// Copyright (c) 2006-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32\nkernsmp\x86\ncutils.cpp
//
//
#include <x86.h>
extern "C" {
extern SVariantInterfaceBlock* VIB;
}
//#define __DBG_MON_FAULT__
//#define __RAM_LOADED_CODE__
//#define __EARLY_DEBUG__
void InitFpu();
TUint32 NKern::IdleGenerationCount()
{
return TheScheduler.iIdleGenerationCount;
}
void NKern::Idle()
{
TScheduler& s = TheScheduler;
TSubScheduler& ss = SubScheduler(); // OK since idle thread is locked to CPU
TUint32 m = ss.iCpuMask;
s.iIdleSpinLock.LockIrq(); // don't allow any more idle DFCs for now
TUint32 orig_cpus_not_idle = __e32_atomic_and_ord32(&s.iCpusNotIdle, ~m);
if (orig_cpus_not_idle == m)
{
// all CPUs idle
if (!s.iIdleDfcs.IsEmpty())
{
__e32_atomic_ior_ord32(&s.iCpusNotIdle, m); // we aren't idle after all
s.iIdleGeneration ^= 1;
++s.iIdleGenerationCount;
s.iIdleSpillCpu = (TUint8)ss.iCpuNum;
ss.iDfcs.MoveFrom(&s.iIdleDfcs);
ss.iDfcPendingFlag = 1;
s.iIdleSpinLock.UnlockIrq();
NKern::Lock();
NKern::Unlock(); // process idle DFCs here
return;
}
}
s.iIdleSpinLock.UnlockOnly(); // leave interrupts disabled
NKIdle(0);
}
TUint32 ContextId()
{
switch(NKern::CurrentContext())
{
case NKern::EThread:
return (TUint32)NKern::CurrentThread();
case NKern::EIDFC:
return 3;
case NKern::EInterrupt:
return 2;
default:
return 0;
}
}
EXPORT_C TBool BTrace::Out(TUint32 a0, TUint32 a1, TUint32 a2, TUint32 a3)
{
SBTraceData& traceData = BTraceData;
if(!traceData.iFilter[(a0>>BTrace::ECategoryIndex*8)&0xff])
return FALSE;
TUint32 pc = (&a0)[-1]; // return address on X86
__ACQUIRE_BTRACE_LOCK();
TBool r = traceData.iHandler(a0,0,0,a1,a2,a3,0,pc);
__RELEASE_BTRACE_LOCK();
return r;
}
EXPORT_C TBool BTrace::OutX(TUint32 a0, TUint32 a1, TUint32 a2, TUint32 a3)
{
SBTraceData& traceData = BTraceData;
if(!traceData.iFilter[(a0>>BTrace::ECategoryIndex*8)&0xff])
return FALSE;
TUint32 context = ContextId();
TUint32 pc = (&a0)[-1]; // return address on X86
__ACQUIRE_BTRACE_LOCK();
TBool r = traceData.iHandler(a0,0,context,a1,a2,a3,0,pc);
__RELEASE_BTRACE_LOCK();
return r;
}
EXPORT_C TBool BTrace::OutN(TUint32 a0, TUint32 a1, TUint32 a2, const TAny* aData, TInt aDataSize)
{
SBTraceData& traceData = BTraceData;
if(!traceData.iFilter[(a0>>BTrace::ECategoryIndex*8)&0xff])
return FALSE;
if(TUint(aDataSize)>KMaxBTraceDataArray)
{
aDataSize = KMaxBTraceDataArray;
a0 |= BTrace::ERecordTruncated<<(BTrace::EFlagsIndex*8);
}
a0 += aDataSize<<(BTrace::ESizeIndex*8);
TUint32 pc = (&a0)[-1]; // return address on X86
TBool r;
__ACQUIRE_BTRACE_LOCK();
if (!aDataSize)
r = traceData.iHandler(a0,0,0,a1,a2,0,0,pc);
else if (aDataSize<=4)
r = traceData.iHandler(a0,0,0,a1,a2,*(TUint32*)aData,0,pc);
else
r = traceData.iHandler(a0,0,0,a1,a2,(TUint32)aData,0,pc);
__RELEASE_BTRACE_LOCK();
return r;
}
EXPORT_C TBool BTrace::OutNX(TUint32 a0, TUint32 a1, TUint32 a2, const TAny* aData, TInt aDataSize)
{
SBTraceData& traceData = BTraceData;
if(!traceData.iFilter[(a0>>BTrace::ECategoryIndex*8)&0xff])
return FALSE;
if(TUint(aDataSize)>KMaxBTraceDataArray)
{
aDataSize = KMaxBTraceDataArray;
a0 |= BTrace::ERecordTruncated<<(BTrace::EFlagsIndex*8);
}
a0 += aDataSize<<(BTrace::ESizeIndex*8);
TUint32 context = ContextId();
