Convert Kernelhwsrv package from SFL to EPL
kernel\eka\compsupp is subject to the ARM EABI LICENSE
userlibandfileserver\fatfilenameconversionplugins\unicodeTables is subject to the Unicode license
kernel\eka\kernel\zlib is subject to the zlib license
// Copyright (c) 1996-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// f32\sfat32\sl_bpb32.cpp
// Boot sector code, specific for EFat32.fsy
//
//
/**
@file
@internalTechnology
*/
#include "sl_std.h"
//-------------------------------------------------------------------------------------------------------------------
TFatBootSector::TFatBootSector()
{
Initialise();
}
/** initialises the boot sector data */
void TFatBootSector::Initialise()
{
Mem::FillZ(this, sizeof(TFatBootSector));
}
//-------------------------------------------------------------------------------------------------------------------
/**
@return ETrue if the boot sector contents seems to be valid
*/
TBool TFatBootSector::IsValid() const
{
const TFatType fatType = FatType(); //-- it will check SectorsPerCluster etc.
if(fatType == EInvalid || ReservedSectors() < 1 || NumberOfFats() < 1)
goto Invalid;
if(fatType == EFat32)
{
if(VersionNumber()!= 0 || FatSectors()!=0 || FatSectors32()<1 || RootClusterNum()<KFatFirstSearchCluster ||
TotalSectors()!=0 || HugeSectors() <5 || RootDirEntries() !=0)
{
goto Invalid; //-- these values are not compliant with FAT specs
}
}
else //-- FAT12/16
{
if(TotalSectors() >0 && HugeSectors() >0 )
goto Invalid; //-- values clash
const TUint32 totSectors = Max(TotalSectors(), HugeSectors());
const TUint32 rootDirStartSec = ReservedSectors() + FatSectors()*NumberOfFats(); //-- root directory start sector
if(FatSectors() < 1 || rootDirStartSec < 3 || RootDirEntries() < 1 || totSectors < 5)
goto Invalid; //-- these values are not compliant with FAT specs
}
return ETrue;
Invalid:
__PRINT(_L("TFatBootSector::IsValid() failed!"));
return EFalse;
}
//-------------------------------------------------------------------------------------------------------------------
/**
Initialize boot sector object from the given bufer. Does not validate the data.
@param aBuf buffer with data.
*/
void TFatBootSector::Internalize(const TDesC8& aBuf)
{
ASSERT(aBuf.Size() >= KSizeOfFatBootSector);
Initialise();
TInt pos=0;
Mem::Copy(&iJumpInstruction, &aBuf[pos],3); pos+=3; // 0 TUint8 iJumpInstruction[3]
Mem::Copy(&iVendorId,&aBuf[pos],KVendorIdSize); pos+=KVendorIdSize; // 3 TUint8 iVendorId[KVendorIdSize]
Mem::Copy(&iBytesPerSector,&aBuf[pos],2); pos+=2; // 11 TUint16 iBytesPerSector
Mem::Copy(&iSectorsPerCluster,&aBuf[pos],1); pos+=1; // 13 TUint8 iSectorsPerCluster
Mem::Copy(&iReservedSectors,&aBuf[pos],2); pos+=2; // 14 TUint16 iReservedSectors
Mem::Copy(&iNumberOfFats,&aBuf[pos],1); pos+=1; // 16 TUint8 iNumberOfFats
Mem::Copy(&iRootDirEntries,&aBuf[pos],2); pos+=2; // 17 TUint16 iRootDirEntries
Mem::Copy(&iTotalSectors,&aBuf[pos],2); pos+=2; // 19 TUint16 iTotalSectors
Mem::Copy(&iMediaDescriptor,&aBuf[pos],1); pos+=1; // 21 TUint8 iMediaDescriptor
Mem::Copy(&iFatSectors,&aBuf[pos],2); pos+=2; // 22 TUint16 iFatSectors
Mem::Copy(&iSectorsPerTrack,&aBuf[pos],2); pos+=2; // 24 TUint16 iSectorsPerTrack
Mem::Copy(&iNumberOfHeads,&aBuf[pos],2); pos+=2; // 26 TUint16 iNumberOfHeads
Mem::Copy(&iHiddenSectors,&aBuf[pos],4); pos+=4; // 28 TUint32 iHiddenSectors
Mem::Copy(&iHugeSectors,&aBuf[pos],4); pos+=4; // 32 TUint32 iHugeSectors
