// Copyright (c) 1998-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32\nkern\win32\ncthrd.cpp
//
//
// NThreadBase member data
#define __INCLUDE_NTHREADBASE_DEFINES__
#include "nk_priv.h"
#include <emulator.h>
extern "C" void ExcFault(TAny*);
// initial Win32 thread stack size
const TInt KInitialStackSize = 0x1000;
// maximum size of the parameter block passed to a new thread
const TInt KMaxParameterBlock = 512;
// data passed to new thread to enable hand-off of the parameter block
struct SCreateThread
{
const SNThreadCreateInfo* iInfo;
NFastMutex iHandoff;
};
/**
* Set the Win32 thread priority based on the thread type.
* Interrupt/Event threads must be able to preempt normal nKern threads,
* so they get a higher priority.
*/
static void SetPriority(HANDLE aThread, TEmulThreadType aType)
{
TInt p;
switch (aType)
{
default:
FAULT();
case EThreadEvent:
p = THREAD_PRIORITY_ABOVE_NORMAL;
break;
case EThreadNKern:
p = THREAD_PRIORITY_NORMAL;
break;
}
__NK_ASSERT_ALWAYS(SetThreadPriority(aThread, p));
SetThreadPriorityBoost(aThread, TRUE); // disable priority boost (for NT)
}
/** Create a Win32 thread for use in the emulator.
@param aType Type of thread (Event or NKern) - determines Win32 priority
@param aThreadFunc Entry point of thread
@param aPtr Argument passed to entry point
@param aRun TRUE if thread should be resumed immediately
@return The Win32 handle to the thread, 0 if an error occurred
@pre Call either in thread context.
@pre Do not call from bare Win32 threads.
@see TEmulThreadType
*/
EXPORT_C HANDLE CreateWin32Thread(TEmulThreadType aType, LPTHREAD_START_ROUTINE aThreadFunc, LPVOID aPtr, TBool aRun)
{
__NK_ASSERT_DEBUG(!TheScheduler.iCurrentThread || NKern::CurrentContext() == NKern::EThread);
__LOCK_HOST;
DWORD id;
HANDLE handle = CreateThread(NULL , KInitialStackSize, aThreadFunc, aPtr, CREATE_SUSPENDED, &id);
if (handle)
{
SetPriority(handle, aType);
if (aRun)
ResumeThread(handle);
}
return handle;
}
/** Set some global properties of the emulator
Called by the Win32 base port during boot.
@param aTrace TRUE means trace Win32 thread ID for every thread created
@param aSingleCpu TRUE means lock the emulator process to a single CPU
@internalTechnology
*/
EXPORT_C void NThread::SetProperties(TBool aTrace, TInt aSingleCpu)
{
Win32TraceThreadId = aTrace;
Win32SingleCpu = aSingleCpu;
}
#if defined(__CW32__) && __MWERKS__ < 0x3200
DWORD NThread__ExceptionHandler(EXCEPTION_RECORD* aException, TAny* /*aRegistrationRecord*/, CONTEXT* aContext)
//
// Hook into exception handling for old version of CW
//
{
return NThread::ExceptionHandler(aException, aContext);
}
#endif // old __CW32__
DWORD WINAPI NThread::StartThread(LPVOID aParam)
//
// Win32 thread function for nKern threads.
//
// The thread first enters this function after the nScheduler has resumed
// it, following the context switch induced by the hand-off mutex.
//
// The parameter block for this thread needs to be copied into its
// own context, before releasing the mutex and handing control back to
// the creating thread.
