/*
* Copyright (c) 2009-2010 Nokia Corporation and/or its subsidiary(-ies).
* All rights reserved.
* This component and the accompanying materials are made available
* under the terms of "Eclipse Public License v1.0"
* which accompanies this distribution, and is available
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
*
* Initial Contributors:
* Nokia Corporation - initial contribution.
*
* Contributors:
*
* Description:
* This file contains unit tests for the test framework itself.
* They should be run if changes have been made to
* to the user side test framework code ie. anything in the dmav2
* directory other than the d_* driver code, or test_cases.cpp
*
*/
#include "d_dma2.h"
#include "u32std.h"
#include "t_dma2.h"
#include "cap_reqs.h"
#define __E32TEST_EXTENSION__
#include <e32test.h>
#include <e32debug.h>
#include <e32svr.h>
static RTest test(_L("t_dma2 test framework tests"));
void RDmaSession::SelfTest(TBool aSimulatedDmac)
{
test.Start(_L("Simple transfer test"));
RDmaSession session;
TInt r = KErrUnknown;
if (aSimulatedDmac)
{
test.Next(_L("Open session (simulated DMA)"));
r = session.OpenSim();
}
else
{
test.Next(_L("Open session"));
r = session.Open();
}
test_KErrNone(r);
test.Next(_L("Get test info"));
TDmaV2TestInfo testInfo;
r = session.GetTestInfo(testInfo);
test_KErrNone(r);
if(gVerboseOutput)
{
Print(testInfo);
}
// Self test just needs 1 channel
// The real test will test all available ones
test.Next(_L("Select test channel"));
TUint testChannel = 0;
if(testInfo.iMaxSbChannels > 0)
{
testChannel = testInfo.iSbChannels[0];
}
else if(testInfo.iMaxDbChannels > 0)
{
testChannel = testInfo.iDbChannels[0];
}
else if(testInfo.iMaxSgChannels > 0)
{
testChannel = testInfo.iSgChannels[0];
}
else
{
test.Printf(_L("Driver exposes no channels to test"));
test(EFalse);
}
test.Printf(_L("using PSL cookie %d (0x%08x)\n"), testChannel, testChannel);
test.Next(_L("Open channel"));
TUint channelCookie=0;
r = session.ChannelOpen(testChannel, channelCookie);
test.Printf(_L("cookie recived = 0x%08x\n"), channelCookie);
test_KErrNone(r);
test.Next(_L("Get Channel caps"));
SDmacCaps channelCaps;
r = session.ChannelCaps(channelCookie, channelCaps);
test_KErrNone(r);
if(gVerboseOutput)
{
PRINT(channelCaps.iChannelPriorities);
PRINT(channelCaps.iChannelPauseAndResume);
PRINT(channelCaps.iAddrAlignedToElementSize);
PRINT(channelCaps.i1DIndexAddressing);
PRINT(channelCaps.i2DIndexAddressing);
PRINT(channelCaps.iSynchronizationTypes);
PRINT(channelCaps.iBurstTransactions);
PRINT(channelCaps.iDescriptorInterrupt);
PRINT(channelCaps.iFrameInterrupt);
PRINT(channelCaps.iLinkedListPausedInterrupt);
PRINT(channelCaps.iEndiannessConversion);
PRINT(channelCaps.iGraphicsOps);
PRINT(channelCaps.iRepeatingTransfers);
