtr[aIndex];
T a1 = 0;
T a2 = 0;
T a3 = 0;
atomic(aPtr, a1, a2, a3);
return 0;
}
template<class T> TInt DoCasErrorTest(TInt aIndex, T* aPtr1, T* aPtr2)
{
typename TCasFn<T>::F atomic = (typename TCasFn<T>::F)AtomicFuncPtr[aIndex];
TLinAddr a1 = (TLinAddr)aPtr1;
TLinAddr a2 = (TLinAddr)aPtr2;
T reg;
T exp;
T f;
memset(&f, 0xbb, sizeof(T));
if ((a1&~0xff)==KSpecialAddr)
{
memset(®, (a1&0xff), sizeof(T));
aPtr1 = ®
}
if ((a2&~0xff)==KSpecialAddr)
{
memset(&exp, (a2&0xff), sizeof(T));
aPtr2 = &exp;
}
TInt r = atomic(aPtr1, aPtr2, f);
return r ? 1 : 0;
}
TInt TE::DoExecute()
{
if (iIndex == KIndexRead)
{
return *(volatile TUint8*)iPtr1;
}
if (iIndex == KIndexReadWrite)
{
volatile TUint8* p = (volatile TUint8*)iPtr1;
TUint8 x = *p;
*p = x;
return 0;
}
TUint attr = FuncAttr[iIndex];
TInt type = ATTR_TO_TYPE(attr);
TInt size = ATTR_TO_SIZE(attr);
if (type==EFuncTypeInvalid)
return KErrNotSupported;
TInt res;
switch (type)
{
case EFuncTypeLoad:
{
switch (size)
{
case 1: res = DoLoadErrorTest<TUint8>(iIndex, (TUint8*)iPtr1); break;
case 2: res = DoLoadErrorTest<TUint16>(iIndex, (TUint16*)iPtr1); break;
case 4: res = DoLoadErrorTest<TUint32>(iIndex, (TUint32*)iPtr1); break;
case 8: res = DoLoadErrorTest<TUint64>(iIndex, (TUint64*)iPtr1); break;
default: res = KErrNotSupported; break;
}
break;
}
case EFuncTypeRmw1:
{
switch (size)
{
case 1: res = DoRmw1ErrorTest<TUint8>(iIndex, (TUint8*)iPtr1); break;
case 2: res = DoRmw1ErrorTest<TUint16>(iIndex, (TUint16*)iPtr1); break;
case 4: res = DoRmw1ErrorTest<TUint32>(iIndex, (TUint32*)iPtr1); break;
case 8: res = DoRmw1ErrorTest<TUint64>(iIndex, (TUint64*)iPtr1); break;
default: res = KErrNotSupported; break;
}
break;
}
case EFuncTypeRmw2:
{
switch (size)
{
case 1: res = DoRmw2ErrorTest<TUint8>(iIndex, (TUint8*)iPtr1); break;
case 2: res = DoRmw2ErrorTest<TUint16>(iIndex, (TUint16*)iPtr1); break;
case 4: res = DoRmw2ErrorTest<TUint32>(iIndex, (TUint32*)iPtr1); break;
case 8: res = DoRmw2ErrorTest<TUint64>(iIndex, (TUint64*)iPtr1); break;
default: res = KErrNotSupported; break;
}
break;
}
case EFuncTypeRmw3:
{
switch (size)
{
case 1: res = DoRmw3ErrorTest<TUint8>(iIndex, (TUint8*)iPtr1); break;
case 2: res = DoRmw3ErrorTest<TUint16>(iIndex, (TUint16*)iPtr1); break;
case 4: res = DoRmw3ErrorTest<TUint32>(iIndex, (TUint32*)iPtr1); break;
case 8: res = DoRmw3ErrorTest<TUint64>(iIndex, (TUint64*)iPtr1); break;
default: res = KErrNotSupported; break;
}
break;
}
case EFuncTypeCas:
{
switch (size)
{
case 1: res = DoCasErrorTest<TUint8>(iIndex, (TUint8*)iPtr1, (TUint8*)iPtr2); break;
case 2: res = DoCasErrorTest<TUint16>(iIndex, (TUint16*)iPtr1, (TUint16*)iPtr2); break;