//
{
SCreateThread* init = static_cast<SCreateThread*>(aParam);
NThread& me=*static_cast<NThread*>(init->iHandoff.iHoldingThread);
me.iWinThreadId = GetCurrentThreadId();
SchedulerRegister(me);
#ifdef BTRACE_FAST_MUTEX
BTraceContext4(BTrace::EFastMutex,BTrace::EFastMutexWait,&init->iHandoff);
#endif
NKern::Unlock();
#if defined(__CW32__) && __MWERKS__ < 0x3200
// intercept the win32 exception mechanism manually
asm {
push ebp
mov eax, -1
push eax
push eax
push offset NThread__ExceptionHandler
push fs:[0]
mov fs:[0], esp
// realign the stack
sub esp, 0x20
and esp, ~0x1f
}
#else // ! old __CW32__
// intercept win32 exceptions in a debuggabble way
__try {
#endif // old __CW32__
// save the thread entry point and parameter block
const SNThreadCreateInfo& info = *init->iInfo;
TUint8 parameterBlock[KMaxParameterBlock];
TAny* parameter=(TAny*)info.iParameterBlock;
if (info.iParameterBlockSize)
{
__NK_ASSERT_DEBUG(TUint(info.iParameterBlockSize)<=TUint(KMaxParameterBlock));
parameter=parameterBlock;
memcpy(parameterBlock,info.iParameterBlock,info.iParameterBlockSize);
}
NThreadFunction threadFunction=info.iFunction;
// Calculate stack base
me.iUserStackBase = (((TLinAddr)¶meterBlock)+0xfff)&~0xfff; // base address of stack
// some useful diagnostics for debugging
if (Win32TraceThreadId)
KPrintf("Thread %T created @ 0x%x - Win32 Thread ID 0x%x",init->iHandoff.iHoldingThread,init->iHandoff.iHoldingThread,GetCurrentThreadId());
#ifdef MONITOR_THREAD_CPU_TIME
me.iLastStartTime = 0; // Don't count NThread setup in cpu time
#endif
// start-up complete, release the handoff mutex, which will re-suspend us
NKern::FMSignal(&init->iHandoff);
// thread has been resumed: invoke the thread function
threadFunction(parameter);
#if !defined(__CW32__) || __MWERKS__ >= 0x3200
// handle win32 exceptions
} __except (ExceptionFilter(GetExceptionInformation())) {
// Do nothing - filter does all the work and hooks
// into EPOC h/w exception mechanism if necessary
// by thread diversion
}
#endif // !old __CW32__
NKern::Exit();
return 0;
}
static HANDLE InitThread()
//
// Set up the initial thread and return the thread handle
//
{
HANDLE p = GetCurrentProcess();
HANDLE me;
__NK_ASSERT_ALWAYS(DuplicateHandle(p, GetCurrentThread(), p, &me, 0, FALSE, DUPLICATE_SAME_ACCESS));
SetPriority(me, EThreadNKern);
return me;
}
TInt NThread::Create(SNThreadCreateInfo& aInfo, TBool aInitial)
{
iWinThread = NULL;
iWinThreadId = 0;
iScheduleLock = NULL;
iInKernel = 1;
iDivert = NULL;
iWakeup = aInitial ? ERelease : EResumeLocked; // mark new threads as created (=> win32 suspend)
TInt r=NThreadBase::Create(aInfo,aInitial);
if (r!=KErrNone)
return r;
// the rest has to be all or nothing, we must complete it
iScheduleLock = CreateEventA(NULL, FALSE, FALSE, NULL);
if (iScheduleLock == NULL)
return Emulator::LastError();
if (aInitial)
{
iWinThread = InitThread();
FastCounterInit();
#ifdef MONITOR_THREAD_CPU_TIME
iLastStartTime = NKern::FastCounter();
#endif
iUserStackBase = (((TLinAddr)&r)+0xfff)&~0xfff; // base address of stack
SchedulerInit(*this);
return KErrNone;
}
// create the thread proper
//
SCreateThread start;
start.iInfo = &aInfo;
iWinThread = CreateWin32Thread(EThreadNKern, &StartThread, &start, FALSE);
if (iWinThread == NULL)
{
r = Emulator::LastError();
CloseHandle(iScheduleLock);
return r;
}
#ifdef BTRACE_THREAD_IDENTIFICATION
BTrace4(BTrace::EThreadIdentification,BTrace::ENanoThreadCreate,this);
#endif
// switch to the new thread to hand over the parameter block
NKern::Lock();
ForceResume(); // mark the thread as ready
// give the thread ownership of the handoff mutex
start.iHandoff.iHoldingThread = this;
iHeldFastMutex = &start.iHandoff;
Suspend(1); // will defer as holding a fast mutex (implicit critical section)
// do the hand-over
start.iHandoff.Wait();
start.iHandoff.Signal();
NKern::Unlock();
return KErrNone;
}
void NThread__HandleException(TWin32ExcInfo aExc)
//
// Final stage NKern exception handler.
//
// Check for a fatal exception when the kernel is locked
//
// Note that the parameter struct is passed by value, this allows for
// direct access to the exception context created on the call stack by
// NThread::Exception().
//
{
if (TheScheduler.iKernCSLocked)
ExcFault(&aExc);
// Complete the exception data. Note that the call to EnterKernel() in
// ExceptionFilter() will have incremented iInKernel after the exception
// occurred.