PRINT(channelCaps.iChannelLinking);
PRINT(channelCaps.iHwDescriptors);
PRINT(channelCaps.iSrcDstAsymmetry);
PRINT(channelCaps.iAsymHwDescriptors);
PRINT(channelCaps.iBalancedAsymSegments);
PRINT(channelCaps.iAsymCompletionInterrupt);
PRINT(channelCaps.iAsymDescriptorInterrupt);
PRINT(channelCaps.iAsymFrameInterrupt);
PRINT(channelCaps.iReserved[0]);
PRINT(channelCaps.iReserved[1]);
PRINT(channelCaps.iReserved[2]);
PRINT(channelCaps.iReserved[3]);
PRINT(channelCaps.iReserved[4]);
}
test.Next(_L("Get extended Channel caps (TDmacTestCaps)"));
TDmacTestCaps extChannelCaps;
r = session.ChannelCaps(channelCookie, extChannelCaps);
test_KErrNone(r);
test.Printf(_L("PIL version = %d\n"), extChannelCaps.iPILVersion);
const TBool newPil = (extChannelCaps.iPILVersion > 1);
test.Next(_L("Create Dma request - max fragment size 32K"));
TUint reqCookie=0;
r = session.RequestCreateOld(channelCookie, reqCookie, 32 * KKilo);
test.Printf(_L("cookie recived = 0x%08x\n"), reqCookie);
test_KErrNone(r);
if(newPil)
{
test.Next(_L("Create Dma request (with new-style callback)"));
TUint reqCookieNewStyle=0;
r = session.RequestCreate(channelCookie, reqCookieNewStyle);
test.Printf(_L("cookie recived = 0x%08x\n"), reqCookieNewStyle );
test_KErrNone(r);
if(!aSimulatedDmac)
{
test.Next(_L("Fragment for ISR callback"));
const TInt size = 128 * KKilo;
TDmaTransferArgs transferArgs(0, size, size, KDmaMemAddr, KDmaSyncAuto, KDmaRequestCallbackFromIsr);
r = session.FragmentRequest(reqCookieNewStyle, transferArgs);
test_KErrNone(r);
TIsrRequeArgs reque;
test.Next(_L("Queue ISR callback - with default re-queue"));
r = session.QueueRequestWithRequeue(reqCookieNewStyle, &reque, 1);
test_KErrNone(r);
}
test.Next(_L("Destroy new-style Dma request"));
r = session.RequestDestroy(reqCookieNewStyle);
test_KErrNone(r);
test.Next(_L("Attempt to destroy request again "));
r = session.RequestDestroy(reqCookieNewStyle);
test_Equal(KErrNotFound, r);
}
test.Next(_L("Open chunk handle"));
RChunk chunk;
r = session.OpenSharedChunk(chunk);
test_KErrNone(r);
if(gVerboseOutput)
{
test.Printf(_L("chunk base = 0x%08x\n"), chunk.Base());
test.Printf(_L("chunk size = %d\n"), chunk.Size());
}
test(chunk.IsWritable());
test(chunk.IsReadable());
if(!aSimulatedDmac)
{
test.Next(_L("Fragment(old style)"));
const TInt size = 128 * KKilo;
TInt i;
for(i = 0; i<10; i++)
{
TUint64 time = 0;
TDmaTransferArgs transferArgs(0, size, size, KDmaMemAddr);
r = session.FragmentRequestOld(reqCookie, transferArgs, &time);
test_KErrNone(r);
if(gVerboseOutput)
{
test.Printf(_L("%lu us\n"), time);
}
}
test.Next(_L("Queue"));
TRequestStatus status;
for(i = 0; i<10; i++)
{
TUint64 time = 0;
r = session.QueueRequest(reqCookie, status, 0, &time);
User::WaitForRequest(status);
