// Copyright (c) 2004-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32test\mmu\d_sharedchunk.cpp
//
//
#include <kernel/kern_priv.h>
#include <kernel/cache.h>
#include "d_sharedchunk.h"
TBool PhysicalCommitSupported = ETrue;
#ifdef __EPOC32__
#define TEST_PHYSICAL_COMMIT
#endif
static volatile TInt ChunkDestroyedCount=1; // Test counter
//
// Class definitions
//
class DSharedChunkFactory : public DLogicalDevice
{
public:
~DSharedChunkFactory();
virtual TInt Install();
virtual void GetCaps(TDes8& aDes) const;
virtual TInt Create(DLogicalChannelBase*& aChannel);
TInt ClaimMemory();
void ReleaseMemory();
TInt AllocMemory(TInt aSize, TUint32& aPhysAddr);
void FreeMemory(TInt aSize,TUint32 aPhysAddr);
void LockWait();
void LockSignal();
private:
NFastMutex iLock;
public:
TBool iMemoryInUse;
TUint32 iPhysBase;
TUint32 iPhysEnd;
TUint32 iPhysNext;
TInt* iDummyCell;
};
class DSharedChunkChannel : public DLogicalChannelBase
{
public:
DSharedChunkChannel();
~DSharedChunkChannel();
virtual TInt DoCreate(TInt aUnit, const TDesC8* anInfo, const TVersion& aVer);
virtual TInt Request(TInt aFunction, TAny* a1, TAny* a2);
DChunk* OpenChunk(TLinAddr* aKernelAddr=0, TInt* aMaxSize=0);
inline void LockWait()
{ iFactory->LockWait(); }
inline void LockSignal()
{ iFactory->LockSignal(); }
TUint32 DfcReadWrite(TUint32* aPtr, TUint32 aValue);
TUint32 IsrReadWrite(TUint32* aPtr, TUint32 aValue);
public:
DSharedChunkFactory* iFactory;
DChunk* iChunk;
TLinAddr iKernelAddress;
TInt iMaxSize;
};
class TChunkCleanup : public TDfc
{
public:
TChunkCleanup(DSharedChunkFactory* aFactory,TBool aReleasePhysicalMemory);
~TChunkCleanup();
static void ChunkDestroyed(TChunkCleanup* aSelf);
void Cancel();
public:
DSharedChunkFactory* iFactory;
TBool iReleasePhysicalMemory;
};
//
// TChunkCleanup
//
TChunkCleanup::TChunkCleanup(DSharedChunkFactory* aFactory,TBool aReleasePhysicalMemory)
: TDfc((TDfcFn)TChunkCleanup::ChunkDestroyed,this,Kern::SvMsgQue(),0)
, iFactory(0), iReleasePhysicalMemory(aReleasePhysicalMemory)
{
aFactory->Open();
iFactory = aFactory;
}
TChunkCleanup::~TChunkCleanup()
{
if(iFactory)
iFactory->Close(0);
}
void TChunkCleanup::ChunkDestroyed(TChunkCleanup* aSelf)
{
__KTRACE_OPT(KMMU,Kern::Printf("D_SHAREDCHUNK ChunkDestroyed DFC\n"));
DSharedChunkFactory* factory = aSelf->iFactory;
if(factory)
{
factory->LockWait();
if(aSelf->iReleasePhysicalMemory)
factory->ReleaseMemory();
factory->LockSignal();
__e32_atomic_add_ord32(&ChunkDestroyedCount, 1);
__KTRACE_OPT(KMMU,Kern::Printf("D_SHAREDCHUNK ChunkDestroyedCount=%d\n",ChunkDestroyedCount));
}
delete aSelf;
}
void TChunkCleanup::Cancel()
{
if(iFactory)
{
iFactory->Close(0);
iFactory = 0;
}
};
//
// DSharedChunkFactory
//
TInt DSharedChunkFactory::Install()
{
TUint mm=Kern::HalFunction(EHalGroupKernel,EKernelHalMemModelInfo,0,0)&EMemModelTypeMask;
PhysicalCommitSupported = mm!=EMemModelTypeDirect && mm!=EMemModelTypeEmul;
#ifdef __EPOC32__
if(PhysicalCommitSupported)
{
TInt physSize = 4096*1024;
TInt r=Epoc::AllocPhysicalRam(physSize, iPhysBase);
if(r!=KErrNone)
return r;
iPhysNext = iPhysBase;
iPhysEnd = iPhysBase+physSize;
iMemoryInUse = EFalse;
}
#endif
// Make sure there is enough space on kernel heap to that heap doesn't need
// to expand when allocating objects. (Required for OOM and memory leak testing.)