NThread* me = static_cast<NThread*>(TheScheduler.iCurrentThread);
__NK_ASSERT_DEBUG(me->iInKernel);
aExc.iFlags = me->iInKernel == 1 ? 0 : TWin32ExcInfo::EExcInKernel;
aExc.iHandler = NULL;
// run NThread exception handler in 'kernel' mode
me->iHandlers->iExceptionHandler(&aExc, me);
LeaveKernel();
// If a 'user' handler is set by the kernel handler, run it
if (aExc.iHandler)
aExc.iHandler(aExc.iParam[0], aExc.iParam[1]);
}
void NKern__Unlock()
//
// CW asm ICE workaround
//
{
NKern::Unlock();
}
__NAKED__ void NThread::Exception()
//
// Trampoline to nKern exception handler
// must preserve all registers in the structure defined by TWin32Exc
//
{
// this is the TWin32Exc structure
__asm push Win32ExcAddress // save return address followed by EBP first to help debugger
__asm push ebp
__asm mov ebp, esp
__asm push cs
__asm pushfd
__asm push gs
__asm push fs
__asm push es
__asm push ds
__asm push ss
__asm push edi
__asm push esi
__asm lea esi, [ebp+8]
__asm push esi // original esp
__asm push ebx
__asm push edx
__asm push ecx
__asm push eax
__asm push Win32ExcDataAddress
__asm push Win32ExcCode
__asm sub esp, 20 // struct init completed by NThread__HandleException()
__asm call NKern__Unlock
__asm call NThread__HandleException
__asm add esp, 28
__asm pop eax
__asm pop ecx
__asm pop edx
__asm pop ebx
__asm pop esi // original ESP - ignore
__asm pop esi
__asm pop edi
__asm pop ebp // original SS - ignore
__asm pop ds
__asm pop es
__asm pop fs
__asm pop gs
__asm popfd
__asm pop ebp // original CS - ignore
__asm pop ebp
__asm ret
}
LONG WINAPI NThread::ExceptionFilter(EXCEPTION_POINTERS* aExc)
//
// Filter wrapper for main Win32 exception handler
//
{
LONG ret = EXCEPTION_CONTINUE_SEARCH;
switch (ExceptionHandler(aExc->ExceptionRecord, aExc->ContextRecord))
{
case ExceptionContinueExecution:
{
ret = EXCEPTION_CONTINUE_EXECUTION;
}
break;
case ExceptionContinueSearch:
default:
{
}
break;
}
return ret;
}
// From e32/commmon/win32/seh.cpp
extern DWORD CallFinalSEHHandler(EXCEPTION_RECORD* aException, CONTEXT* aContext);
extern void DivertHook();
DWORD NThread::ExceptionHandler(EXCEPTION_RECORD* aException, CONTEXT* aContext)
//
// Win32 exception handler for EPOC threads
//
{
if (aException->ExceptionCode == EXCEPTION_BREAKPOINT)
{
// Hardcoded breakpoint
//
// Jump directly to NT's default unhandled exception handler which will
// either display a dialog, directly invoke the JIT debugger or do nothing
// dependent upon the AeDebug and ErrorMode registry settings.
//
// Note this handler is always installed on the SEH chain and is always
// the last handler on this chain, as it is installed by NT in kernel32.dll
// before invoking the Win32 thread function.
return CallFinalSEHHandler(aException, aContext);
}
// deal with conflict between preemption and diversion
// the diversion will have been applied to the pre-exception context, not
// the current context, and thus will get 'lost'. Wake-up of a pre-empted
// thread with a diversion will not unlock the kernel, so need to deal with
// the possibility that the kernel may be locked if a diversion exists
NThread& me = *static_cast<NThread*>(TheScheduler.iCurrentThread);
if (me.iDiverted && me.iDivert)
{
// The thread is being forced to exit - run the diversion outside of Win32 exception handler
__NK_ASSERT_ALWAYS(TheScheduler.iKernCSLocked == 1);
aContext->Eip = (TUint32)&DivertHook;
}
else
{
if (me.iDiverted)
{
// The thread is being prodded to pick up its callbacks. This will happen when the
// exception handler calls LeaveKernel(), so we can remove the diversion
__NK_ASSERT_ALWAYS(TheScheduler.iKernCSLocked == 1);
if (aException->ExceptionAddress == &DivertHook)
aException->ExceptionAddress = me.iDivertReturn;
me.iDiverted = EFalse;
me.iDivertReturn = NULL;
EnterKernel(FALSE);
}
else
{
EnterKernel();
TheScheduler.iKernCSLocked = 1; // prevent pre-emption
}
// If the kernel was already locked, this will be detected in the next stage handler
// run 2nd stage handler outside of Win32 exception context
Win32ExcAddress = aException->ExceptionAddress;
Win32ExcDataAddress = (TAny*)aException->ExceptionInformation[1];
Win32ExcCode = aException->ExceptionCode;
aContext->Eip = (TUint32)&Exception;
}
return ExceptionContinueExecution;
}
void NThread::Diverted()
//
// Forced diversion go through here, in order to 'enter' the kernel
//
{
NThread& me = *static_cast<NThread*>(TheScheduler.iCurrentThread);
