/*
* Portions Copyright (c) 2009 Nokia Corporation and/or its subsidiary(-ies).
* All rights reserved.
* This component and the accompanying materials are made available
* under the terms of "Eclipse Public License v1.0"
* which accompanies this distribution, and is available
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
*
* Initial Contributors:
* Nokia Corporation - initial contribution.
*
* Contributors:
*
* Description:
* The original NIST Statistical Test Suite code is placed in public domain.
* (http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html)
*
* This software was developed at the National Institute of Standards and Technology by
* employees of the Federal Government in the course of their official duties. Pursuant
* to title 17 Section 105 of the United States Code this software is not subject to
* copyright protection and is in the public domain. The NIST Statistical Test Suite is
* an experimental system. NIST assumes no responsibility whatsoever for its use by other
* parties, and makes no guarantees, expressed or implied, about its quality, reliability,
* or any other characteristic. We would appreciate acknowledgment if the software is used.
*/
#include "openc.h"
#include "../include/externs.h"
#include "../include/utilities.h"
#include "../include/generators.h"
#include "../include/genutils.h"
const int KRandomByteCount = 1024;
double
lcg_rand(int N, double SEED, double* DUNIF, int NDIM)
{
int i;
double DZ, DOVER, DZ1, DZ2, DOVER1, DOVER2;
double DTWO31, DMDLS, DA1, DA2;
DTWO31 = 2147483648.0; /* DTWO31=2**31 */
DMDLS = 2147483647.0; /* DMDLS=2**31-1 */
DA1 = 41160.0; /* DA1=950706376 MOD 2**16 */
DA2 = 950665216.0; /* DA2=950706376-DA1 */
DZ = SEED;
if ( N > NDIM )
N = NDIM;
for ( i=1; i<=N; i++ ) {
DZ = floor(DZ);
DZ1 = DZ*DA1;
DZ2 = DZ*DA2;
DOVER1 = floor(DZ1/DTWO31);
DOVER2 = floor(DZ2/DTWO31);
DZ1 = DZ1-DOVER1*DTWO31;
DZ2 = DZ2-DOVER2*DTWO31;
DZ = DZ1+DZ2+DOVER1+DOVER2;
DOVER = floor(DZ/DMDLS);
DZ = DZ-DOVER*DMDLS;
DUNIF[i-1] = DZ/DMDLS;
SEED = DZ;
}
return SEED;
}
void
lcg()
{
double* DUNIF = NULL;
double SEED;
int i;
unsigned bit;
int num_0s, num_1s, v, bitsRead;
SEED = 23482349.0;
if ( ((epsilon = (BitSequence *) calloc(tp.n, sizeof(BitSequence))) == NULL) ||
((DUNIF = (double*)calloc(tp.n, sizeof(double))) == NULL) ) {
printf("Insufficient memory available.\n");
exit(1);
}
for ( v=0; v<tp.numOfBitStreams; v++ ) {
num_0s = 0;
num_1s = 0;
bitsRead = 0;
SEED = lcg_rand(tp.n, SEED, DUNIF, tp.n);
for ( i=0; i<tp.n; i++ ) {
if ( DUNIF[i] < 0.5 ) {
bit = 0;
num_0s++;
}
else {
bit = 1;
num_1s++;
}
bitsRead++;
epsilon[i] = (BitSequence)bit;
}