if(RootDirEntries() == 0) //-- we have FAT32 volume
{
Mem::Copy(&iFatSectors32, &aBuf[pos],4); pos+=4; // 36 TUint32 iFatSectors32
Mem::Copy(&iFATFlags, &aBuf[pos],2); pos+=2; // 40 TUint16 iFATFlags
Mem::Copy(&iVersionNumber, &aBuf[pos],2); pos+=2; // 42 TUint16 iVersionNumber
Mem::Copy(&iRootClusterNum, &aBuf[pos],4); pos+=4; // 44 TUint32 iRootClusterNum
Mem::Copy(&iFSInfoSectorNum, &aBuf[pos],2); pos+=2; // 48 TUint16 iFSInfoSectorNum
Mem::Copy(&iBkBootRecSector, &aBuf[pos],2); // 50 TUint16 iBkBootRecSector
pos+=(2+12); //extra 12 for the reserved bytes
}
Mem::Copy(&iPhysicalDriveNumber,&aBuf[pos],1); pos+=1;// 36|64 TUint8 iPhysicalDriveNumber
Mem::Copy(&iReserved,&aBuf[pos],1); pos+=1;// 37|65 TUint8 iReserved
Mem::Copy(&iExtendedBootSignature,&aBuf[pos],1);pos+=1;// 38|66 TUint8 iExtendedBootSignature
Mem::Copy(&iUniqueID,&aBuf[pos],4); pos+=4;// 39|67 TUint32 iUniqueID
Mem::Copy(&iVolumeLabel,&aBuf[pos],KVolumeLabelSize); // 43|71 TUint8 iVolumeLabel[KVolumeLabelSize]
pos+=KVolumeLabelSize;
// 54|82 TUint8 iFileSysType[KFileSysTypeSize]
ASSERT(aBuf.Size() >= pos+KFileSysTypeSize);
Mem::Copy(&iFileSysType,&aBuf[pos],KFileSysTypeSize);
}
//-------------------------------------------------------------------------------------------------------------------
/**
Externalize boot sector object to the given data buffer.
@param aBuf buffer to externalize.
*/
void TFatBootSector::Externalize(TDes8& aBuf) const
{
ASSERT(aBuf.MaxSize() >= KSizeOfFatBootSector);
if(aBuf.Size() < KSizeOfFatBootSector)
aBuf.SetLength(KSizeOfFatBootSector);
TInt pos=0;
Mem::Copy(&aBuf[pos],&iJumpInstruction,3); pos+=3;
Mem::Copy(&aBuf[pos],&iVendorId,KVendorIdSize); pos+=8;
Mem::Copy(&aBuf[pos],&iBytesPerSector,2); pos+=2;
Mem::Copy(&aBuf[pos],&iSectorsPerCluster,1); pos+=1;
Mem::Copy(&aBuf[pos],&iReservedSectors,2); pos+=2;
Mem::Copy(&aBuf[pos],&iNumberOfFats,1); pos+=1;
Mem::Copy(&aBuf[pos],&iRootDirEntries,2); pos+=2;
Mem::Copy(&aBuf[pos],&iTotalSectors,2); pos+=2;
Mem::Copy(&aBuf[pos],&iMediaDescriptor,1); pos+=1;
Mem::Copy(&aBuf[pos],&iFatSectors,2); pos+=2;
Mem::Copy(&aBuf[pos],&iSectorsPerTrack,2); pos+=2;
Mem::Copy(&aBuf[pos],&iNumberOfHeads,2); pos+=2;
Mem::Copy(&aBuf[pos],&iHiddenSectors,4); pos+=4;
Mem::Copy(&aBuf[pos],&iHugeSectors,4); pos+=4;
if(iFatSectors == 0)
{
Mem::Copy(&aBuf[pos], &iFatSectors32,4); pos+=4;
Mem::Copy(&aBuf[pos], &iFATFlags, 2); pos+=2;
Mem::Copy(&aBuf[pos], &iVersionNumber, 2); pos+=2;
Mem::Copy(&aBuf[pos], &iRootClusterNum, 4); pos+=4;
Mem::Copy(&aBuf[pos], &iFSInfoSectorNum, 2);pos+=2;
Mem::Copy(&aBuf[pos], &iBkBootRecSector, 2);pos+=2;
//extra 12 for the reserved bytes
ASSERT(aBuf.Size() >= pos+12);
Mem::FillZ(&aBuf[pos],12);
pos+=12;
}
Mem::Copy(&aBuf[pos],&iPhysicalDriveNumber,1); pos+=1;
Mem::FillZ(&aBuf[pos],1); pos+=1;
Mem::Copy(&aBuf[pos],&iExtendedBootSignature,1);pos+=1;
Mem::Copy(&aBuf[pos],&iUniqueID,4); pos+=4;
Mem::Copy(&aBuf[pos],&iVolumeLabel,KVolumeLabelSize);
pos+=KVolumeLabelSize;
ASSERT(aBuf.MaxSize() >= pos+KFileSysTypeSize);
Mem::Copy(&aBuf[pos],&iFileSysType,KFileSysTypeSize);
}
//-------------------------------------------------------------------------------------------------------------------
#ifdef _DEBUG
/** replaces all non-printable characters in a buffer with spaces */
static void FixDes(TDes& aDes)
{
for(TInt i=0; i< aDes.Length(); ++i)
{
TChar ch=aDes[i];
if(!ch.IsPrint())
aDes[i]=' ';
}
}
#endif
/**
Print out the boot sector info.
