piprofiler/plugins/GeneralsPlugin/src/GppSamplerImpl.cpp
author Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
Tue, 31 Aug 2010 16:45:49 +0300
branchRCL_3
changeset 20 ca8a1b6995f6
parent 13 da2cedce4920
child 21 52e343bb8f80
permissions -rw-r--r--
Revision: 201033 Kit: 201035

/*
* Copyright (c) 2009 Nokia Corporation and/or its subsidiary(-ies). 
* All rights reserved.
* This component and the accompanying materials are made available
* under the terms of "Eclipse Public License v1.0"
* which accompanies this distribution, and is available
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
*
* Initial Contributors:
* Nokia Corporation - initial contribution.
*
* Contributors:
*
* Description:  
*
*/


#include <piprofiler/ProfilerVersion.h>
#include <piprofiler/ProfilerTraces.h>
#include <kern_priv.h>
#include <arm.h>

#include "GppSamplerImpl.h"

extern TUint*		IntStackPtr();
#define	TAG(obj)	(*(TUint32*)&(obj.iAsyncDeleteNext))

// properties for ISA task parsing
const TUid KIsaPropertyCat={0x2001E5AD};
enum TIsaPropertyKeys
	{
	EIsaPropertyIsaTaskParserStatus = 1,
	EIsaPropertyIsaTaskAddressStart,
	EIsaPropertyIsaTaskAddressEnd,
	EIsaPropertyIsaTaskAddress,
	EIsaPropertyIsaOsTaskRunningAddress,
	EIsaPropertyIsaTaskParsedName
	};


DGppSamplerImpl::DGppSamplerImpl()
	{
	LOGTEXT("GppSamplerImpl::GppSamplerImpl");
	iInterruptStack = (TUint*)IntStackPtr();

	LOGTEXT("GppSamplerImpl::GppSamplerImpl - attaching to properties");

	TInt err = iIsaStartAddr.Attach(KIsaPropertyCat, EIsaPropertyIsaTaskAddressStart);
	if(err != KErrNone)
		LOGTEXT("GppSamplerImpl::GppSamplerImpl() - Property EIsaPropertyIsaTaskAddressStart not available"); 
	err = iIsaEndAddr.Attach(KIsaPropertyCat, EIsaPropertyIsaTaskAddressEnd);
	if(err != KErrNone)
		LOGTEXT("GppSamplerImpl::GppSamplerImpl() - Property EIsaPropertyIsaTaskAddressEnd not available"); 
	err = iIsaPluginStatus.Attach(KIsaPropertyCat, EIsaPropertyIsaTaskParserStatus);
	if(err != KErrNone)
		LOGTEXT("GppSamplerImpl::GppSamplerImpl() - Property EIsaPropertyIsaTaskParserStatus not available"); 
	err = iIsaOsTaskRunning.Attach(KIsaPropertyCat, EIsaPropertyIsaOsTaskRunningAddress);
	if(err != KErrNone)
		LOGTEXT("GppSamplerImpl::GppSamplerImpl() - Property EIsaPropertyIsaOsTaskRunningAddress not available"); 
	
	PROFILER_ISA_TASK_NAMES
	
	Reset();
	}

DGppSamplerImpl::~DGppSamplerImpl() 
	{
	iIsaStartAddr.Close();
	iIsaEndAddr.Close();
	iIsaPluginStatus.Close();
	iIsaOsTaskRunning.Close();
	}

void DGppSamplerImpl::Reset()
	{
	LOGTEXT("GppSamplerImpl::Reset");
	iLastPc = 0;
	iLastThread = 0xfffffffe;
	iRepeat = 0;
	iIsaStatus = 0;
	iIsaStart = 0;
	iIsaEnd = 0;
//	isaOsTaskRunningAddr = 0;
	
	// in SMP start time common with all CPUs, provided by DGeneralsDriver class
#ifndef __SMP__
	iStartTime = ( NKern::TickCount() & 0xfffffffc );
#endif
	
	TPropertyStatus status;
	TInt osAddr = 0;
	
	LOGTEXT("GppSamplerImpl::Reset - getting status");
	
	// get status of ISA plug-in
	if(iIsaPluginStatus.GetStatus(status))
		{
		iIsaPluginStatus.Get(iIsaStatus);
		LOGSTRING2("GppSamplerImpl::Reset - ISA plug-in status %d", iIsaStatus);
		}
	
	if(iIsaStatus > 0)
		{
		LOGTEXT("GppSamplerImpl::Reset - get isa start address");
		iIsaStartAddr.Get(iIsaStart);
		LOGTEXT("GppSamplerImpl::Reset - get isa end address");
		iIsaEndAddr.Get(iIsaEnd);
		LOGTEXT("GppSamplerImpl::Reset - get isa os_task_running address");
		iIsaOsTaskRunning.Get(osAddr);
		isaOsTaskRunningAddr = reinterpret_cast<TInt*>(osAddr);
		LOGSTRING2("GppSamplerImpl::Reset - got isa os_task_running address 0x%X", osAddr);
		}
	