fprintf(freqfp, "\t\tBITSREAD = %d 0s = %d 1s = %d\n", bitsRead, num_0s, num_1s);
nist_test_suite();
}
free(DUNIF);
free(epsilon);
}
void
quadRes1()
{
int k, num_0s, num_1s, bitsRead, done;
BYTE p[64], g[64], x[128];
if ( ((epsilon = (BitSequence *)calloc(tp.n, sizeof(BitSequence))) == NULL) ) {
printf("Insufficient memory available.\n");
exit(1);
}
ahtopb("987b6a6bf2c56a97291c445409920032499f9ee7ad128301b5d0254aa1a9633fdbd378d40149f1e23a13849f3d45992f5c4c6b7104099bc301f6005f9d8115e1", p, 64);
ahtopb("3844506a9456c564b8b8538e0cc15aff46c95e69600f084f0657c2401b3c244734b62ea9bb95be4923b9b7e84eeaf1a224894ef0328d44bc3eb3e983644da3f5", g, 64);
num_0s = 0;
num_1s = 0;
done = 0;
bitsRead = 0;
for ( k=0; k<tp.numOfBitStreams; k++ ) {
num_0s = 0;
num_1s = 0;
done = 0;
bitsRead = 0;
do {
memset(x, 0x00, 128);
ModMult(x, g, 64, g, 64, p,64);
memcpy(g, x+64, 64);
done = convertToBits(g, 512, tp.n, &num_0s, &num_1s, &bitsRead);
} while ( !done );
fprintf(freqfp, "\t\tBITSREAD = %d 0s = %d 1s = %d\n", bitsRead, num_0s, num_1s);
nist_test_suite();
}
free(epsilon);
return;
}
void
quadRes2()
{
BYTE g[64], x[129], t1[65];
BYTE One[1], Two, Three[1];
int k, num_0s, num_1s, bitsRead, done;
if ( ((epsilon = (BitSequence *)calloc(tp.n, sizeof(BitSequence))) == NULL) ) {
printf("Insufficient memory available.\n");
exit(1);
}
One[0] = 0x01;
Two = 0x02;
Three[0] = 0x03;
ahtopb("7844506a9456c564b8b8538e0cc15aff46c95e69600f084f0657c2401b3c244734b62ea9bb95be4923b9b7e84eeaf1a224894ef0328d44bc3eb3e983644da3f5", g, 64);
for( k=0; k<tp.numOfBitStreams; k++ ) {
num_0s = 0;
num_1s = 0;
done = 0;
bitsRead = 0;
do {
memset(t1, 0x00, 65);
memset(x, 0x00, 129);
smult(t1, Two, g, 64); /* 2x */
add(t1, 65, Three, 1); /* 2x+3 */
Mult(x, t1, 65, g, 64); /* x(2x+3) */
add(x, 129, One, 1); /* x(2x+3)+1 */
memcpy(g, x+65, 64);
done = convertToBits(g, 512, tp.n, &num_0s, &num_1s, &bitsRead);
} while ( !done) ;
fprintf(freqfp, "\t\tBITSREAD = %d 0s = %d 1s = %d\n", bitsRead, num_0s, num_1s);
nist_test_suite();
}
free(epsilon);
return;
}
void
cubicRes()
{
BYTE g[64], tmp[128], x[192];
int k, num_0s, num_1s, bitsRead, done;
if ( ((epsilon = (BitSequence *)calloc(tp.n, sizeof(BitSequence))) == NULL) ) {
printf("Insufficient memory available.\n");
exit(1);
}
ahtopb("7844506a9456c564b8b8538e0cc15aff46c95e69600f084f0657c2401b3c244734b62ea9bb95be4923b9b7e84eeaf1a224894ef0328d44bc3eb3e983644da3f5", g, 64);
for ( k=0; k<tp.numOfBitStreams; k++ ) {
num_0s = 0;
num_1s = 0;
bitsRead = 0;
done = 0;
do {
memset(tmp, 0x00, 128);
memset(x, 0x00, 192);
Mult(tmp, g, 64, g, 64);
Mult(x, tmp, 128, g, 64); // Don't need to mod by 2^512, just take low 64 bytes
memcpy(g, x+128, 64);