TUint32 pc = (&a0)[-1]; // return address on X86
TBool r;
__ACQUIRE_BTRACE_LOCK();
if(!aDataSize)
r = traceData.iHandler(a0,0,context,a1,a2,0,0,pc);
else if(aDataSize<=4)
r = traceData.iHandler(a0,0,context,a1,a2,*(TUint32*)aData,0,pc);
else
r = traceData.iHandler(a0,0,context,a1,a2,(TUint32)aData,0,pc);
__RELEASE_BTRACE_LOCK();
return r;
}
EXPORT_C TBool BTrace::OutBig(TUint32 a0, TUint32 a1, const TAny* aData, TInt aDataSize)
{
TUint32 context = ContextId();
TUint32 pc = (&a0)[-1]; // return address on X86
SBTraceData& traceData = BTraceData;
if(!traceData.iFilter[(a0>>BTrace::ECategoryIndex*8)&0xff])
return FALSE;
TBool r = DoOutBig(a0,a1,aData,aDataSize,context,pc);
return r;
}
EXPORT_C TBool BTrace::OutFiltered(TUint32 a0, TUint32 a1, TUint32 a2, TUint32 a3)
{
SBTraceData& traceData = BTraceData;
if(!traceData.iFilter[(a0>>BTrace::ECategoryIndex*8)&0xff])
return FALSE;
if(!traceData.CheckFilter2(a1))
return FALSE;
TUint32 pc = (&a0)[-1]; // return address on X86
__ACQUIRE_BTRACE_LOCK();
TBool r = traceData.iHandler(a0,0,0,a1,a2,a3,0,pc);
__RELEASE_BTRACE_LOCK();
return r;
}
EXPORT_C TBool BTrace::OutFilteredX(TUint32 a0, TUint32 a1, TUint32 a2, TUint32 a3)
{
SBTraceData& traceData = BTraceData;
if(!traceData.iFilter[(a0>>BTrace::ECategoryIndex*8)&0xff])
return FALSE;
if(!traceData.CheckFilter2(a1))
return FALSE;
TUint32 context = ContextId();
TUint32 pc = (&a0)[-1]; // return address on X86
__ACQUIRE_BTRACE_LOCK();
TBool r = traceData.iHandler(a0,0,context,a1,a2,a3,0,pc);
__RELEASE_BTRACE_LOCK();
return r;
}
EXPORT_C TBool BTrace::OutFilteredN(TUint32 a0, TUint32 a1, TUint32 a2, const TAny* aData, TInt aDataSize)
{
SBTraceData& traceData = BTraceData;
if(!traceData.iFilter[(a0>>BTrace::ECategoryIndex*8)&0xff])
return FALSE;
if(!traceData.CheckFilter2(a1))
return FALSE;
if(TUint(aDataSize)>KMaxBTraceDataArray)
{
aDataSize = KMaxBTraceDataArray;
a0 |= BTrace::ERecordTruncated<<(BTrace::EFlagsIndex*8);
}
a0 += aDataSize<<(BTrace::ESizeIndex*8);
TUint32 pc = (&a0)[-1]; // return address on X86
TBool r;
__ACQUIRE_BTRACE_LOCK();
if(!aDataSize)
r = traceData.iHandler(a0,0,0,a1,a2,0,0,pc);
else if(aDataSize<=4)
r = traceData.iHandler(a0,0,0,a1,a2,*(TUint32*)aData,0,pc);
else
r = traceData.iHandler(a0,0,0,a1,a2,(TUint32)aData,0,pc);
__RELEASE_BTRACE_LOCK();
return r;
}
EXPORT_C TBool BTrace::OutFilteredNX(TUint32 a0, TUint32 a1, TUint32 a2, const TAny* aData, TInt aDataSize)
{
SBTraceData& traceData = BTraceData;
if(!traceData.iFilter[(a0>>BTrace::ECategoryIndex*8)&0xff])
return FALSE;
if(!traceData.CheckFilter2(a1))
return FALSE;
if(TUint(aDataSize)>KMaxBTraceDataArray)
{
aDataSize = KMaxBTraceDataArray;
a0 |= BTrace::ERecordTruncated<<(BTrace::EFlagsIndex*8);
}
a0 += aDataSize<<(BTrace::ESizeIndex*8);
TUint32 context = ContextId();
TUint32 pc = (&a0)[-1]; // return address on X86
TBool r;
__ACQUIRE_BTRACE_LOCK();
if(!aDataSize)
r = traceData.iHandler(a0,0,context,a1,a2,0,0,pc);
else if(aDataSize<=4)
r = traceData.iHandler(a0,0,context,a1,a2,*(TUint32*)aData,0,pc);
else
r = traceData.iHandler(a0,0,context,a1,a2,(TUint32)aData,0,pc);
__RELEASE_BTRACE_LOCK();
return r;
}
EXPORT_C TBool BTrace::OutFilteredBig(TUint32 a0, TUint32 a1, const TAny* aData, TInt aDataSize)
{