test_KErrNone(r);
if(gVerboseOutput)
{
test.Printf(_L("%lu us\n"), time);
}
}
if(newPil)
{
test.Next(_L("Fragment(new style)"));
TDmaTransferArgs transferArgs;
transferArgs.iSrcConfig.iAddr = 0;
transferArgs.iDstConfig.iAddr = size;
transferArgs.iSrcConfig.iFlags = KDmaMemAddr;
transferArgs.iDstConfig.iFlags = KDmaMemAddr;
transferArgs.iTransferCount = size;
for(i = 0; i<10; i++)
{
TUint64 time = 0;
r = session.FragmentRequest(reqCookie, transferArgs, &time);
test_KErrNone(r);
if(gVerboseOutput)
{
test.Printf(_L("%lu us\n"), time);
}
}
}
test.Next(_L("Queue"));
TCallbackRecord record;
r = session.QueueRequest(reqCookie, &record);
test_KErrNone(r);
test.Next(_L("check TCallbackRecord record"));
if(gVerboseOutput)
{
record.Print();
}
const TCallbackRecord expected(TCallbackRecord::EThread, 1);
if(!(record == expected))
{
test.Printf(_L("TCallbackRecords did not match"));
if(gVerboseOutput)
{
test.Printf(_L("expected:"));
expected.Print();
}
TEST_FAULT;
}
}
test.Next(_L("Destroy Dma request"));
r = session.RequestDestroy(reqCookie);
test_KErrNone(r);
test.Next(_L("Close chunk handle"));
chunk.Close();
test.Next(_L("Channel close"));
r = session.ChannelClose(channelCookie);
test_KErrNone(r);
test.Next(_L("Channel close (same again)"));
r = session.ChannelClose(channelCookie);
test_Equal(KErrNotFound, r);
test.Next(_L("Close session"));
RTest::CloseHandleAndWaitForDestruction(session);
test.End();
}
const SDmacCaps KTestCapSet =
{6, // TInt iChannelPriorities;
EFalse, // TBool iChannelPauseAndResume;
ETrue, // TBool iAddrAlignedToElementSize;
EFalse, // TBool i1DIndexAddressing;
EFalse, // TBool i2DIndexAddressing;
KDmaSyncSizeElement | KDmaSyncSizeFrame |
KDmaSyncSizeBlock, // TUint iSynchronizationTypes;
KDmaBurstSize4 | KDmaBurstSize8, // TUint iBurstTransactions;
EFalse, // TBool iDescriptorInterrupt;
EFalse, // TBool iFrameInterrupt;
EFalse, // TBool iLinkedListPausedInterrupt;
EFalse, // TBool iEndiannessConversion;
0, // TUint iGraphicsOps;
ETrue, // TBool iRepeatingTransfers;
EFalse, // TBool iChannelLinking;
ETrue, // TBool iHwDescriptors;
EFalse, // TBool iSrcDstAsymmetry;
EFalse, // TBool iAsymHwDescriptors;
EFalse, // TBool iBalancedAsymSegments;
EFalse, // TBool iAsymCompletionInterrupt;
EFalse, // TBool iAsymDescriptorInterrupt;
EFalse, // TBool iAsymFrameInterrupt;
{0, 0, 0, 0, 0} // TUint32 iReserved[5];
};
const TDmacTestCaps KDmacTestCapsV1(KTestCapSet, 1);
const TDmacTestCaps KDmacTestCapsV2(KTestCapSet, 2);
void TDmaCapability::SelfTest()
{
test.Start(_L("Unit test_Value of TDmaCapability::CompareToDmaCaps\n"));
// Note: The construction of the test description message
// is horribly confusing. The _L macro will make the
// *first* string token wide, but not the next two.