*/
void TFatBootSector::PrintDebugInfo() const
{
#ifdef _DEBUG
__PRINT(_L("\n"));
__PRINT(_L("======== BootSector info: ======="));
TBuf<40> buf;
buf.Copy(FileSysType()); FixDes(buf);
__PRINT1(_L("FAT type:%S"), &buf);
buf.Copy(VendorId()); FixDes(buf);
__PRINT1(_L("Vendor ID:%S"), &buf);
__PRINT1(_L("BytesPerSector:%d"),BytesPerSector());
__PRINT1(_L("SectorsPerCluster:%d"),SectorsPerCluster());
__PRINT1(_L("ReservedSectors:%d"),ReservedSectors());
__PRINT1(_L("NumberOfFats:%d"),NumberOfFats());
__PRINT1(_L("RootDirEntries:%d"),RootDirEntries());
__PRINT1(_L("Total Sectors:%d"),TotalSectors());
__PRINT1(_L("MediaDescriptor:0x%x"),MediaDescriptor());
__PRINT1(_L("FatSectors:%d"),FatSectors());
__PRINT1(_L("SectorsPerTrack:%d"),SectorsPerTrack());
__PRINT1(_L("NumberOfHeads:%d"),NumberOfHeads());
__PRINT1(_L("HugeSectors:%d"),HugeSectors());
__PRINT1(_L("Fat32 Sectors:%d"),FatSectors32());
__PRINT1(_L("Fat32 Flags:%d"),FATFlags());
__PRINT1(_L("Fat32 Version Number:%d"),VersionNumber());
__PRINT1(_L("Root Cluster Number:%d"),RootClusterNum());
__PRINT1(_L("FSInfo Sector Number:%d"),FSInfoSectorNum());
__PRINT1(_L("Backup Boot Rec Sector Number:%d"),BkBootRecSector());
__PRINT1(_L("PhysicalDriveNumber:%d"),PhysicalDriveNumber());
__PRINT1(_L("ExtendedBootSignature:%d"),ExtendedBootSignature());
__PRINT1(_L("UniqueID:0x%x"),UniqueID());
buf.Copy(VolumeLabel()); FixDes(buf);
__PRINT1(_L("VolumeLabel:%S"), &buf);
__PRINT(_L("=============================\n"));
#endif
}
//-------------------------------------------------------------------------------------------------------------------
/**
Determine FAT type according to the information from boot sector, see FAT32 specs.
@return FAT type.
*/
TFatType TFatBootSector::FatType(void) const
{
//-- check iBytesPerSector validity; it shall be one of: 512,1024,2048,4096
if(!IsPowerOf2(iBytesPerSector) || iBytesPerSector < 512 || iBytesPerSector > 4096)
return EInvalid; //-- invalid iBytesPerSector value
//-- check iSectorsPerCluster validity, it shall be one of: 1,2,4,8...128
if(!IsPowerOf2(iSectorsPerCluster) || iSectorsPerCluster > 128)
return EInvalid; //-- invalid iSectorsPerCluster value
const TUint32 rootDirSectors = (iRootDirEntries*KSizeOfFatDirEntry + (iBytesPerSector-1)) / iBytesPerSector;
const TUint32 fatSz = iFatSectors ? iFatSectors : iFatSectors32;
const TUint32 totSec = iTotalSectors ? iTotalSectors : iHugeSectors;
const TUint32 dataSec = totSec - (iReservedSectors + (iNumberOfFats * fatSz) + rootDirSectors);
const TUint32 clusterCnt = dataSec / iSectorsPerCluster;
//-- magic. see FAT specs for details.
if(clusterCnt < 4085)
return EFat12;
else if(clusterCnt < 65525)
return EFat16;
else
return EFat32;
}
/** @return The first Fat sector number */
TInt TFatBootSector::FirstFatSector() const
{
__ASSERT_DEBUG(IsValid(), Fault(EFatBadBootSectorParameter));
return ReservedSectors();
}
/**
@return Number of sectors in root directory. 0 for FAT32
*/
TUint32 TFatBootSector::RootDirSectors() const
{
__ASSERT_DEBUG(IsValid(), Fault(EFatBadBootSectorParameter));
return ( (RootDirEntries()*KSizeOfFatDirEntry + (BytesPerSector()-1)) / BytesPerSector() );
}
/** @return Start sector number of the root directory */
TInt TFatBootSector::RootDirStartSector() const
{
__ASSERT_DEBUG(IsValid(), Fault(EFatBadBootSectorParameter));
const TUint32 firstNonFatSec = ReservedSectors() + TotalFatSectors()*NumberOfFats();
if(FatType() == EFat32)
{//-- FAT32 root dir is a file, calculate the position by it's 1st cluster number. FAT[0]+FAT[1] are reserved.