__NK_ASSERT_ALWAYS(TheScheduler.iKernCSLocked == 1);
__NK_ASSERT_ALWAYS(me.iDiverted);
NThread::TDivert divert = me.iDivert;
me.iDiverted = EFalse;
me.iDivert = NULL;
me.iDivertReturn = NULL;
EnterKernel(FALSE);
if (divert)
divert(); // does not return
NKern::Unlock();
LeaveKernel();
}
void NThread__Diverted()
{
NThread::Diverted();
}
__NAKED__ void DivertHook()
{
// The stack frame is set up like this:
//
// | return address |
// | frame pointer |
// | flags |
// | saved eax |
// | saved ecx |
// | saved edx |
//
__asm push eax // reserve word for return address
__asm push ebp
__asm mov ebp, esp
__asm pushfd
__asm push eax
__asm push ecx
__asm push edx
__asm mov eax, [TheScheduler.iCurrentThread]
__asm mov eax, [eax]NThread.iDivertReturn
__asm mov [esp + 20], eax // store return address
__asm call NThread__Diverted
__asm pop edx
__asm pop ecx
__asm pop eax
__asm popfd
__asm pop ebp
__asm ret
}
void NThread::ApplyDiversion()
{
// Called with interrupts disabled and kernel locked
__NK_ASSERT_ALWAYS(TheScheduler.iKernCSLocked == 1);
if (iDiverted)
return;
CONTEXT c;
c.ContextFlags=CONTEXT_FULL;
GetThreadContext(iWinThread, &c);
__NK_ASSERT_ALWAYS(iDivertReturn == NULL);
iDivertReturn = (TAny*)c.Eip;
c.Eip=(TUint32)&DivertHook;
SetThreadContext(iWinThread, &c);
iDiverted = ETrue;
}
void NThread::Divert(TDivert aDivert)
//
// Divert the thread from its current path
// The diversion function is called with the kernel locked and interrupts enabled
//
{
iDivert = aDivert;
if (iWakeup == EResume)
iWakeup = EResumeDiverted;
else
__NK_ASSERT_ALWAYS(iWakeup == ERelease);
}
void NThread::ExitSync()
//
// Diversion used to terminate 'stillborn' threads.
// On entry, kernel is locked, interrupts are enabled and we hold an interlock mutex
//
{
NThreadBase& me=*TheScheduler.iCurrentThread;
me.iHeldFastMutex->Signal(); // release the interlock
me.iNState=EDead; // mark ourselves as dead which will take thread out of scheduler
TheScheduler.Remove(&me);
RescheduleNeeded();
TScheduler::Reschedule(); // this won't return
FAULT();
}
void NThread::Stillborn()
//
// Called if the new thread creation was aborted - so it will not be killed in the usual manner
//
// This function needs to exit the thread synchronously as on return we will destroy the thread control block
// Thus wee need to use an interlock that ensure that the target thread runs the exit handler before we continue
//
{
// check if the Win32 thread was created
if (!iWinThread)
return;
NKern::Lock();
Divert(&ExitSync);
ForceResume();
// create and assign mutex to stillborn thread
NFastMutex interlock;
interlock.iHoldingThread=this;
iHeldFastMutex=&interlock;
interlock.Wait(); // interlock on thread exit handler
interlock.Signal();
NKern::Unlock();
}
void NThread::ExitAsync()
//
// Diversion used to terminate 'killed' threads.
// On entry, kernel is locked and interrupts are enabled
//
{
NThreadBase& me = *TheScheduler.iCurrentThread;
me.iCsCount = 0;
__NK_ASSERT_ALWAYS(static_cast<NThread&>(me).iInKernel>0);
me.Exit();
}
void NThreadBase::OnKill()
{
}
void NThreadBase::OnExit()
{
}
inline void NThread::DoForceExit()
{
__NK_ASSERT_DEBUG(TheScheduler.iKernCSLocked);
//
Divert(&ExitAsync);
}
void NThreadBase::ForceExit()
//
// Called to force the thread to exit when it resumes
//
{
static_cast<NThread*>(this)->DoForceExit();
}
//
// We need a global lock in the emulator to avoid scheduling reentrancy problems with the host
// in particular, some host API calls acquire host mutexes, preempting such services results
// in suspension of those threads which can cause deadlock if another thread requires that host
// mutex.
//
// Because thread dreaction and code loading also require the same underlying mutex (used
// by NT to protect DLL entrypoint calling), this would be rather complex with a fast mutex.
// For now, keep it simple and use the preemption lock. Note that this means that the
// MS timer DFC may be significantly delayed when loading large DLL trees, for example.
//
void SchedulerLock()
//
// Acquire the global lock. May be called before scheduler running, so handle that case
//
{
if (TheScheduler.iCurrentThread)
{
EnterKernel();
NKern::Lock();
}
}
void SchedulerUnlock()
//
// Release the global lock. May be called before scheduler running, so handle that case
//
{
if (TheScheduler.iCurrentThread)
{
NKern::Unlock();
LeaveKernel();
}
}