// Therefore these must be made wide or compilier
// will complain about concatination of narrow and wide string
// literals
#define CAP_TEST(CAP, CAPSET, EXPCT)\
{\
test.Next(_L(#CAP L" against " L ## #CAPSET));\
TResult t = (CAP).CompareToDmaCaps(CAPSET);\
test_Equal(EXPCT, t);\
}
CAP_TEST(none, KTestCapSet, ERun);
CAP_TEST(pauseRequired, KTestCapSet, EFail);
CAP_TEST(pauseRequired_skip, KTestCapSet, ESkip);
CAP_TEST(pauseNotWanted, KTestCapSet, ERun);
CAP_TEST(hwDesNotWanted, KTestCapSet, EFail);
CAP_TEST(hwDesNotWanted_skip, KTestCapSet, ESkip);
CAP_TEST(hwDesWanted, KTestCapSet, ERun);
CAP_TEST(capEqualV1, KDmacTestCapsV1, ERun);
CAP_TEST(capEqualV2, KDmacTestCapsV2, ERun);
CAP_TEST(capEqualV1, KDmacTestCapsV2, ESkip);
CAP_TEST(capEqualV2, KDmacTestCapsV1, ESkip);
CAP_TEST(capEqualV2Fatal, KDmacTestCapsV1, EFail);
CAP_TEST(capAboveV1, KDmacTestCapsV2, ERun);
CAP_TEST(capBelowV2, KDmacTestCapsV1, ERun);
CAP_TEST(capAboveV1, KDmacTestCapsV1, ESkip);
CAP_TEST(capBelowV2, KDmacTestCapsV2, ESkip);
test.End();
}
void TTestCase::SelfTest()
{
test.Start(_L("Unit test of TTestCase::TestCaseValid\n"));
// Create a TTestCase with paramaters CAP1 and CAP2
// call TTestCase::TestCaseValid against CAPSET
// Expected result is EXPCT
#define TEST_TEST_CASE(CAP1, CAP2, CAPSET, EXPCT)\
{\
test.Next(_L(#CAP1 L", " L ## #CAP2 L" -- Against: " L ## #CAPSET L", Expect: " L ## #EXPCT));\
TTestCase testCase(NULL, EFalse, CAP1, CAP2);\
testCase.iChannelCaps[0] = (CAP1);\
TResult t = testCase.TestCaseValid(CAPSET);\
test_Equal(EXPCT, t);\
}
TEST_TEST_CASE(pauseRequired, hwDesNotWanted, KTestCapSet, EFail);
TEST_TEST_CASE(pauseRequired_skip, hwDesNotWanted, KTestCapSet, EFail);
TEST_TEST_CASE(pauseRequired_skip, hwDesNotWanted_skip, KTestCapSet, ESkip);
TEST_TEST_CASE(pauseNotWanted, hwDesNotWanted_skip, KTestCapSet, ESkip);
TEST_TEST_CASE(pauseNotWanted, hwDesWanted, KTestCapSet, ERun);
TEST_TEST_CASE(pauseNotWanted, none, KTestCapSet, ERun);
TEST_TEST_CASE(pauseNotWanted, capAboveV1, KDmacTestCapsV1, ESkip);
TEST_TEST_CASE(pauseNotWanted, capAboveV1, KDmacTestCapsV2, ERun);
TEST_TEST_CASE(pauseNotWanted, capBelowV2, KDmacTestCapsV1, ERun);
TEST_TEST_CASE(pauseNotWanted, capBelowV2, KDmacTestCapsV2, ESkip);
// contradictory requirements
TEST_TEST_CASE(capAboveV1, capBelowV2, KDmacTestCapsV2, ESkip);
TEST_TEST_CASE(capBelowV2, capAboveV1, KDmacTestCapsV2, ESkip);
TEST_TEST_CASE(capAboveV1, capBelowV2, KDmacTestCapsV1, ESkip);
TEST_TEST_CASE(capBelowV2, capAboveV1, KDmacTestCapsV1, ESkip);
test.End();
test.Close();
}
void TTransferIter::SelfTest()
{
test.Start(_L("No skip"));
const TUint8 src[9] = {
1 ,2, 3,
4, 5, 6,
7, 8, 9
};
const TUint32 addr = (TUint32)src;
const TUint elementSize = 1;
const TUint elementSkip = 0;
const TUint elementsPerFrame = 3;
const TUint frameSkip = 0;
const TUint framesPerTransfer = 3;
TDmaTransferConfig cfg(addr, elementSize, elementsPerFrame, framesPerTransfer,