case 4: res = DoCasErrorTest<TUint32>(iIndex, (TUint32*)iPtr1, (TUint32*)iPtr2); break;
case 8: res = DoCasErrorTest<TUint64>(iIndex, (TUint64*)iPtr1, (TUint64*)iPtr2); break;
default: res = KErrNotSupported; break;
}
break;
}
default:
res = KErrNotSupported;
break;
}
return res;
}
TInt TE::ThreadFn(TAny* aPtr)
{
return ((TE*)aPtr)->DoExecute();
}
_LIT(KLitKERNEXEC,"KERN-EXEC");
TInt TE::Execute(TInt aIndex, TAny* aPtr1, TAny* aPtr2, TInt aResult)
{
DEBUGPRINT("I=%3d P1=%08x P2=%08x R=%d", aIndex, aPtr1, aPtr2, aResult);
TE te;
te.iIndex = aIndex;
te.iPtr1 = aPtr1;
te.iPtr2 = aPtr2;
RThread t;
TInt r = t.Create(KNullDesC, &ThreadFn, 0x1000, 0, &te);
test_KErrNone(r);
TRequestStatus s;
t.Logon(s);
test_Equal(KRequestPending, s.Int());
TBool jit = User::JustInTime();
User::SetJustInTime(EFalse);
t.Resume();
User::WaitForRequest(s);
User::SetJustInTime(jit);
TInt xt = t.ExitType();
TInt xr = t.ExitReason();
const TDesC& xc = t.ExitCategory();
DEBUGPRINT("Exit type: %d,%d,%S", xt, xr, &xc);
TInt res = KErrNone;
if (aResult == KErrUnknown)
{
if (xt==EExitPanic)
{
test_Equal(ECausedException, xr);
test(xc==KLitKERNEXEC);
res = KErrDied;
}
else
test_Equal(EExitKill, xt);
}
else if (aResult == KErrDied)
{
test_Equal(EExitPanic, xt);
test_Equal(ECausedException, xr);
test(xc==KLitKERNEXEC);
}
else
{
test_Equal(EExitKill, xt);
test_Equal(aResult, xr);
}
CLOSE_AND_WAIT(t);
return res;
}
TInt ThreadAlign(TAny*)
{
TUint32 array[2];
TUint32* p = (TUint32*)(((TLinAddr)array)+1);
*p = 5;
return KErrNone;
}
const TUint64 Zero = UI64LIT(0);
const TUint64 BFBF = UI64LIT(0xbfbfbfbfbfbfbfbf);
void TestInvalidAddresses()
{
TAny* bad_addr[11];
TInt c = 0;
TInt read_only = 0;
TInt alignmentEnd = 0;
TInt mminfo = UserSvr::HalFunction(EHalGroupKernel, EKernelHalMemModelInfo, 0, 0);
// TInt mmtype = mminfo & EMemModelTypeMask;
#ifdef __EPOC32__
if (mminfo & EMemModelAttrWriteProt)
{
bad_addr[c++] = (TAny*)UserSvr::RomHeaderAddress();
bad_addr[c++] = (TAny*)&Zero;
bad_addr[c++] = (TAny*)&BFBF;
read_only = c;
}
#endif
if (mminfo & EMemModelAttrNonExProt)
{
bad_addr[c++] = 0; // address 0 is read only on ARM7 cores, nonexistent on others
if (TE::Execute(KIndexRead, 0, 0, KErrUnknown)==KErrNone)
read_only = c; // address 0 is readable
TLinAddr nonex = 0;
do {
nonex += 0x1000;
} while (TE::Execute(KIndexRead, (TAny*)nonex, 0, KErrUnknown)==KErrNone);
bad_addr[c++] = (TAny*)nonex;
}
#ifdef __EPOC32__
if (mminfo & EMemModelAttrKernProt)
{
bad_addr[c++] = DD.KernelMemoryAddress();
}
// If alignment checking is enabled add alignment tests for 64 bit.