TAny* expandHeap = Kern::Alloc(16*1024);
iDummyCell = new TInt;
Kern::Free(expandHeap);
return SetName(&KSharedChunkLddName);
}
DSharedChunkFactory::~DSharedChunkFactory()
{
#ifdef __EPOC32__
if(PhysicalCommitSupported)
Epoc::FreePhysicalRam(iPhysBase, iPhysEnd-iPhysBase);
#endif
delete iDummyCell;
}
void DSharedChunkFactory::GetCaps(TDes8& /*aDes*/) const
{
// Not used but required as DLogicalDevice::GetCaps is pure virtual
}
TInt DSharedChunkFactory::Create(DLogicalChannelBase*& aChannel)
{
aChannel = NULL;
DSharedChunkChannel* channel=new DSharedChunkChannel;
if(!channel)
return KErrNoMemory;
channel->iFactory = this;
aChannel = channel;
return KErrNone;
}
void DSharedChunkFactory::LockWait()
{
NKern::FMWait(&iLock);
}
void DSharedChunkFactory::LockSignal()
{
NKern::FMSignal(&iLock);
}
TInt DSharedChunkFactory::AllocMemory(TInt aSize, TUint32& aPhysAddr)
{
if(!PhysicalCommitSupported)
aSize = 0;
TInt r=KErrNone;
Kern::RoundToPageSize(aSize);
LockWait();
if(iPhysNext+aSize>iPhysEnd)
r = KErrNoMemory;
else
{
aPhysAddr = iPhysNext;
iPhysNext += aSize;
}
LockSignal();
return r;
}
TInt DSharedChunkFactory::ClaimMemory()
{
if (__e32_atomic_swp_ord32(&iMemoryInUse, 1))
return KErrInUse;
iPhysNext = iPhysBase; // reset allocation pointer
return KErrNone;
}
void DSharedChunkFactory::ReleaseMemory()
{
iMemoryInUse=EFalse;
}
void DSharedChunkFactory::FreeMemory(TInt aSize,TUint32 aPhysAddr)
{
if(!PhysicalCommitSupported)
aSize = 0;
if(iPhysNext!=aPhysAddr+aSize)
{ FAULT(); } // Only support freeing from the end
Kern::RoundToPageSize(aSize);
LockWait();
iPhysNext -= aSize;
LockSignal();
}
DECLARE_STANDARD_LDD()
{
return new DSharedChunkFactory;
}
//
// DSharedChunkChannel
//
TInt DSharedChunkChannel::DoCreate(TInt /*aUnit*/, const TDesC8* /*aInfo*/, const TVersion& /*aVer*/)
{
return KErrNone;
}
DSharedChunkChannel::DSharedChunkChannel()
{
}
DSharedChunkChannel::~DSharedChunkChannel()
{
if(iChunk)
iChunk->Close(0);
}
void DoDfcReadWrite(TUint32* aArgs)
{
TUint32* ptr = (TUint32*)aArgs[0];
TUint32 value = aArgs[1];
aArgs[1] = *ptr;
*ptr = value;
NKern::FSSignal((NFastSemaphore*)aArgs[2]);
}
TUint32 DSharedChunkChannel::DfcReadWrite(TUint32* aPtr, TUint32 aValue)
{
NFastSemaphore sem;
NKern::FSSetOwner(&sem,0);
TUint32 args[3];
args[0] = (TUint32)aPtr;
args[1] = aValue;
args[2] = (TUint32)&sem;
TDfc dfc((TDfcFn)DoDfcReadWrite,&args,Kern::SvMsgQue(),0);
dfc.Enque();
NKern::FSWait(&sem);
return args[1];
}
void DoIsrReadWrite(TUint32* aArgs)
{
TUint32* ptr = (TUint32*)aArgs[0];