elementSkip, frameSkip, KDmaMemAddr
);
TTransferIter iter(cfg, 0);
TTransferIter end;
TInt i;
for(i = 0; i<9; i++, ++iter)
{
test_Equal(src[i],*iter);
};
test.Next(_L("90 degree rotation"));
// Now imagine that we wanted to perform a rotation
// as we write, so that we wrote out the following
const TUint8 expected[9] = {
7, 4, 1,
8, 5, 2,
9, 6, 3
};
TUint8 dst[9] = {0};
TDmaTransferConfig dst_cfg(cfg);
dst_cfg.iAddr = (TUint32)&dst[2];
dst_cfg.iElementSkip = 2;
dst_cfg.iFrameSkip = -8;
TTransferIter dst_iter(dst_cfg, 0);
for(i=0; dst_iter != end; i++, ++dst_iter)
{
TEST_ASSERT(i<9);
*dst_iter=src[i];
};
for(i=0; i<9; i++)
{
test_Equal(expected[i],dst[i]);
}
}
void TCallbackRecord::SelfTest()
{
test.Start(_L("SelfTest of TCallbackRecord"));
test.Next(_L("create default TCallbackRecord record, record2"));
TCallbackRecord record;
const TCallbackRecord record2;
if(gVerboseOutput)
{
test.Next(_L("Print record"));
record.Print();
}
test.Next(_L("test (record == record2)"));
if(!(record == record2))
{
if(gVerboseOutput)
{
record2.Print();
}
TEST_FAULT;
}
//A series of callback masks
//Note these combinations do not necessarily represent
//possible callback combinations
TUint callbacks[] =
{
EDmaCallbackDescriptorCompletion,
EDmaCallbackDescriptorCompletion,
EDmaCallbackDescriptorCompletion,
EDmaCallbackDescriptorCompletion,
EDmaCallbackFrameCompletion_Src,
EDmaCallbackFrameCompletion_Dst,
EDmaCallbackDescriptorCompletion_Src | EDmaCallbackDescriptorCompletion_Dst,
EDmaCallbackDescriptorCompletion_Src | EDmaCallbackFrameCompletion_Src | EDmaCallbackLinkedListPaused_Dst,
EDmaCallbackRequestCompletion | EDmaCallbackRequestCompletion_Src,
EDmaCallbackDescriptorCompletion_Dst
};
test.Next(_L("Feed a series of callback masks in to record"));
const TInt length = ARRAY_LENGTH(callbacks);
for(TInt i = 0; i < length; i++)
{
record.ProcessCallback(callbacks[i], EDmaResultOK);
}
if(gVerboseOutput)
{
test.Next(_L("Print record"));
record.Print();
}
test.Next(_L("test GetCount"));
test_Equal(1, record.GetCount(EDmaCallbackRequestCompletion));
test_Equal(1, record.GetCount(EDmaCallbackRequestCompletion_Src));
test_Equal(0, record.GetCount(EDmaCallbackRequestCompletion_Dst));
test_Equal(4, record.GetCount(EDmaCallbackDescriptorCompletion));
test_Equal(2, record.GetCount(EDmaCallbackDescriptorCompletion_Src));
test_Equal(2, record.GetCount(EDmaCallbackDescriptorCompletion_Dst));
test_Equal(0, record.GetCount(EDmaCallbackFrameCompletion));
test_Equal(2, record.GetCount(EDmaCallbackFrameCompletion_Src));
test_Equal(1, record.GetCount(EDmaCallbackFrameCompletion_Dst));
test_Equal(0, record.GetCount(EDmaCallbackLinkedListPaused));
test_Equal(0, record.GetCount(EDmaCallbackLinkedListPaused_Src));
test_Equal(1, record.GetCount(EDmaCallbackLinkedListPaused_Dst));
test.Next(_L("test expected == record"));
const TCallbackRecord expected(TCallbackRecord::EThread, 1, 1, 0, 4, 2, 2, 0, 2, 1, 0, 0, 1);
if(!(expected == record))
{