done = convertToBits(g, 512, tp.n, &num_0s, &num_1s, &bitsRead);
} while ( !done );
fprintf(freqfp, "\t\tBITSREAD = %d 0s = %d 1s = %d\n", bitsRead, num_0s, num_1s);
nist_test_suite();
}
free(epsilon);
return;
}
void
exclusiveOR()
{
int i, num_0s, num_1s, bitsRead;
BYTE bit_sequence[127];
if ( ((epsilon = (BitSequence *)calloc(tp.n,sizeof(BitSequence))) == NULL) ) {
printf("Insufficient memory available.\n");
exit(1);
}
memcpy(bit_sequence, "0001011011011001000101111001001010011011101101000100000010101111111010100100001010110110000000000100110000101110011111111100111", 127);
num_0s = 0;
num_1s = 0;
bitsRead = 0;
for (i=0; i<127; i++ ) {
if ( bit_sequence[i] ) {
epsilon[bitsRead] = 1;
num_1s++;
}
else {
epsilon[bitsRead] = 0;
num_1s++;
}
bitsRead++;
}
for ( i=127; i<tp.n*tp.numOfBitStreams; i++ ) {
if ( bit_sequence[(i-1)%127] != bit_sequence[(i-127)%127] ) {
bit_sequence[i%127] = 1;
epsilon[bitsRead] = 1;
num_1s++;
}
else {
bit_sequence[i%127] = 0;
epsilon[bitsRead] = 0;
num_0s++;
}
bitsRead++;
if ( bitsRead == tp.n ) {
fprintf(freqfp, "\t\tBITSREAD = %d 0s = %d 1s = %d\n", bitsRead, num_0s, num_1s);
nist_test_suite();
num_0s = 0;
num_1s = 0;
bitsRead = 0;
}
}
free(epsilon);
return;
}
void
modExp()
{
int k, num_0s, num_1s, bitsRead, done;
BYTE p[64], g[64], x[192], y[20];
if ( (epsilon = (BitSequence *)calloc(tp.n, sizeof(BitSequence))) == NULL ) {
printf("Insufficient memory available.\n");
exit(1);
}
ahtopb("7AB36982CE1ADF832019CDFEB2393CABDF0214EC", y, 20);
ahtopb("987b6a6bf2c56a97291c445409920032499f9ee7ad128301b5d0254aa1a9633fdbd378d40149f1e23a13849f3d45992f5c4c6b7104099bc301f6005f9d8115e1", p, 64);
ahtopb("3844506a9456c564b8b8538e0cc15aff46c95e69600f084f0657c2401b3c244734b62ea9bb95be4923b9b7e84eeaf1a224894ef0328d44bc3eb3e983644da3f5", g, 64);
for ( k=0; k<tp.numOfBitStreams; k++ ) {
num_0s = 0;
num_1s = 0;
bitsRead = 0;
done = 0;
do {
memset(x, 0x00, 128);
ModExp(x, g, 64, y, 20, p, 64); /* NOTE: g must be less than p */
done = convertToBits(x, 512, tp.n, &num_0s, &num_1s, &bitsRead);
memcpy(y, x+44, 20);
} while ( !done );
fprintf(freqfp, "\t\tBITSREAD = %d 0s = %d 1s = %d\n", bitsRead, num_0s, num_1s);
nist_test_suite();
}
free(epsilon);
return;
}
void
bbs()
{
int i, v, bitsRead;
BYTE p[64], q[64], n[128], s[64], x[256];
int num_0s, num_1s;
if ( (epsilon = (BitSequence*)calloc(tp.n, sizeof(BitSequence))) == NULL ) {
printf("Insufficient memory available.\n");
exit(1);
}
ahtopb("E65097BAEC92E70478CAF4ED0ED94E1C94B154466BFB9EC9BE37B2B0FF8526C222B76E0E915017535AE8B9207250257D0A0C87C0DACEF78E17D1EF9DC44FD91F", p, 64);
ahtopb("E029AEFCF8EA2C29D99CB53DD5FA9BC1D0176F5DF8D9110FD16EE21F32E37BA86FF42F00531AD5B8A43073182CC2E15F5C86E8DA059E346777C9A985F7D8A867", q, 64);