TUint64A alignArray[2];
RThread t;
TInt r = t.Create(KNullDesC, &ThreadAlign, 0x1000, 0, NULL);
test_KErrNone(r);
TRequestStatus s;
t.Logon(s);
test_Equal(KRequestPending, s.Int());
TBool jit = User::JustInTime();
User::SetJustInTime(EFalse);
t.Resume();
User::WaitForRequest(s);
User::SetJustInTime(jit);
TInt xt = t.ExitType();
TInt xr = t.ExitReason();
const TDesC& xc = t.ExitCategory();
if (EExitPanic == xt)
{// Took an alignment fault so add alignment test.
test_Equal(ECausedException, xr);
test(xc==KLitKERNEXEC);
alignmentEnd = c;
bad_addr[alignmentEnd++] = (TAny*)(((TUint)&alignArray[0]) + 1);
bad_addr[alignmentEnd++] = (TAny*)(((TUint)&alignArray[0]) + 2);
bad_addr[alignmentEnd++] = (TAny*)(((TUint)&alignArray[0]) + 4);
}
#endif
TInt i;
TInt allBadAddr = (alignmentEnd)? c+3 : c;
DEBUGPRINT("%d invalid addresses", allBadAddr);
for (i=0; i < allBadAddr; ++i)
{
if (i<read_only)
{
DEBUGPRINT("bad_addr[%d]=%08x (RO)", i, bad_addr[i]);
}
else
{
DEBUGPRINT("bad_addr[%d]=%08x", i, bad_addr[i]);
}
}
if (c==0)
return;
TInt ix;
for (ix=0; ix<TOTAL_INDEXES; ++ix)
{
TUint attr = FuncAttr[ix];
TUint func = ATTR_TO_FUNC(attr);
TUint type = ATTR_TO_TYPE(attr);
if (type==EFuncTypeInvalid)
continue;
if (func==TUint(EAtomicFuncCAS))
{
// both addresses OK
TE::Execute(ix, (TAny*)(KSpecialAddr+0), (TAny*)(KSpecialAddr+0), 1); // should do the swap
TE::Execute(ix, (TAny*)(KSpecialAddr+0), (TAny*)(KSpecialAddr+1), 0); // should not do the swap
// RMW address OK, expected bad
for (i=0; i<c; ++i)
{
TAny* p = bad_addr[i];
TInt res = (bad_addr[i]==(TAny*)&BFBF) ? 1 : KErrDied;
TE::Execute(ix, (TAny*)(KSpecialAddr+0xbf), p, res);
}
// RMW address bad, expected OK
for (i=0; i<c; ++i)
{
TAny* p = bad_addr[i];
#if defined(__CPU_X86)
TInt res = KErrDied; // on X86 location must be writeable
#elif defined(__CPU_ARM)
TInt res = (i<read_only && bad_addr[i]!=(TAny*)&BFBF) ? 0 : KErrDied;
// 64-bit operations on platforms that use a slow exec for 64 bit
// will always write to bad_addr[i] but other platforms won't.
if (ATTR_TO_SIZE(attr) == 8)
res = KErrUnknown;
#else
#error CPU?
#endif
TE::Execute(ix, p, (TAny*)(KSpecialAddr+0xbf), res);
}
// Both addresses bad
TInt j;
for (i=0; i<c; ++i)
{
for (j=0; j<c; ++j)
{
TE::Execute(ix, bad_addr[i], bad_addr[j], KErrDied);
}
}
}
else
{
// just run through all the bad addresses
for (i=0; i<c; ++i)
{
TAny* p = bad_addr[i];
TBool ro = (i<read_only);
TInt res = ((func == TUint(EAtomicFuncLOAD)) && ro) ? KErrNone : KErrDied;
if (func==TUint(EAtomicFuncLOAD) && ATTR_TO_SIZE(attr)==8)
res = KErrUnknown; // 64-bit atomic loads may or may not write as well
TE::Execute(ix, p, 0, res);
}
}
// Checks for 8 byte alignment not enabled on old gcc (arm4) as it is not eabi compliant.