TUint32 value = aArgs[1];
aArgs[1] = *ptr;
*ptr = value;
((TDfc*)aArgs[2])->Add();
}
void DoIsrReadWriteDfcCallback(TUint32* aArgs)
{
NKern::FSSignal((NFastSemaphore*)aArgs);
}
TUint32 DSharedChunkChannel::IsrReadWrite(TUint32* aPtr, TUint32 aValue)
{
NFastSemaphore sem;
NKern::FSSetOwner(&sem,0);
TDfc dfc((TDfcFn)DoIsrReadWriteDfcCallback,&sem,Kern::SvMsgQue(),0);
TUint32 args[3];
args[0] = (TUint32)aPtr;
args[1] = aValue;
args[2] = (TUint32)&dfc;
NTimer timer((NTimerFn)DoIsrReadWrite,&args);
timer.OneShot(1);
NKern::FSWait(&sem);
return args[1];
}
DChunk* DSharedChunkChannel::OpenChunk(TLinAddr* aKernelAddr,TInt* aMaxSize)
{
__ASSERT_CRITICAL // Thread must be in critical section (to avoid leaking access count on chunk)
LockWait();
DChunk* chunk=iChunk;
if(chunk)
if(chunk->Open()!=KErrNone)
chunk = NULL;
if(aKernelAddr)
*aKernelAddr = chunk ? iKernelAddress : NULL;
if(aMaxSize)
*aMaxSize = chunk ? iMaxSize : 0;
LockSignal();
return chunk;
}
TUint8 ReadByte(volatile TUint8* aPtr)
{
return *aPtr;
}
void signal_sem(TAny* aPtr)
{
NKern::FSSignal((NFastSemaphore*)aPtr);
}
TInt WaitForIdle()
{
NFastSemaphore s(0);
TDfc idler(&signal_sem, &s, Kern::SvMsgQue(), 0); // supervisor thread, priority 0, so will run after destroyed DFC
NTimer timer(&signal_sem, &s);
idler.QueueOnIdle();
timer.OneShot(NKern::TimerTicks(5000), ETrue); // runs in DFCThread1
NKern::FSWait(&s); // wait for either idle DFC or timer
TBool timeout = idler.Cancel(); // cancel idler, return TRUE if it hadn't run
TBool tmc = timer.Cancel(); // cancel timer, return TRUE if it hadn't expired
if (!timeout && !tmc)
NKern::FSWait(&s); // both the DFC and the timer went off - wait for the second one
if (timeout)
return KErrTimedOut;
return KErrNone;
}
TInt WaitForIdle2()
{
TInt r = WaitForIdle(); // wait for chunk async delete
if(r==KErrNone)
r = WaitForIdle(); // wait for chunk destroyed notification DFC
return r;
}
TInt DSharedChunkChannel::Request(TInt aFunction, TAny* a1, TAny* a2)
{
TInt i1 = (TInt)a1;
TInt i2 = (TInt)a2;
TInt r=KErrNotSupported;
switch(aFunction)
{
case RSharedChunkLdd::ECreateChunk:
{
NKern::ThreadEnterCS();
if (__e32_atomic_load_acq32(&ChunkDestroyedCount)==0)
{
WaitForIdle2(); // Go idle for a while to let chunk cleanup DFCs to be called
}
// Create cleanup item
TBool chunkUsesPhysicalMemory = (i1&EOwnsMemory)==0;
TChunkCleanup* cleanup = new TChunkCleanup(this->iFactory,chunkUsesPhysicalMemory);
if(!cleanup)
{
NKern::ThreadLeaveCS();
return KErrNoMemory;
}
// Try and create chunk...