memset(n, 0x00, 128);
Mult(n, p, 64, q, 64);
memset(s, 0x00, 64);
ahtopb("10d6333cfac8e30e808d2192f7c0439480da79db9bbca1667d73be9a677ed31311f3b830937763837cb7b1b1dc75f14eea417f84d9625628750de99e7ef1e976", s, 64);
memset(x, 0x00, 256);
ModSqr(x, s, 64, n, 128);
for ( v=0; v<tp.numOfBitStreams; v++ ) {
num_0s = 0;
num_1s = 0;
bitsRead = 0;
for ( i=0; i<tp.n; i++ ) {
ModSqr(x, x, 128, n, 128);
memcpy(x, x+128, 128);
if ( (x[127] & 0x01) == 0 ) {
num_0s++;
epsilon[i] = 0;
}
else {
num_1s++;
epsilon[i] = 1;
}
bitsRead++;
if ( (i % 50000) == 0 )
printf("\t\tBITSREAD = %d 0s = %d 1s = %d\n", bitsRead, num_0s, num_1s);
}
fprintf(freqfp, "\t\tBITSREAD = %d 0s = %d 1s = %d\n", bitsRead, num_0s, num_1s);
nist_test_suite();
}
free(epsilon);
}
// The exponent, e, is set to 11
// This results in k = 837 and r = 187
void
micali_schnorr()
{
long i, j;
int k=837, num_0s, num_1s, bitsRead, done;
BYTE p[64], q[64], n[128], e[1], X[128], Y[384], Tail[105];
if ( (epsilon = (BitSequence *)calloc(tp.n, sizeof(BitSequence))) == NULL ) {
printf("Insufficient memory available.\n");
exit(1);
}
ahtopb("E65097BAEC92E70478CAF4ED0ED94E1C94B154466BFB9EC9BE37B2B0FF8526C222B76E0E915017535AE8B9207250257D0A0C87C0DACEF78E17D1EF9DC44FD91F", p, 64);
ahtopb("E029AEFCF8EA2C29D99CB53DD5FA9BC1D0176F5DF8D9110FD16EE21F32E37BA86FF42F00531AD5B8A43073182CC2E15F5C86E8DA059E346777C9A985F7D8A867", q, 64);
memset(n, 0x00, 128);
Mult(n, p, 64, q, 64);
e[0] = 0x0b;
memset(X, 0x00, 128);
ahtopb("237c5f791c2cfe47bfb16d2d54a0d60665b20904ec822a6", X+104, 24);
for ( i=0; i<tp.numOfBitStreams; i++ ) {
num_0s = 0;
num_1s = 0;
bitsRead = 0;
do {
ModExp(Y, X, 128, e, 1, n, 128);
memcpy(Tail, Y+23, 105);
for ( j=0; j<3; j++ )
bshl(Tail, 105);
done = convertToBits(Tail, k, tp.n, &num_0s, &num_1s, &bitsRead);
memset(X, 0x00, 128);
memcpy(X+104, Y, 24);
for ( j=0; j<5; j++ )
bshr(X+104, 24);
} while ( !done );
fprintf(freqfp, "\t\tBITSREAD = %d 0s = %d 1s = %d\n", bitsRead, num_0s, num_1s);
nist_test_suite();
}
free(epsilon);
}
// Uses 160 bit Xkey and no XSeed (b=160)
// This is the generic form of the generator found on the last page of the Change Notice for FIPS 186-2
void
SHA1()
{
ULONG A, B, C, D, E, temp, Wbuff[16];
BYTE Xkey[20], G[20], M[64];
BYTE One[1] = { 0x01 };
int i, num_0s, num_1s, bitsRead;
int done;
ULONG tx[5] = { 0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0 };
if ( ((epsilon = (BitSequence *) calloc(tp.n,sizeof(BitSequence))) == NULL) ) {
printf("Insufficient memory available.\n");
exit(1);
}
ahtopb("ec822a619d6ed5d9492218a7a4c5b15d57c61601", Xkey, 20);
for ( i=0; i<tp.numOfBitStreams; i++ ) {
