/*
* Portions Copyright (c) 2009 Nokia Corporation and/or its subsidiary(-ies).
* All rights reserved.
* This component and the accompanying materials are made available
* under the terms of "Eclipse Public License v1.0"
* which accompanies this distribution, and is available
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
*
* Initial Contributors:
* Nokia Corporation - initial contribution.
*
* Contributors:
*
* Description:
* The original NIST Statistical Test Suite code is placed in public domain.
* (http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html)
*
* This software was developed at the National Institute of Standards and Technology by
* employees of the Federal Government in the course of their official duties. Pursuant
* to title 17 Section 105 of the United States Code this software is not subject to
* copyright protection and is in the public domain. The NIST Statistical Test Suite is
* an experimental system. NIST assumes no responsibility whatsoever for its use by other
* parties, and makes no guarantees, expressed or implied, about its quality, reliability,
* or any other characteristic. We would appreciate acknowledgment if the software is used.
*/
#include "openc.h"
#include "../include/externs.h"
#include "../include/cephes.h"
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
C U M U L A T I V E S U M S T E S T
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
void
CumulativeSums(int n)
{
int S, sup, inf;
int z = 0;
int zrev = 0;
int k;
double sum1, sum2, p_value;
S = 0;
sup = 0;
inf = 0;
for ( k=0; k<n; k++ ) {
epsilon[k] ? S++ : S--;
if ( S > sup )
sup++;
if ( S < inf )
inf--;
z = (sup > -inf) ? sup : -inf;
zrev = (sup-S > S-inf) ? sup-S : S-inf;
}
// forward
sum1 = 0.0;
for ( k=(-n/z+1)/4; k<=(n/z-1)/4; k++ ) {
sum1 += cephes_normal(((4*k+1)*z)/sqrt(n));
sum1 -= cephes_normal(((4*k-1)*z)/sqrt(n));
}
sum2 = 0.0;
for ( k=(-n/z-3)/4; k<=(n/z-1)/4; k++ ) {
sum2 += cephes_normal(((4*k+3)*z)/sqrt(n));
sum2 -= cephes_normal(((4*k+1)*z)/sqrt(n));
}
p_value = 1.0 - sum1 + sum2;
fprintf(stats[TEST_CUSUM], "\t\t CUMULATIVE SUMS (FORWARD) TEST\n");
fprintf(stats[TEST_CUSUM], "\t\t-------------------------------------------\n");
fprintf(stats[TEST_CUSUM], "\t\tCOMPUTATIONAL INFORMATION:\n");
fprintf(stats[TEST_CUSUM], "\t\t-------------------------------------------\n");
fprintf(stats[TEST_CUSUM], "\t\t(a) The maximum partial sum = %d\n", z);
fprintf(stats[TEST_CUSUM], "\t\t-------------------------------------------\n");
if ( isNegative(p_value) || isGreaterThanOne(p_value) )
fprintf(stats[TEST_CUSUM], "\t\tWARNING: P_VALUE IS OUT OF RANGE\n");
fprintf(stats[TEST_CUSUM], "%s\t\tp_value = %f\n\n", p_value < ALPHA ? "FAILURE" : "SUCCESS", p_value);
fprintf(results[TEST_CUSUM], "%f\n", p_value);
// backwards
sum1 = 0.0;
for ( k=(-n/zrev+1)/4; k<=(n/zrev-1)/4; k++ ) {
sum1 += cephes_normal(((4*k+1)*zrev)/sqrt(n));
sum1 -= cephes_normal(((4*k-1)*zrev)/sqrt(n));
}
sum2 = 0.0;
for ( k=(-n/zrev-3)/4; k<=(n/zrev-1)/4; k++ ) {
sum2 += cephes_normal(((4*k+3)*zrev)/sqrt(n));
sum2 -= cephes_normal(((4*k+1)*zrev)/sqrt(n));
}
p_value = 1.0 - sum1 + sum2;
fprintf(stats[TEST_CUSUM], "\t\t CUMULATIVE SUMS (REVERSE) TEST\n");
fprintf(stats[TEST_CUSUM], "\t\t-------------------------------------------\n");
fprintf(stats[TEST_CUSUM], "\t\tCOMPUTATIONAL INFORMATION:\n");
fprintf(stats[TEST_CUSUM], "\t\t-------------------------------------------\n");
fprintf(stats[TEST_CUSUM], "\t\t(a) The maximum partial sum = %d\n", zrev);
fprintf(stats[TEST_CUSUM], "\t\t-------------------------------------------\n");
if ( isNegative(p_value) || isGreaterThanOne(p_value) )
fprintf(stats[TEST_CUSUM], "\t\tWARNING: P_VALUE IS OUT OF RANGE\n");
fprintf(stats[TEST_CUSUM], "%s\t\tp_value = %f\n\n", p_value < ALPHA ? "FAILURE" : "SUCCESS", p_value);
fprintf(results[TEST_CUSUM], "%f\n", p_value);
}