	LOGTEXT("GppSamplerImpl::Reset - initializing isa task list");

	iIsaSample = false;
	
	for(TInt i=0;i<256;i++)
		knownIsaTasks[i] = -1;
	
	knownIsaTaskCount = 0;
    
	iCpuSelector = 0x3;
#ifndef __SMP__
    iMask =  0xfffffffc;
#else
    iMask =  0xfffffff0;
    switch(iCpuNumber)
        {
        case 0:
            iCpuSelector = 0x1;
            break;
        case 1:
            iCpuSelector = 0x2;
            break;
        case 2:
            iCpuSelector = 0x4;
            break;
        case 3:
            iCpuSelector = 0x8;
            break;
        }
#endif
	}

TUint8* DGppSamplerImpl::EncodeTag(TUint8* aPtr)
//
// Encode a tag and version to the trace data. This allows the offline analyser to 
// identify the sample data.
//
{	
	_LIT(KGppSamplerVersion,"Bappea_GPP_V");
	_LIT(KProfilerVersion,"#Prof#");
	_LIT(KSamplerVersion,"#Samp#");
#ifdef __SMP__
	_LIT(KCPUNumberText,"#CPU#");
#endif
	
	TBuf<64> buf;
	buf.Zero();
	buf.Append(KGppSamplerVersion);
	buf.Append(PROFILER_GPP_SAMPLER_VERSION);
	buf.Append(KProfilerVersion);
	buf.Append(PROFILER_VERSION_SHORT);	
	buf.Append(KSamplerVersion);
	buf.Append(PROFILER_SAMPLER_VERSION);
#ifdef __SMP__
	buf.Append(KCPUNumberText);
	buf.AppendNum(iCpuNumber);
#endif
	aPtr = EncodeText(aPtr, buf);
	return aPtr;
}

TUint8* DGppSamplerImpl::EncodeInt(TUint8* aPtr,TInt aValue)
{
	LOGSTRING2("Encoding int 0x%x",aPtr);

	LOGSTRING2("TIint = 0x%x",aValue);

	TUint byte;
	for (;;)
		{
		byte = aValue & 0x7f;
		if ((aValue >> 6) == (aValue >> 7))
			break;
		aValue >>= 7;
		*aPtr++ = byte;
		}
	*aPtr++ = byte | 0x80;

	LOGSTRING2("Encoded int 0x%x",aPtr);

	return aPtr;
}

TUint8* DGppSamplerImpl::EncodeUint(TUint8* aPtr,TUint aValue)
{
	LOGSTRING2("Encoding Uint 0x%x",aPtr);

	LOGSTRING2("TUint = 0x%x",aValue);


	TUint byte;
	for (;;)
		{
		byte = aValue & 0x7f;
		aValue >>= 7;
		if (aValue == 0)
			break;
		*aPtr++ = byte;
		}
	*aPtr++ = byte | 0x80;

	LOGSTRING2("Encoded Uint 0x%x",aPtr);

	return aPtr;
}

TUint8* DGppSamplerImpl::EncodeText(TUint8* aPtr, const TDesC& aDes)
//
// Encode a descriptor into the data stream
// This is currently limited to a descriptor that is up to 255 characters in length,
// and Unicode characters are truncated to 8 bits
//
{
	LOGSTRING2("Encoding text 0x%x",aPtr);
	TInt len=aDes.Length();
	*aPtr++ = TUint8(len);
	const TText* p = aDes.Ptr();
	while (--len >= 0)
		{
		*aPtr++ = TUint8(*p++);
		}

	LOGSTRING2("Encoded text 0x%x",aPtr);
	return aPtr;
}


TUint8* DGppSamplerImpl::EncodeName(TUint8* aPtr, DObject& aObject,TUint32 id)
//
// Encode the name of a kernel object
//
{
	LOGSTRING2("Encoding name 0x%x",aPtr);
	TBuf8<0x5f> name;
	aObject.TraceAppendName(name,false);

	if(id != 0xffffffff)
	{
		name.Append('[');
		name.AppendNum(id,EHex);
		name.Append(']');
	}
	else
	{
		name.Append('[');
		name.AppendNum((TUint32)((void*)&(((DThread*)&aObject)->iNThread)),EHex);
		name.Append(']');
	}

	aPtr = EncodeText(aPtr,name);
	LOGSTRING2("Encoded name 0x%x",aPtr);
	return aPtr;
}