#if (defined(__GNUC__) && (__GNUC__ >= 3)) || defined(__EABI__)
if (ATTR_TO_SIZE(attr) == 8)
{
for (i = c; i < alignmentEnd; i++)
{// 64 bit unaligned accesses should cause exceptions if
// alignment checking is enabled.
TE::Execute(ix, bad_addr[i], 0, KErrDied);
}
}
#endif
}
}
/******************************************************************************
* Multiple thread normal operation tests
******************************************************************************/
class CThread;
class CThreads : public CBase
{
public:
static CThreads* New();
CThreads();
~CThreads();
CThread* NewThread(TInt aId);
void StartTest(TInt aIndex, TBool aKernel);
void StopTest();
void Finish();
TUint32 DoCasTest(TInt aIndex, TBool aKernel, TUint32 aFailLimit);
void DoRmwTest(TInt aIndex, TBool aKernel, TInt aTime);
inline TInt NumCpus() const {return iNumCpus;}
private:
TInt iNumCpus;
TInt iNumThreads;
CThread* iThreads[KMaxThreads];
RSemaphore iSem;
volatile TInt iIndex;
volatile TBool iKernel;
volatile TBool iStop;
volatile TUint64 iReg;
TInt iFailCount;
TInt iTimeslice;
private:
friend class CThread;
};
class CThread : public CBase
{
private:
CThread();
~CThread();
static TInt ThreadFunction(TAny*);
TInt Run();
TInt Create();
void Start();
void DoTest();
TUint64 Random();
void Kick();
private:
RThread iThread;
TInt iId;
CThreads* iThreads;
TRequestStatus iStatus;
TBool iStarted;
TPerThread iPerThread;
TUint64 iSeed;
private:
friend class CThreads;
};
CThreads::CThreads()
{
iNumCpus = UserSvr::HalFunction(EHalGroupKernel, EKernelHalNumLogicalCpus, 0, 0);
iNumThreads = iNumCpus;
if (iNumThreads<2)
iNumThreads=2;
TInt khz;
TInt r = HAL::Get(HAL::ECPUSpeed, khz);
if (r==KErrNone)
iTimeslice = Max(10000000/khz, 100);
else if (r==KErrNotSupported)
iTimeslice = 227;
else
User::Panic(_L("TIMESLICE"),r);
}
CThreads::~CThreads()
{
TInt i;
for (i=0; i<iNumThreads; ++i)
delete iThreads[i];
iSem.Close();
}
CThreads* CThreads::New()
{
CThreads* p = new CThreads;
if (p)
{
TInt r;
r = p->iSem.CreateLocal(0);
TInt i;
for (i=0; i<p->iNumThreads && r==KErrNone; ++i)
{
p->iThreads[i] = p->NewThread(i);
if (!p->iThreads[i])
r = KErrNoMemory;
}
if (r!=KErrNone)
{
delete p;
return 0;
}
p->iStop = ETrue;
for (i=0; i<p->iNumThreads; ++i)
p->iThreads[i]->Start();
}
return p;
}
CThread* CThreads::NewThread(TInt aId)
{
CThread* t = new CThread;
if (t)
{
t->iId = aId;
t->iThreads = this;
TInt r = t->Create();
if (r!=KErrNone)
{
delete t;
t = 0;
}
}
return t;
}
void CThreads::StartTest(TInt aIndex, TBool aKernel)
{
iIndex = aIndex;
iKernel = aKernel;
iReg = 0;
iStop = EFalse;
#ifdef __EPOC32__
if (iKernel)
DD.Initialise(iReg);
#endif
TInt i;
for (i=0; i<iNumThreads; ++i)
iThreads[i]->Kick();
}
void CThreads::StopTest()
{
iStop = ETrue;
TInt i;
for (i=0; i<iNumThreads; ++i)
iSem.Wait();
#ifdef __EPOC32__
if (iKernel)
iReg = DD.Retrieve();
#endif
}
void CThreads::Finish()
{
iStop = EFalse;
iIndex = -1;