DChunk* chunk;
TChunkCreateInfo info;
info.iType = (i1&EMultiple)
? TChunkCreateInfo::ESharedKernelMultiple
: TChunkCreateInfo::ESharedKernelSingle;
info.iMaxSize = i1&~ECreateFlagsMask;
#ifdef __EPOC32__
info.iMapAttr = (i1&ECached) ? EMapAttrCachedMax
: (i1&EBuffered) ? EMapAttrBufferedC
: EMapAttrFullyBlocking;
#endif
info.iOwnsMemory = (i1&EOwnsMemory)!=0;
info.iDestroyedDfc = cleanup;
if(i1&EBadType) *(TUint8*)&info.iType = 0xff;
TUint32 mapAttr;
TUint32 kernAddr;
r = Kern::ChunkCreate(info, chunk, kernAddr, mapAttr);
if(r!=KErrNone)
{
delete cleanup;
NKern::ThreadLeaveCS();
return r;
}
// Setup data members
LockWait();
if(iChunk)
r = KErrAlreadyExists;
else
{
if(chunkUsesPhysicalMemory)
r = iFactory->ClaimMemory();
if(r==KErrNone)
{
iChunk = chunk;
iKernelAddress = kernAddr;
iMaxSize = info.iMaxSize;
__e32_atomic_store_ord32(&ChunkDestroyedCount,0);
}
}
LockSignal();
if(r!=KErrNone)
{
// There was an error, so discard created chunk
cleanup->Cancel();
Kern::ChunkClose(chunk);
NKern::ThreadLeaveCS();
return r;
}
NKern::ThreadLeaveCS();
// Write back kernel address of chunk
if(a2)
kumemput32(a2,(TAny*)&kernAddr,4);
return KErrNone;
}
case RSharedChunkLdd::EGetChunkHandle:
{
TInt isThreadLocal = (TInt)a1;
TOwnerType ownertype;
if (isThreadLocal)
ownertype = EOwnerThread;
else
ownertype = EOwnerProcess;
NKern::ThreadEnterCS();
DChunk* chunk=OpenChunk();
if(chunk)
{
r = Kern::MakeHandleAndOpen(0,chunk,ownertype);
chunk->Close(0);
}
else
r = KErrNotFound;
NKern::ThreadLeaveCS();
return r;
}
case RSharedChunkLdd::ECloseChunkHandle:
{
NKern::ThreadEnterCS();
r = Kern::CloseHandle(0,i1);
NKern::ThreadLeaveCS();
return r;
}
case RSharedChunkLdd::ECommitMemory:
{
NKern::ThreadEnterCS();
TUint32 chunkKernelAddress;
DChunk* chunk=OpenChunk(&chunkKernelAddress);
if(chunk)
{
TInt type = i1&ECommitTypeMask;
i1 &= ~ECommitTypeMask;
switch(type)
{
case EDiscontiguous:
r = Kern::ChunkCommit(chunk,i1,i2);
break;
case EContiguous:
{
TUint32 physAddr=~0u;
r = Kern::ChunkCommitContiguous(chunk,i1,i2,physAddr);
if(r!=KErrNone || i2==0)
break;
if(physAddr==~0u)
{ r=KErrGeneral; break; }
// Check that ChunkPhysicalAddress returns addresses consistant with the commit
TUint32 kernAddr;
TUint32 mapAttr;
TUint32 physAddr2;
r = Kern::ChunkPhysicalAddress(chunk, i1, i2, kernAddr, mapAttr, physAddr2);
if(r==KErrNone)
if(kernAddr!=chunkKernelAddress+i1 || physAddr2!=physAddr)
r=KErrGeneral;
if(r==KErrNone)
{
// Exercise memory sync functions
Cache::SyncMemoryBeforeDmaRead(kernAddr, i2, mapAttr);
Cache::SyncMemoryBeforeDmaWrite(kernAddr, i2, mapAttr);
}
}
break;
case EDiscontiguousPhysical|EBadPhysicalAddress:
case EDiscontiguousPhysical:
{
TUint32 physAddr;
r = iFactory->AllocMemory(i2,physAddr);
if(r!=KErrNone)
break;
TInt pageSize = Kern::RoundToPageSize(1);
TInt numPages = Kern::RoundToPageSize(i2)/pageSize;
TUint32* physAddrList = new TUint32[numPages];
TInt i;
for(i=0; i<numPages; i++)
physAddrList[i] = physAddr+i*pageSize;
if(type&EBadPhysicalAddress)
physAddrList[i-1] |= 1;
r = Kern::ChunkCommitPhysical(chunk,i1,i2,physAddrList);
delete[] physAddrList;
if(r!=KErrNone || i2==0)
{
iFactory->FreeMemory(i2,physAddr);
break;
}
// Check that ChunkPhysicalAddress returns the same addresses we used in the commit