TUint8* DGppSamplerImpl::EncodeThread(TUint8* aPtr, DThread& aThread)
//
// Encode a thread name in the data stream.
// The thread is identified by its name, and the identity of its owning process.
// If the process has not been identified in the data stream already, it's name is
// also encoded.
//
{
	LOGSTRING2("Encoding thread 0x%x",aPtr);	

	DProcess& p = *aThread.iOwningProcess;
	
	aPtr = EncodeUint(aPtr, p.iId);

#ifdef __SMP__
    // check if first time founding
    if ((TAG(p) & iMask) != iStartTime)
        {
        // mark tagged for this CPU
        TAG(p) = (iStartTime | iCpuSelector);

        // The thread is 'unknown' to this sample, so encode the thread name
        aPtr = EncodeName(aPtr, p, p.iId);     
        }
    // check if thread appeared already on this CPU
    else if((TAG(p) & iCpuSelector) != iCpuSelector)
        {
        TAG(p) = (TAG(p) | iCpuSelector);
        // The thread is 'unknown' to this sample, so encode the thread name
        aPtr = EncodeName(aPtr, p, p.iId);     
        }
#else
	if (TAG(p) != iStartTime)
	    {
		TAG(p) = iStartTime;
		// Provide the name matching this process ID
		aPtr = EncodeName(aPtr, p, p.iId);
	    }
#endif	    
	aPtr = EncodeName(aPtr, aThread,0xffffffff);
	
	LOGSTRING2("Encoded thread 0x%x",aPtr);	

	return aPtr;
    }

TUint8* DGppSamplerImpl::EncodeRepeat(TUint8* aPtr)
//
// Encode a repeated sequence of samples
//
{
	LOGSTRING2("Encoding repeat, 0x%x",iRepeat);	

	aPtr = EncodeInt(aPtr, 0);
	aPtr = EncodeUint(aPtr, iRepeat);
	iRepeat = 0;

	LOGSTRING2("Encoded repeat, 0x%x",iRepeat);	

	return aPtr;
}

TInt DGppSamplerImpl::CreateFirstSample()
{
	LOGTEXT("GppSamplerImpl::CreateFirstSample");
	Reset();

	TUint8* w = this->tempBuf;
	w = EncodeTag(w);

	TInt length = w-tempBuf;

	LOGSTRING2("TAG encoded, length %d",length);
	return length;
}

TBool DGppSamplerImpl::IsaTaskKnown(TUint8 task)
{
	for(TInt i=0;i<256;i++)
	{
		if(knownIsaTasks[i] == -1)
		{
			knownIsaTasks[i] = task;
			knownIsaTaskCount++;
			return false;
		}
		else if(knownIsaTasks[i] == task)
		{
			return true;
		}
	}

	return false;
}

TUint8* DGppSamplerImpl::EncodeIsaTask(TUint8* aPtr, TUint task)

{
	LOGSTRING2("Encoding ISA task 0x%x",aPtr);	

	aPtr = EncodeUint(aPtr,task);
	// use the task name as the process name
	aPtr = EncodeIsaName(aPtr,task,true);
	// then encode the task name
	aPtr = EncodeIsaName(aPtr,task,false);
	
	LOGSTRING2("Encoded ISA task 0x%x",aPtr);	

	return aPtr;
}

TUint8* DGppSamplerImpl::EncodeIsaName(TUint8* aPtr, TUint task,TBool process)
//
// Encode a descriptor into the data stream
// This is currently limited to a descriptor that is up to 255 characters in length,
// and Unicode characters are truncated to 8 bits
//
{
	TBuf8<256> aDes;
	
//	#ifdef NCP_COMMON_PROFILER_ISA_TASKS 
	if(iIsaStatus > 0)
		{
		// resolve the isa task name from the task name array
		if((task-100000) < PROFILER_ISA_OS_TASK_AMOUNT && process == false)
			{
			aDes.Append(isaTaskNames[(task-100000)]);
			}
		else
			{
			aDes.Append(_L8("NativeOS_Task"));
			}
		}
	else
		{
		aDes.Append(_L8("NativeOS_Task"));
		}
	
	aDes.Append('[');
	aDes.AppendNum((task-100000),EHex);
	aDes.Append(']');

	LOGSTRING2("Encoding ISA name 0x%x",aPtr);
	TInt len=aDes.Length();
	*aPtr++ = TUint8(len);
	const TText* p = aDes.Ptr();
	while (--len >= 0)
		{
		*aPtr++ = TUint8(*p++);
		}