TInt i;
for (i=0; i<iNumThreads; ++i)
{
iThreads[i]->Kick();
iSem.Wait();
}
test(iFailCount==0);
}
TUint32 CThreads::DoCasTest(TInt aIndex, TBool aKernel, TUint32 aFailLimit)
{
TInt i;
test.Printf(_L("DoCasTest I=%d K=%1d F=%d\n"), aIndex, aKernel, aFailLimit);
TUint32 initial = User::FastCounter();
StartTest(aIndex, aKernel);
FOREVER
{
User::AfterHighRes(1000000);
TUint64 minf = 0;
--minf;
for (i=0; i<iNumThreads; ++i)
{
CThread* t = iThreads[i];
test.Printf(_L("T%1d: C=%lu R=%lu\n"), i, t->iPerThread.iDiff, t->iPerThread.iFailCount);
TUint64 f = t->iPerThread.iFailCount;
if (f<minf)
minf=f;
}
if (minf>=TUint64(aFailLimit))
break;
if (iNumCpus>1) // 1 second is enough for SMP, except on VMPlayer
break;
}
StopTest();
TUint32 final = User::FastCounter();
TUint32 time = final - initial;
test.Printf(_L("Time %d\n"), time);
TUint64 total = 0;
TUint64 txor = 0;
for (i=0; i<iNumThreads; ++i)
{
CThread* t = iThreads[i];
test.Printf(_L("T%1d: %lu completed %lu retries\n"), i, t->iPerThread.iDiff, t->iPerThread.iFailCount);
total += t->iPerThread.iDiff;
txor ^= t->iPerThread.iXor;
}
TUint size = ATTR_TO_SIZE(FuncAttr[aIndex]);
TUint64 expected = 0;
switch (size)
{
case 1: expected = Transform<TUint8>::F_iter(0, total); break;
case 2: expected = Transform<TUint16>::F_iter(0, total); break;
case 4: expected = Transform<TUint32>::F_iter(0, total); break;
case 8: expected = Transform<TUint64>::F_iter(0, total); break;
}
test.Printf(_L("Total iterations %lu\n"), total);
test.Printf(_L("Expected result %08x %08x\n"), I64HIGH(expected), I64LOW(expected));
test.Printf(_L("Actual result %08x %08x\n"), I64HIGH(iReg), I64LOW(iReg));
test.Printf(_L("Tot. XOR result %08x %08x\n"), I64HIGH(txor), I64LOW(txor));
// test(expected==iReg);
// test(expected==txor);
if (expected!=iReg || expected!=txor)
{
test.Printf(_L("***FAIL***\n"));
++iFailCount;
}
return time;
}
void CThreads::DoRmwTest(TInt aIndex, TBool aKernel, TInt aTime)
{
TInt i;
test.Printf(_L("DoRmwTest I=%d K=%1d T=%d\n"), aIndex, aKernel, aTime);
StartTest(aIndex, aKernel);
User::AfterHighRes(aTime);
StopTest();
TUint64 total = 0;
TUint64 txor = 0;
for (i=0; i<iNumThreads; ++i)
{
CThread* t = iThreads[i];
test.Printf(_L("T%1d: C=%10lu D=%lx X=%lx\n"), i, t->iPerThread.iCount, t->iPerThread.iDiff, t->iPerThread.iXor);
total += t->iPerThread.iDiff;
txor ^= t->iPerThread.iXor;
}
TUint size = ATTR_TO_SIZE(FuncAttr[aIndex]);
switch (size)
{
case 1:
{
TUint8 expected = (TUint8)total;
TUint8 exor = (TUint8)txor;
TUint8 got = (TUint8)iReg;
test.Printf(_L("Expected %02x Got %02x XOR %02x\n"), expected, got, exor);
// test(expected==got && exor==got);
if (expected!=got || exor!=got)
{
test.Printf(_L("***FAIL***\n"));
++iFailCount;
}
break;
}
case 2:
{
TUint16 expected = (TUint16)total;
TUint16 exor = (TUint16)txor;
TUint16 got = (TUint16)iReg;
test.Printf(_L("Expected %04x Got %04x XOR %04x\n"), expected, got, exor);