TUint32 kernAddr;
TUint32 mapAttr;
TUint32 physAddr2;
TUint32* physAddrList2 = new TUint32[numPages];
r = Kern::ChunkPhysicalAddress(chunk, i1, i2, kernAddr, mapAttr, physAddr2, physAddrList2);
if(r==KErrNone)
{
if(kernAddr!=chunkKernelAddress+i1 || physAddr2!=physAddr)
r=KErrGeneral;
else
for(i=0; i<numPages; i++)
if(physAddrList2[i] != physAddr+i*pageSize)
r = KErrGeneral;
}
delete[] physAddrList2;
if(r==KErrNone)
{
// Exercise memory sync functions
Cache::SyncMemoryBeforeDmaRead(kernAddr, i2, mapAttr);
Cache::SyncMemoryBeforeDmaWrite(kernAddr, i2, mapAttr);
}
}
break;
case EContiguousPhysical|EBadPhysicalAddress:
case EContiguousPhysical:
{
TUint32 physAddr;
r = iFactory->AllocMemory(i2,physAddr);
if(r==KErrNone)
{
if(type&EBadPhysicalAddress)
r = Kern::ChunkCommitPhysical(chunk,i1,i2,physAddr|1);
else
r = Kern::ChunkCommitPhysical(chunk,i1,i2,physAddr);
}
if(r!=KErrNone || i2==0)
{
iFactory->FreeMemory(i2,physAddr);
break;
}
// Check that ChunkPhysicalAddress returns the same addresses we used in the commit
TUint32 kernAddr;
TUint32 mapAttr;
TUint32 physAddr2;
r = Kern::ChunkPhysicalAddress(chunk, i1, i2, kernAddr, mapAttr, physAddr2);
if(r==KErrNone)
if(kernAddr!=chunkKernelAddress+i1 || physAddr2!=physAddr)
r=KErrGeneral;
if(r==KErrNone)
{
// Exercise memory sync functions
Cache::SyncMemoryBeforeDmaRead(kernAddr, i2, mapAttr);
Cache::SyncMemoryBeforeDmaWrite(kernAddr, i2, mapAttr);
}
}
break;
default:
r = KErrNotSupported;
break;
}
chunk->Close(0);
}
else
r = KErrNotFound;
NKern::ThreadLeaveCS();
return r;
}
case RSharedChunkLdd::EIsDestroyed:
{
NKern::ThreadEnterCS();
TInt r = WaitForIdle2();
NKern::ThreadLeaveCS();
if (r==KErrNone)
return __e32_atomic_load_acq32(&ChunkDestroyedCount);
return 0; // never went idle so can't have been destroyed
}
case RSharedChunkLdd::ECloseChunk:
{
NKern::ThreadEnterCS();
// Claim ownership of the chunk
LockWait();
DChunk* chunk=iChunk;
iChunk = 0;
LockSignal();
// Close the chunk
if(chunk)
r = Kern::ChunkClose(chunk);
else
r = KErrNotFound;
NKern::ThreadLeaveCS();
return r;
}
case RSharedChunkLdd::ECheckMemory:
case RSharedChunkLdd::EReadMemory:
case RSharedChunkLdd::EWriteMemory:
{
TUint32 value=0;
NKern::ThreadEnterCS();
TLinAddr kernAddr;
TInt maxSize;
DChunk* chunk=OpenChunk(&kernAddr,&maxSize);
if(chunk)
{
if((TUint)i1>=(TUint)maxSize)
r = KErrArgument;
else
{
TInt addr = kernAddr+i1;
#ifdef _DEBUG
TInt debugMask = Kern::CurrentThread().iDebugMask;
Kern::CurrentThread().iDebugMask = debugMask&~(1U<<KPANIC);
#endif
XTRAP(r, XT_DEFAULT,
if(aFunction==RSharedChunkLdd::ECheckMemory)
ReadByte((volatile TUint8*)addr);
else if(aFunction==RSharedChunkLdd::EReadMemory)
value = *(volatile TUint32*)addr;
else if(aFunction==RSharedChunkLdd::EWriteMemory)
*(volatile TUint32*)addr = i2;
);
#ifdef _DEBUG
Kern::CurrentThread().iDebugMask = debugMask;
#endif
if(aFunction==RSharedChunkLdd::ECheckMemory)
r = r==KErrNone;
}
chunk->Close(0);
}
else
r = KErrNotFound;
NKern::ThreadLeaveCS();
if(aFunction==RSharedChunkLdd::EReadMemory)
kumemput32(a2,&value,sizeof(value));
return r;
}
case RSharedChunkLdd::EDfcReadWrite:
case RSharedChunkLdd::EIsrReadWrite:
{
TUint32 value=0;
kumemget32(&value,a2,sizeof(value));