TUint32 context = ContextId();
TUint32 pc = (&a0)[-1]; // return address on X86
SBTraceData& traceData = BTraceData;
if(!traceData.iFilter[(a0>>BTrace::ECategoryIndex*8)&0xff])
return FALSE;
if(!traceData.CheckFilter2(a1))
return FALSE;
TBool r = DoOutBig(a0,a1,aData,aDataSize,context,pc);
return r;
}
EXPORT_C TBool BTrace::OutFilteredPcFormatBig(TUint32 aHeader, TUint32 aModuleUid, TUint32 aPc, TUint16 aFormatId, const TAny* aData, TInt aDataSize)
{
return EFalse; //kernel side not implemented yet
}
TInt BTraceDefaultControl(BTrace::TControl /*aFunction*/, TAny* /*aArg1*/, TAny* /*aArg2*/)
{
return KErrNotSupported;
}
EXPORT_C void BTrace::SetHandlers(BTrace::THandler aNewHandler, BTrace::TControlFunction aNewControl, BTrace::THandler& aOldHandler, BTrace::TControlFunction& aOldControl)
{
BTrace::TControlFunction nc = aNewControl ? aNewControl : &BTraceDefaultControl;
__ACQUIRE_BTRACE_LOCK();
BTrace::THandler oldh = (BTrace::THandler)__e32_atomic_swp_ord_ptr(&BTraceData.iHandler, aNewHandler);
BTrace::TControlFunction oldc = (BTrace::TControlFunction)__e32_atomic_swp_ord_ptr(&BTraceData.iControl, nc);
__RELEASE_BTRACE_LOCK();
aOldHandler = oldh;
aOldControl = oldc;
}
EXPORT_C TInt BTrace::SetFilter(TUint aCategory, TInt aValue)
{
if(!IsSupported(aCategory))
return KErrNotSupported;
TUint8* filter = BTraceData.iFilter+aCategory;
TUint oldValue = *filter;
if(TUint(aValue)<=1u)
{
oldValue = __e32_atomic_swp_ord8(filter, (TUint8)aValue);
BTraceContext4(BTrace::EMetaTrace, BTrace::EMetaTraceFilterChange, (TUint8)aCategory | (aValue<<8));
}
return oldValue;
}
EXPORT_C SCpuIdleHandler* NKern::CpuIdleHandler()
{
return &::CpuIdleHandler;
}
void NKern::Init0(TAny* a)
{
__KTRACE_OPT(KBOOT,DEBUGPRINT("VIB=%08x", a));
VIB = (SVariantInterfaceBlock*)a;
__NK_ASSERT_ALWAYS(VIB && VIB->iVer==0 && VIB->iSize==sizeof(SVariantInterfaceBlock));
__KTRACE_OPT(KBOOT,DEBUGPRINT("iVer=%d iSize=%d", VIB->iVer, VIB->iSize));
__KTRACE_OPT(KBOOT,DEBUGPRINT("iMaxCpuClock=%08x %08x", I64HIGH(VIB->iMaxCpuClock), I64LOW(VIB->iMaxCpuClock)));
__KTRACE_OPT(KBOOT,DEBUGPRINT("iTimestampFreq=%u", VIB->iTimestampFreq));
__KTRACE_OPT(KBOOT,DEBUGPRINT("iMaxTimerClock=%u", VIB->iMaxTimerClock));
TInt i;
for (i=0; i<KMaxCpus; ++i)
{
TSubScheduler& ss = TheSubSchedulers[i];
ss.i_TimerMultF = (TAny*)KMaxTUint32;
ss.i_TimerMultI = (TAny*)0x01000000u;
ss.i_CpuMult = (TAny*)KMaxTUint32;
VIB->iTimerMult[i] = (volatile STimerMult*)&ss.i_TimerMultF;
VIB->iCpuMult[i] = (volatile TUint32*)&ss.i_CpuMult;
}
TheScheduler.i_TimerMax = (TAny*)(VIB->iMaxTimerClock / 128);
InitFpu();
InterruptInit0();
}
EXPORT_C TUint32 NKern::CpuTimeMeasFreq()
{
return NKern::TimestampFrequency();
}
/** Converts a time interval in microseconds to thread timeslice ticks
@param aMicroseconds time interval in microseconds.
@return Number of thread timeslice ticks. Non-integral results are rounded up.
@pre aMicroseconds should be nonnegative
@pre any context
*/
EXPORT_C TInt NKern::TimesliceTicks(TUint32 aMicroseconds)
{
TUint32 mf32 = (TUint32)TheScheduler.i_TimerMax;
TUint64 mf(mf32);
TUint64 ticks = mf*TUint64(aMicroseconds) + UI64LIT(999999);
ticks /= UI64LIT(1000000);
if (ticks > TUint64(TInt(KMaxTInt)))
return KMaxTInt;
else
return (TInt)ticks;
}