if(gVerboseOutput)
{
expected.Print();
}
TEST_FAULT;
}
test.Next(_L("modify record: test expected != record"));
record.SetCount(EDmaCallbackFrameCompletion, 10);
if(expected == record)
{
if(gVerboseOutput)
{
expected.Print();
}
TEST_FAULT;
}
test.Next(_L("test Reset()"));
record.Reset();
test(record == record2);
test.End();
}
void CDmaBenchmark::SelfTest()
{
test.Start(_L("SelfTest of CDmaBenchmark"));
test.Next(_L("MeanResult()"));
// The mean of these numbers is 10
TUint64 results[] = {8, 12, 1, 19, 3, 17, 10};
const TInt count = ARRAY_LENGTH(results);
CDmaBmFragmentation fragTest(_L("SelfTest"), count, TDmaTransferArgs(), 0);
for(TInt i = 0; i < count; i++)
{
fragTest.iResultArray.Append(results[i]);
}
test_Equal(10, fragTest.MeanResult());
test.End();
}
void TAddrRange::SelfTest()
{
test.Start(_L("SelfTest of TAddrRange"));
TAddrRange a(0, 8);
TAddrRange b(8, 8);
test_Equal(7, a.End());
test_Equal(15, b.End());
test(!a.Overlaps(b));
test(!b.Overlaps(a));
test(a.Overlaps(a));
test(b.Overlaps(b));
TAddrRange c(7, 2);
test_Equal(8, c.End());
test(a.Overlaps(c));
test(c.Overlaps(a));
test(b.Overlaps(c));
test(c.Overlaps(b));
TAddrRange d(0, 24);
test(a.Overlaps(d));
test(d.Overlaps(a));
test(b.Overlaps(d));
test(d.Overlaps(b));
test(d.Contains(d));
test(d.Contains(a));
test(!a.Contains(d));
test(d.Contains(b));
test(!b.Contains(d));
test(!a.Contains(b));
test(!b.Contains(a));
test.Next(_L("Test IsFilled()"));
TUint8 buffer[] = {0,0,0,0};
TAddrRange range((TUint)buffer, 4);
test(range.IsFilled(0));
buffer[3] = 1;
test(!range.IsFilled(0));
buffer[2] = 1;
buffer[1] = 1;
buffer[0] = 1;
test(range.IsFilled(1));
test.End();
}
void TAddressParms::SelfTest()
{
test.Start(_L("SelfTest of TAddressParms"));
const TAddressParms pA(0, 32, 8);
test(pA == pA);
test(pA.Overlaps(pA));
const TAddrRange rA(4, 8);
const TAddrRange rB(16, 8);
const TAddrRange rC(28, 8);
const TAddrRange rD(4, 32);
test(pA.Overlaps(rA));
test(!pA.Overlaps(rB));
test(pA.Overlaps(rC));
test(pA.Overlaps(rD));
const TAddressParms pB(8, 16, 8);
test(!(pA == pB));
test(!(pB == pA));
test(!pA.Overlaps(pB));
test(!pB.Overlaps(pA));
const TAddressParms pC(8, 28, 8);
test(pC.Overlaps(pA));
test(pC.Overlaps(pB));
const TAddressParms pD(0, 128, 64);
test(pD.Overlaps(pA));
test(pD.Overlaps(pB));
test(pD.Overlaps(pC));
test.End();
}
void TIsrRequeArgsSet::SelfTest()
{
test.Start(_L("Selftest of TIsrRequeArgsSet"));
TUint size = 0x1000;
TDmaTransferArgs tferArgs(0, 1*size, size, KDmaMemAddr, KDmaSyncAuto, KDmaRequestCallbackFromIsr);
TIsrRequeArgs requeArgArray[] = {
TIsrRequeArgs(), // Repeat
TIsrRequeArgs(KPhysAddrInvalidUser, 2*size, 0), // Change destination
TIsrRequeArgs(), // Repeat
TIsrRequeArgs(3*size, KPhysAddrInvalidUser, 0), // Change source
TIsrRequeArgs(), // Repeat
};
TIsrRequeArgsSet argSet(requeArgArray, ARRAY_LENGTH(requeArgArray));
test.Next(_L("Test that Substitute updates transfer args in order"));
argSet.Substitute(tferArgs);
