Fix for bug 2283 (RVCT 4.0 support is missing from PDK 3.0.h)
Have multiple extension sections in the bld.inf, one for each version
of the compiler. The RVCT version building the tools will build the
runtime libraries for its version, but make sure we extract all the other
versions from zip archives. Also add the archive for RVCT4.
// Copyright (c) 1997-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32\memmodel\epoc\nvram.cpp
//
//
#include "plat_priv.h"
_LIT(KLitMachineConfigMutex,"MCConfMutex");
_LIT(KLitRamDriveMutex,"RamDriveMutex");
_LIT(KLitTheRamDriveChunk,"TheRamDriveChunk");
void K::InitNvRam()
{
__KTRACE_OPT(KBOOT,Kern::Printf("InitNvRam"));
TInt r=K::MutexCreate(K::MachineConfigMutex, KLitMachineConfigMutex, NULL, EFalse, KMutexOrdMachineConfig);
if (r!=KErrNone)
K::Fault(K::EMachineConfigMutexCreateFailed);
if (K::ColdStart)
{
TheSuperPage().iRamDriveSize=0;
TheMachineConfig().iLogSize=0;
TheMachineConfig().iLogMaxSize=0;
}
#ifdef __MEMMODEL_FLEXIBLE__
TheSuperPage().iRamDriveSize=0;
#endif
SChunkCreateInfo c;
TInt ramDriveSize=TheSuperPage().iRamDriveSize;
c.iGlobal=EFalse;
c.iAtt=TChunkCreate::ENormal;
c.iForceFixed=EFalse;
#ifndef __MEMMODEL_FLEXIBLE__
c.iOperations=SChunkCreateInfo::EAdjust|SChunkCreateInfo::EAdd;
#else
c.iOperations=SChunkCreateInfo::EAdjust;
#endif
c.iRunAddress=PP::RamDriveStartAddress;
c.iPreallocated=ramDriveSize;
c.iType=ERamDrive;
c.iMaxSize=PP::RamDriveMaxSize;
c.iInitialBottom=0;
c.iInitialTop=0;
c.iName.Set(KLitTheRamDriveChunk);
c.iOwner=K::TheKernelProcess;
TLinAddr runAddr;
r=K::TheKernelProcess->NewChunk((DChunk*&)PP::TheRamDriveChunk,c,runAddr);
if (r!=KErrNone)
K::Fault(K::ERamDriveChunkCreateFailed);
__KTRACE_OPT(KBOOT,Kern::Printf("Ram Drive size = %08x", ramDriveSize));
r=TInternalRamDrive::Create();
if (r!=KErrNone)
K::Fault(K::ERamDriveInitFailed);
__KTRACE_OPT(KBOOT,Kern::Printf("K::InitNvRam() completed"));
}
TInt TInternalRamDrive::Create()
{
__KTRACE_OPT(KBOOT,Kern::Printf("TInternalRamDrive::Create()"));
// create the RAM drive mutex
TInt r=K::MutexCreate((DMutex*&)Mutex, KLitRamDriveMutex, NULL, EFalse, KMutexOrdRamDrive);
if (r!=KErrNone)
return r;
__KTRACE_OPT(KBOOT,Kern::Printf("RAM drive mutex created at %08x",Mutex));
return KErrNone;
}
#ifndef __MEMMODEL_FLEXIBLE__
EXPORT_C TLinAddr TInternalRamDrive::Base()
//
// Return the Internal Ram Drive base address
//
{
return (TLinAddr)PP::TheRamDriveChunk->Base(&Kern::CurrentProcess());
}
#endif
EXPORT_C TInt TInternalRamDrive::Size()
//
// Return the Internal Ram Drive size
//
{
return TheSuperPage().iRamDriveSize;
}
EXPORT_C TInt TInternalRamDrive::Adjust(TInt aNewSize)
//
// Adjust the size of the internal ram drive
//
{
// If we are shrinking the drive, change the size now in case the
// machine is reset half way through the chunk adjust
if (aNewSize<0)
return KErrArgument;
if (aNewSize<TheSuperPage().iRamDriveSize)
{
TheSuperPage().iRamDriveSize=aNewSize;
return PP::TheRamDriveChunk->Adjust(aNewSize);
}
// If we are growing the drive, change the size after the adjustment is complete
// If a reset occurs in the middle of the adjust, the ram drive will be
// restored to its original state before the adjustment.
else if (aNewSize>TheSuperPage().iRamDriveSize)
{
if (aNewSize>PP::RamDriveMaxSize)
return KErrDiskFull;
TInt r=PP::TheRamDriveChunk->Adjust(aNewSize);
if (r==KErrNoMemory)
return(KErrDiskFull);
else if(r==KErrNone)
TheSuperPage().iRamDriveSize=aNewSize;
return(r);
}
return KErrNone;
}
EXPORT_C void TInternalRamDrive::Wait()
{
Kern::MutexWait(*Mutex);
UNLOCK_USER_MEMORY();
}
EXPORT_C void TInternalRamDrive::Signal()
{
LOCK_USER_MEMORY();
Kern::MutexSignal(*Mutex);
}