	LOGSTRING2("Encoded ISA name 0x%x",aPtr);
	return aPtr;
}


TInt DGppSamplerImpl::SampleImpl()
//
// ISR for the profile timer
// This extracts the thread and PC that was current when the interrupt went off and
// encodes it into the sample data buffer. If enough data has been generated, the
// DFC is triggered to complete a read request
//
    {
	TUint8* w(this->tempBuf);
	
//    Kern::Printf(("Got thread 0x%08x"), &t);
#ifdef __SMP__
    // get the program counter of irq mode
    TUint32 pc = (TUint32)Arm::IrqReturnAddress();
#else
    // get program counter of irq mode
    TUint32 pc = iInterruptStack[-1];
#endif
    //LOGSTRING3("pc value 0x%x sp 0x%x",pc,iInterruptStack);

	// ignore the low bit being set for THUMB mode - we use for something else
	pc &= ~1;			
	TInt diff = pc - iLastPc;
	iLastPc = pc;

	if(iIsaStatus > 0)
		{
		if((TUint32)pc > (TUint32)iIsaStart && (TUint32)pc < (TUint32)iIsaEnd)
			{
			LOGSTRING2("Identified ISA execution at 0x%x",pc);
			iIsaSample = true;
			}
		else
			{
			LOGSTRING2("Normal sample at 0x%x",pc);
			iIsaSample = false;
			}
		}

	// request for current thread from kernel
	DThread& t = ((DThread&)*Kern::NThreadToDThread(NKern::CurrentThread()));
	
	TUint tid;
	TUint8 isaTask = 0;
	if(iIsaSample)
	{
		LOGSTRING2("Reading ISA task number from 0x%x",isaOsTaskRunningAddr);

		// if we don't get reasonable ISA address to read, skip ISA task handling
		if(isaOsTaskRunningAddr == 0)
			{
			tid = 100000; // to tell the difference from SOS threads
			iIsaSample = false;
			}
		else	// normal ISA task parsing process
			{
			isaTask = *isaOsTaskRunningAddr;
			LOGSTRING2("ISA task = %d",isaTask);
			tid = isaTask;
			// this will make sure we don't mix ISA tasks and normal tasks
			tid += 100000;
			}

	}
	else
	{
		tid = t.iId;
	}

	if (tid != iLastThread)
	{
		// Change of thread is marked in the low bit of the PC difference
		diff |= 1;
	}
	TUint rp = iRepeat;
	if (diff == 0)
	{
		// Identical sample, bump up the repeat count
		iRepeat = rp + 1;
	}
	else
	{
		if (rp)
		{
			// Encode the repeat data
			w = EncodeRepeat(w);
		}
		// Encode the PC difference
		w = EncodeInt(w, diff);
		if (diff & 1)
		{
			// Encode the new thread ID
			if(iIsaSample)
			{
				iLastThread = tid;
				w = EncodeUint(w,tid);

				if(!this->IsaTaskKnown(isaTask))
				{
					w = EncodeIsaTask(w,iLastThread);
				}
				//LOGSTRING2("Sample total length: %d",w-tempBuf);
				TInt length = w-tempBuf;
				// encoded isa task, return here
				return length;
			}
		
			iLastThread = tid;
			w = EncodeUint(w, tid);

#ifdef __SMP__
			// iStartTime format: 0xXXXXXXX0, the last byte set to zero
			// iMask =  0xfffffff0(0b111....1110000)
			// iCpuSelector = 0x1(0b0001), 0x2(0b0010), 0x4(0b0100) or 0x8(0b1000) 
			
			// check first time founding
			if ((TAG(t) & iMask) != iStartTime)
			    {
			    // mark tagged for this CPU
				TAG(t) = (iStartTime | iCpuSelector);
				
				// The thread is 'unknown' to this sample, so encode the thread name
				w = EncodeThread(w, t);		
			    }
			// check if thread appeared on this CPU
			else if((TAG(t) & iCpuSelector) != iCpuSelector)
			    {
                TAG(t) = (TAG(t) | iCpuSelector);
                // The thread is 'unknown' to this sample, so encode the thread name
                w = EncodeThread(w, t);     
			    }
#else
			// check if tag has not been set, neither original nor 
            if ((TAG(t) & 0xfffffffc) != iStartTime)
                {
                TAG(t) = ((TAG(t) & 0x3) | iStartTime);
                // The thread is 'unknown' to this sample, so encode the thread name
                w = EncodeThread(w, t);     
                }
#endif
		    }
	    }
	LOGSTRING2("Sample total length: %d",w-tempBuf);
	TInt length = w-tempBuf;

	return length;
}