TAddressParms expectedFinal(3*size, 2*size, size);
if(!(expectedFinal == argSet.iRequeArgs[4]))
{
TBuf<0x100> out;
out += _L("substitue: ");
GetAddrParms(tferArgs).AppendString(out);
test.Printf(out);
out.Zero();
out += _L("\nexpected final: ");
expectedFinal.AppendString(out);
test.Printf(out);
out.Zero();
out += _L("\nactual: ");
argSet.iRequeArgs[4].AppendString(out);
test.Printf(out);
test(EFalse);
}
TIsrRequeArgs requeArgArray2[] = {
TIsrRequeArgs(), // Repeat
TIsrRequeArgs(KPhysAddrInvalidUser, 2*size, 0), // Change destination
TIsrRequeArgs(KPhysAddrInvalidUser, 1*size, 0), // Change destination back
};
argSet = TIsrRequeArgsSet(requeArgArray2, ARRAY_LENGTH(requeArgArray2));
test.Next(_L("CheckRange(), negative"));
test(!argSet.CheckRange(0, (2 * size) - 1, tferArgs));
test(!argSet.CheckRange(0, (2 * size) + 1, tferArgs));
test(!argSet.CheckRange(0, (2 * size), tferArgs));
test(!argSet.CheckRange(1 ,(3 * size), tferArgs));
test(!argSet.CheckRange(1 ,(3 * size) + 1, tferArgs));
test(!argSet.CheckRange(1 * size , 2 * size, tferArgs));
test.Next(_L("CheckRange(), positive"));
test(argSet.CheckRange(0, 3 * size, tferArgs));
test(argSet.CheckRange(0, 3 * size+1, tferArgs));
test(argSet.CheckRange(0, 4 * size, tferArgs));
test.End();
}
void RArrayCopyTestL()
{
test.Start(_L("Selftest of RArray CopyL"));
RArray<TInt> orig;
TInt i; // VC++
for(i=0; i<10; i++)
{
orig.AppendL(i);
}
RArray<TInt> newArray;
CopyL(orig, newArray);
test_Equal(10, newArray.Count());
for(i=0; i<10; i++)
{
test_Equal(orig[i], newArray[i])
}
orig.Close();
newArray.Close();
test.End();
}
void RArrayInsertLTest()
{
test.Start(_L("Selftest of RArray InsertL"));
RArray<TInt> array;
TInt numbers[10] = {0,1,2,3,4,5,6,7,8,9};
ArrayAppendL(array, &numbers[0], numbers + ARRAY_LENGTH(numbers));
test_Equal(10, array.Count());
for(TInt i=0; i<10; i++)
{
test_Equal(numbers[i], array[i])
}
array.Close();
test.End();
}
/**
Run check buffers on the supplied TAddressParms array
*/
TBool DoTferParmTestL(const TAddressParms* aParms, TInt aCount, TBool aAllowRepeat, TBool aPositive)
{
_LIT(KPositive, "positive");
_LIT(KNegative, "negative");
test.Printf(_L("CheckBuffers %S test: %d args, repeats allowed %d\n"),
(aPositive ? &KPositive : &KNegative), aCount, aAllowRepeat);
RArray<const TAddressParms> array;
ArrayAppendL(array, aParms, aParms + aCount);
TPreTransferIncrBytes preTran;
TBool r = preTran.CheckBuffers(array, aAllowRepeat);
array.Close();
return r;
}
void TPreTransferIncrBytes::SelfTest()
{
// Test that TPreTransferIncrBytes::CheckBuffers can identify
// overlapping buffers
test.Start(_L("Selftest of TPreTransferIncrBytes"));
// Macro generates test for 2 element array
#define TPARM_TEST2(EXPECT, ALLOW_REPEAT, EL0, EL1)\
{\
TAddressParms set[2] = {EL0, EL1}; \
const TBool r = DoTferParmTestL(set, 2, ALLOW_REPEAT, EXPECT);\
test_Equal(EXPECT, r);\
}
// Generate positive 2 element test