// test(expected==got && exor==got);
if (expected!=got || exor!=got)
{
test.Printf(_L("***FAIL***\n"));
++iFailCount;
}
break;
}
case 4:
{
TUint32 expected = (TUint32)total;
TUint32 exor = (TUint32)txor;
TUint32 got = (TUint32)iReg;
test.Printf(_L("Expected %08x Got %08x XOR %08x\n"), expected, got, exor);
// test(expected==got && exor==got);
if (expected!=got || exor!=got)
{
test.Printf(_L("***FAIL***\n"));
++iFailCount;
}
break;
}
case 8:
{
TUint64 expected = total;
test.Printf(_L("Expected result %08x %08x\n"), I64HIGH(expected), I64LOW(expected));
test.Printf(_L("Actual result %08x %08x\n"), I64HIGH(iReg), I64LOW(iReg));
test.Printf(_L("Tot. XOR result %08x %08x\n"), I64HIGH(txor), I64LOW(txor));
// test(expected==iReg && expected==txor);
if (expected!=iReg || expected!=txor)
{
test.Printf(_L("***FAIL***\n"));
++iFailCount;
}
break;
}
}
}
CThread::CThread()
{
}
CThread::~CThread()
{
TInt h = iThread.Handle();
if (h && h!=KCurrentThreadHandle)
{
if (!iStarted)
iThread.Kill(0);
User::WaitForRequest(iStatus);
}
iThread.Close();
}
TInt CThread::Create()
{
TInt r = iThread.Create(KNullDesC, &ThreadFunction, 0x2000, 0, this);
if (r==KErrNone)
{
iThread.Logon(iStatus);
if (iStatus.Int() != KRequestPending)
r = iStatus.Int();
}
return r;
}
void CThread::Start()
{
iThread.Resume();
iThreads->iSem.Wait();
}
void CThread::Kick()
{
TRequestStatus s;
TRequestStatus* pS = &s;
iThread.RequestComplete(pS,0);
}
TInt CThread::ThreadFunction(TAny* aPtr)
{
return ((CThread*)aPtr)->Run();
}
TInt CThread::Run()
{
#ifdef __EPOC32__
DD.SetCurrentThreadTimeslice(iThreads->iTimeslice);
#endif
RThread().SetPriority(EPriorityLess);
FOREVER
{
if (iThreads->iStop)
{
iThreads->iSem.Signal();
if (iThreads->iNumCpus > 1)
RThread().SetPriority(EPriorityAbsoluteHigh); // encourage spreading out of threads between CPUs
User::WaitForAnyRequest();
if (iThreads->iIndex<0)
break;
if (iThreads->iNumCpus > 1)
{
TUint32 tick = User::NTickCount();
while(User::NTickCount()-tick < 2) {} // spin to discourage putting other threads on this CPU
RThread().SetPriority(EPriorityLess);
}
}
DoTest();
}
iThreads->iSem.Signal();
return 0;
}
TUint64 CThread::Random()
{
iSeed = Transform<TUint64>::F(iSeed);
return iSeed;
}
void CThread::DoTest()
{
iPerThread.iDiff = 0;
iPerThread.iXor = 0;
iPerThread.iFailCount = 0;
iPerThread.iCount = 0;
TInt index = iThreads->iIndex;
TAny* p = (TAny*)&iThreads->iReg;
#ifdef __EPOC32__
TBool kernel = iThreads->iKernel;
if (kernel)
{
DD.SwitchExecTables(iId);
RTestAtomic::SetThreadInfo(iPerThread);
}
TInt iter = 0;
#endif
iSeed = iId;
while (!iThreads->iStop)
{
TAtomicAction action;
action.i0 = Random();
action.i1 = Random();
action.i2 = Random();
action.iIndex = index;
action.iThread = iId;
#ifdef __EPOC32__
if (kernel)
{
RTestAtomic::AtomicAction(action);
}
else
#endif
DoAtomicAction(p, &iPerThread, action);
#ifdef __EPOC32__
if (kernel && ++iter==1024)
{
iter = 0;