NKern::ThreadEnterCS();
TLinAddr kernAddr;
TInt maxSize;
DChunk* chunk=OpenChunk(&kernAddr,&maxSize);
if(chunk)
{
if((TUint)i1>=(TUint)maxSize)
r = KErrArgument;
else
{
TInt addr = kernAddr+i1;
if(aFunction==RSharedChunkLdd::EDfcReadWrite)
value = DfcReadWrite((TUint32*)addr,value);
else if(aFunction==RSharedChunkLdd::EIsrReadWrite)
value = IsrReadWrite((TUint32*)addr,value);
r = KErrNone;
}
chunk->Close(0);
}
else
r = KErrNotFound;
NKern::ThreadLeaveCS();
kumemput32(a2,&value,sizeof(value));
return r;
}
case RSharedChunkLdd::ETestOpenAddress:
{
NKern::ThreadEnterCS();
TLinAddr kernAddr;
DChunk* chunk=OpenChunk(&kernAddr);
if(!chunk)
{
NKern::ThreadLeaveCS();
return KErrNotReady;
}
TInt offset;
DChunk* chunk2 = Kern::OpenSharedChunk(0,a1,EFalse,offset);
if(chunk2)
{
if(chunk2!=chunk)
r = KErrGeneral;
else
r = KErrNone;
chunk2->Close(0);
}
else
r = KErrNotFound;
chunk->Close(0);
NKern::ThreadLeaveCS();
return r;
}
case RSharedChunkLdd::ETestOpenHandle:
{
NKern::ThreadEnterCS();
TLinAddr kernAddr;
DChunk* chunk=OpenChunk(&kernAddr);
if(!chunk)
{
NKern::ThreadLeaveCS();
return KErrNotReady;
}
DChunk* chunk2 = Kern::OpenSharedChunk(0,i1,EFalse);
if(chunk2)
{
if(chunk2==chunk)
r = KErrNone;
else
r = KErrGeneral;
chunk2->Close(0);
}
else
r = KErrNotFound;
chunk->Close(0);
NKern::ThreadLeaveCS();
return r;
}
case RSharedChunkLdd::ETestAddress:
{
NKern::ThreadEnterCS();
TLinAddr kernAddr;
DChunk* chunk=OpenChunk(&kernAddr);
if(!chunk)
{
NKern::ThreadLeaveCS();
return KErrNotReady;
}
TLinAddr kernAddr2;
r = Kern::ChunkAddress(chunk,i1,i2,kernAddr2);
if(r==KErrNone)
if(kernAddr2!=kernAddr+i1)
r = KErrGeneral;
chunk->Close(0);
NKern::ThreadLeaveCS();
return r;
}
case RSharedChunkLdd::EChunkUserBase:
{
NKern::ThreadEnterCS();
DChunk* chunk=OpenChunk();
if(!chunk)
{
NKern::ThreadLeaveCS();
return KErrNotReady;
}
TUint8* baseAddress = Kern::ChunkUserBase(chunk, &Kern::CurrentThread());
chunk->Close(0);
if(a1)
kumemput32(a1,(TAny*)&baseAddress,4);
NKern::ThreadLeaveCS();
return KErrNone;
}
case RSharedChunkLdd::EChunkCloseAndFree:
{
#ifdef __EPOC32__
// Allocate and then commit some physical ram to a chunk
NKern::ThreadEnterCS();
const TUint KPhysPages = 5;
TUint pageSize = Kern::RoundToPageSize(1);
TUint physBytes = KPhysPages * pageSize;
TPhysAddr addrArray[KPhysPages];
TLinAddr linAddr;
TUint32 mapAttr;
DChunk* chunk;
TChunkCreateInfo chunkInfo;
chunkInfo.iType = TChunkCreateInfo::ESharedKernelSingle;
chunkInfo.iMaxSize = physBytes;
chunkInfo.iMapAttr = EMapAttrFullyBlocking;
chunkInfo.iOwnsMemory = EFalse;
r = Kern::ChunkCreate(chunkInfo, chunk, linAddr, mapAttr);
if (r != KErrNone)
{
NKern::ThreadLeaveCS();
return r;
}
r = Epoc::AllocPhysicalRam(KPhysPages, addrArray);
if (r != KErrNone)
{
Kern::ChunkClose(chunk);
NKern::ThreadLeaveCS();
return r;
}
r = Kern::ChunkCommitPhysical(chunk, 0, physBytes, addrArray);
if (r != KErrNone)
{
Kern::ChunkClose(chunk);
r = Epoc::FreePhysicalRam(KPhysPages, addrArray);
NKern::ThreadLeaveCS();
return r;
}
// Now attempt to free the physical ram immediately after the chunk
// has been closed.
Kern::ChunkClose(chunk);
r = Epoc::FreePhysicalRam(KPhysPages, addrArray);
NKern::ThreadLeaveCS();
return r;
#endif
}
default:
return KErrNotSupported;
}
}