#define TPARM_TEST2_POSITIVE(ALLOW_REPEAT, EL0, EL1) TPARM_TEST2(ETrue, ALLOW_REPEAT, EL0, EL1)
// Generate negative 2 element test
#define TPARM_TEST2_NEG(ALLOW_REPEAT, EL0, EL1) TPARM_TEST2(EFalse, ALLOW_REPEAT, EL0, EL1)
// Macro generates test for 3 element array
#define TPARM_TEST3(EXPECT, ALLOW_REPEAT, EL0, EL1, EL2)\
{\
TAddressParms set[3] = {EL0, EL1, EL2}; \
const TBool r = DoTferParmTestL(set, 3, ALLOW_REPEAT, EXPECT);\
test_Equal(EXPECT, r);\
}
// Generate positive 3 element test
#define TPARM_TEST3_POSITIVE(ALLOW_REPEAT, EL0, EL1, EL2) TPARM_TEST3(ETrue, ALLOW_REPEAT, EL0, EL1, EL2)
// Generate negative 3 element test
#define TPARM_TEST3_NEG(ALLOW_REPEAT, EL0, EL1, EL2) TPARM_TEST3(EFalse, ALLOW_REPEAT, EL0, EL1, EL2)
TPARM_TEST2_POSITIVE(EFalse, TAddressParms(0,16,16), TAddressParms(32, 48, 16));
TPARM_TEST2_POSITIVE(ETrue, TAddressParms(0, 16, 16), TAddressParms(0, 16, 16)); // both overlap (repeat allowed)
TPARM_TEST2_NEG(EFalse, TAddressParms(0,16,16), TAddressParms(24, 40, 16)); // second source depends on first destination
TPARM_TEST2_NEG(EFalse, TAddressParms(0,16,16), TAddressParms(16, 0, 16)); // second dest overwrites first source
TPARM_TEST2_NEG(EFalse, TAddressParms(0, 16, 16), TAddressParms(0, 16, 16)); // both overlap (repeat not allowed)
TPARM_TEST2_NEG(ETrue, TAddressParms(0, 16, 16), TAddressParms(0, 20, 16)); // exact repeat allowed, but overlap is only partial
TPARM_TEST2_NEG(ETrue, TAddressParms(0, 16, 16), TAddressParms(32, 16, 16)); // exact repeat allowed, but 2nd overwrites first dest
TPARM_TEST3_POSITIVE(EFalse, TAddressParms(0,16,16), TAddressParms(32, 48, 16), TAddressParms(64, 128, 64)); // no overlaps
TPARM_TEST3_POSITIVE(ETrue, TAddressParms(0, 16, 16), TAddressParms(0, 16, 16), TAddressParms(0, 16, 16)); // all overlap (repeat allowed)
TPARM_TEST3_POSITIVE(EFalse, TAddressParms(0,16,16), TAddressParms(0, 32, 16), TAddressParms(0, 48, 16)); // no overlaps (1 src to 3 dsts)
TPARM_TEST3_NEG(EFalse, TAddressParms(0,16,16), TAddressParms(128, 256, 128), TAddressParms(24, 40, 16)); // 3rd source depends on first destination
TPARM_TEST3_NEG(EFalse, TAddressParms(0,16,16), TAddressParms(128, 256, 128), TAddressParms(16, 0, 16)); // 3rd dest overwrites first source
TPARM_TEST3_NEG(EFalse, TAddressParms(0, 16, 16), TAddressParms(0, 16, 16), TAddressParms(0, 16, 16)); // all overlap (repeat not allowed)
test.Next(_L("CheckBuffers(RArray<TAddressParms>)"));
}
void SelfTests()
{
test.Next(_L("Running framework unit tests"));
#ifndef __WINS__
// Cannot connect real driver on Emulator - only
// simulator
RDmaSession::SelfTest(EFalse);
#endif
RDmaSession::SelfTest(ETrue);
TDmaCapability::SelfTest();
TTestCase::SelfTest();
TTransferIter::SelfTest();
TCallbackRecord::SelfTest();
CDmaBmFragmentation::SelfTest();
TAddrRange::SelfTest();
TAddressParms::SelfTest();
TIsrRequeArgsSet::SelfTest();
RArrayCopyTestL();
RArrayInsertLTest();
TPreTransferIncrBytes::SelfTest();
test.End();
test.Close();
}