RTestAtomic::GetThreadInfo(iPerThread);
}
#endif
}
#ifdef __EPOC32__
if (kernel)
{
RTestAtomic::GetThreadInfo(iPerThread);
RTestAtomic::RestoreExecTable();
}
#endif
}
void TestMultipleThreads()
{
CThreads* p = CThreads::New();
test(p!=0);
TInt KRequiredRetries = 1000;
if (p->NumCpus()==1)
KRequiredRetries = 10;
TUint32 time;
TUint32 total_time = 0;
TUint32 total_time_k = 0;
TUint32 count = 0;
TInt ix;
for (ix=0; ix<TOTAL_INDEXES; ++ix)
{
TUint attr = FuncAttr[ix];
TUint func = ATTR_TO_FUNC(attr);
TUint type = ATTR_TO_TYPE(attr);
if (p->NumCpus()==1)
{
TUint ord = ATTR_TO_ORD(attr);
if (ord != EOrderOrdered)
continue;
}
if (type==EFuncTypeInvalid)
continue;
if (func!=TUint(EAtomicFuncCAS))
continue;
time = p->DoCasTest(ix, EFalse, KRequiredRetries);
total_time += time;
++count;
time = p->DoCasTest(ix, ETrue, KRequiredRetries);
total_time_k += time;
}
TUint32 avg_time = total_time / count;
TUint32 avg_time_k = total_time_k / count;
TUint32 fcf=0;
TInt r = HAL::Get(HAL::EFastCounterFrequency, (TInt&)fcf);
test_KErrNone(r);
test.Printf(_L("FastCounterFrequency = %u\n"), fcf);
TUint64 avg_time_us64(avg_time);
avg_time_us64*=UI64LIT(1000000);
avg_time_us64/=TUint64(fcf);
TInt avg_time_us = KMaxTInt;
TInt avg_time_k_us = KMaxTInt;
if (avg_time_us64<TUint64(KMaxTInt))
avg_time_us = (TInt)avg_time_us64;
TUint64 avg_time_k_us64(avg_time);
avg_time_k_us64*=UI64LIT(1000000);
avg_time_k_us64/=TUint64(fcf);
if (avg_time_k_us64<TUint64(KMaxTInt))
avg_time_k_us = (TInt)avg_time_k_us64;
test.Printf(_L("Average time (user) %u (%dus)\n"), avg_time, avg_time_us);
test.Printf(_L("Average time (kernel) %u (%dus)\n"), avg_time_k, avg_time_k_us);
TInt limit_us = (p->NumCpus()==1) ? 15*1000*1000 : 4*1000*1000;
for (ix=0; ix<TOTAL_INDEXES; ++ix)
{
TUint attr = FuncAttr[ix];
TUint func = ATTR_TO_FUNC(attr);
TUint type = ATTR_TO_TYPE(attr);
if (p->NumCpus()==1)
{
TUint ord = ATTR_TO_ORD(attr);
if (ord != EOrderOrdered)
continue;
}
if (type==EFuncTypeInvalid)
continue;
if (func<TUint(EAtomicFuncSWP) || func>=TUint(EAtomicFuncCAS))
continue;
if (func==TUint(EAtomicFuncIOR)) // can only test AND and IOR together
continue;
p->DoRmwTest(ix, EFalse, Min(avg_time_us,limit_us));
p->DoRmwTest(ix, ETrue, Min(avg_time_k_us,limit_us));
}
p->Finish();
delete p;
}
/******************************************************************************
* Main
******************************************************************************/
TInt E32Main()
{
test.Title();
test.Start(_L("Opening device driver"));
#ifdef __EPOC32__
TInt r;
r = User::LoadLogicalDevice(KAtomicTestLddName);
test(r==KErrNone||r==KErrAlreadyExists);
r = DD.Open();
test_KErrNone(r);
#endif
test.Next(_L("Testing atomic operations ..."));
test.Next(_L("Single thread, normal operation"));
TestSingleThread();
test.Next(_L("Single thread, bad addresses"));
TestInvalidAddresses();
test.Next(_L("Multiple threads"));
TestMultipleThreads();
test.End();
return 0;
}