num_0s = 0;
num_1s = 0;
bitsRead = 0;
do {
memcpy(M, Xkey, 20);
memset(M+20, 0x00, 44);
// Start: SHA Steps A-E
A = tx[0];
B = tx[1];
C = tx[2];
D = tx[3];
E = tx[4];
memcpy((BYTE *)Wbuff, M, 64);
#ifdef LITTLE_ENDIAN
byteReverse(Wbuff, 20);
#endif
sub1Round1( 0 ); sub1Round1( 1 ); sub1Round1( 2 ); sub1Round1( 3 );
sub1Round1( 4 ); sub1Round1( 5 ); sub1Round1( 6 ); sub1Round1( 7 );
sub1Round1( 8 ); sub1Round1( 9 ); sub1Round1( 10 ); sub1Round1( 11 );
sub1Round1( 12 ); sub1Round1( 13 ); sub1Round1( 14 ); sub1Round1( 15 );
sub2Round1( 16 ); sub2Round1( 17 ); sub2Round1( 18 ); sub2Round1( 19 );
Round2( 20 ); Round2( 21 ); Round2( 22 ); Round2( 23 );
Round2( 24 ); Round2( 25 ); Round2( 26 ); Round2( 27 );
Round2( 28 ); Round2( 29 ); Round2( 30 ); Round2( 31 );
Round2( 32 ); Round2( 33 ); Round2( 34 ); Round2( 35 );
Round2( 36 ); Round2( 37 ); Round2( 38 ); Round2( 39 );
Round3( 40 ); Round3( 41 ); Round3( 42 ); Round3( 43 );
Round3( 44 ); Round3( 45 ); Round3( 46 ); Round3( 47 );
Round3( 48 ); Round3( 49 ); Round3( 50 ); Round3( 51 );
Round3( 52 ); Round3( 53 ); Round3( 54 ); Round3( 55 );
Round3( 56 ); Round3( 57 ); Round3( 58 ); Round3( 59 );
Round4( 60 ); Round4( 61 ); Round4( 62 ); Round4( 63 );
Round4( 64 ); Round4( 65 ); Round4( 66 ); Round4( 67 );
Round4( 68 ); Round4( 69 ); Round4( 70 ); Round4( 71 );
Round4( 72 ); Round4( 73 ); Round4( 74 ); Round4( 75 );
Round4( 76 ); Round4( 77 ); Round4( 78 ); Round4( 79 );
A += tx[0];
B += tx[1];
C += tx[2];
D += tx[3];
E += tx[4];
memcpy(G, (BYTE *)&A, 4);
memcpy(G+4, (BYTE *)&B, 4);
memcpy(G+8, (BYTE *)&C, 4);
memcpy(G+12, (BYTE *)&D, 4);
memcpy(G+16, (BYTE *)&E, 4);
#ifdef LITTLE_ENDIAN
byteReverse((ULONG *)G, 20);
#endif
// End: SHA Steps A-E
done = convertToBits(G, 160, tp.n, &num_0s, &num_1s, &bitsRead);
add(Xkey, 20, G, 20);
add(Xkey, 20, One, 1);
} while ( !done );
fprintf(freqfp, "\t\tBITSREAD = %d 0s = %d 1s = %d\n", bitsRead, num_0s, num_1s);
nist_test_suite();
}
free(epsilon);
}
void HASH_DRBG()
{
int done = 0;
int num_0s = 0;
int num_1s = 0;
int bitsRead = 0;
if ( ((epsilon = (BitSequence *) calloc(tp.n,sizeof(BitSequence))) == NULL) ) {
printf("Insufficient memory available.\n");
exit(1);
}
TBuf8<KRandomByteCount> randBuffer(KRandomByteCount);
for (int i = 0; i < tp.numOfBitStreams; ++i)
{
gConsole->Printf(_L("Starting test %d\n"), i+1);
num_0s = 0;
num_1s = 0;
bitsRead = 0;
done = 0;
do
{
Math::Random(randBuffer);
done = convertToBits(randBuffer.Ptr() , KRandomByteCount*8, tp.n, &num_0s, &num_1s, &bitsRead);
} while ( !done );
fprintf(freqfp, "\t\tBITSREAD = %d 0s = %d 1s = %d\n", bitsRead, num_0s, num_1s);
nist_test_suite();
}
free(epsilon);
}