return (firstNonFatSec + (RootClusterNum()-KFatFirstSearchCluster) * SectorsPerCluster());
}
else
{//-- FAT12/16 root dir starts just after the FATs
return firstNonFatSec;
}
}
/** @return first data sector number. for FAT32 it includes the root directory */
TInt TFatBootSector::FirstDataSector() const
{
return( ReservedSectors() + NumberOfFats()*TotalFatSectors() + RootDirSectors() );
}
/** @return FAT-type independent sector count on the volume */
TUint32 TFatBootSector::VolumeTotalSectorNumber() const
{
__ASSERT_DEBUG(IsValid(), Fault(EFatBadBootSectorParameter));
return TotalSectors() >0 ? (TUint32)TotalSectors() : (TUint32)HugeSectors();
}
/** @return FAT-type independent number of sectors in one FAT */
TUint32 TFatBootSector::TotalFatSectors() const
{
__ASSERT_DEBUG(IsValid(), Fault(EFatBadBootSectorParameter));
return FatSectors() >0 ? (TUint32)FatSectors() : FatSectors32();
}
//-------------------------------------------------------------------------------------------------------------------
const TUint32 KLeadSignature = 0x41615252; ///< FSInfo Lead signiture value
const TUint32 KStructureSignature = 0x61417272; ///< FSInfo Structure signiture value
const TUint32 KTrailingSignature = 0xAA550000; ///< FSInfo Trailing signiture
TFSInfo::TFSInfo()
{
Initialise();
}
//-------------------------------------------------------------------------------------------------------------------
/** Initialise the data */
void TFSInfo::Initialise()
{
Mem::FillZ(this, sizeof(TFSInfo));
iLeadSig = KLeadSignature;
iStructureSig = KStructureSignature;
iTrainlingSig = KTrailingSignature;
}
//-------------------------------------------------------------------------------------------------------------------
/**
@return ETrue if FSInfo sector contents seems to be valid
*/
TBool TFSInfo::IsValid() const
{
return (iLeadSig == KLeadSignature && iStructureSig == KStructureSignature && iTrainlingSig == KTrailingSignature);
}
//-------------------------------------------------------------------------------------------------------------------
/**
Initialize FSInfo sector object from the given bufer. Does not validate the data.
@param aBuf buffer with data.
*/
void TFSInfo::Internalize(const TDesC8& aBuf)
{
ASSERT((TUint32)aBuf.Size() >= KSizeOfFSInfo);
TInt pos=0;
Mem::Copy(&iLeadSig, &aBuf[pos],4); pos+=(KFSInfoReserved1Size+4);
Mem::Copy(&iStructureSig, &aBuf[pos],4); pos+=4;
Mem::Copy(&iFreeCount,&aBuf[pos],4); pos+=4;
Mem::Copy(&iNextFree,&aBuf[pos],4); pos+=(4+KFSInfoReserved2Size);
Mem::Copy(&iTrainlingSig,&aBuf[pos],4);
}
//-------------------------------------------------------------------------------------------------------------------
/**
Externalize FSInfo sector object to the given data buffer.
@param aBuf buffer to externalize.
*/
void TFSInfo::Externalize(TDes8& aBuf) const
{
ASSERT((TUint32)aBuf.MaxSize() >= KSizeOfFSInfo);
aBuf.SetLength(KSizeOfFSInfo);
aBuf.FillZ();
TInt pos=0;
Mem::Copy(&aBuf[pos],&KLeadSignature,4); pos+=4;
pos+=KFSInfoReserved1Size;
Mem::Copy(&aBuf[pos],&KStructureSignature,4); pos+=4;
Mem::Copy(&aBuf[pos],&iFreeCount,4); pos+=4;
Mem::Copy(&aBuf[pos],&iNextFree,4); pos+=4;
pos+=KFSInfoReserved2Size;
Mem::Copy(&aBuf[pos],&KTrailingSignature,4);
}
//-------------------------------------------------------------------------------------------------------------------
/**
Print out the FSInfo sector info.
*/
void TFSInfo::PrintDebugInfo() const
{
__PRINT(_L("\n==== FSInfoSector : ===="));
__PRINT1(_L("FSI_LeadSig: 0x%x"),iLeadSig);
__PRINT1(_L("FSI_StrucSig: 0x%x"),iStructureSig);
__PRINT1(_L("FSI_FreeCount: 0x%x"),iFreeCount);
__PRINT1(_L("FSI_NxtFree: 0x%x"),iNextFree);
__PRINT1(_L("FSI_TrailSig: 0x%x"),iTrainlingSig);
__PRINT(_L("========================\n"));
}