persistentstorage/sql/SQLite/expr.c
changeset 0 08ec8eefde2f
child 23 26645d81f48d
equal deleted inserted replaced
-1:000000000000 0:08ec8eefde2f
       
     1 /*
       
     2 ** 2001 September 15
       
     3 **
       
     4 ** The author disclaims copyright to this source code.  In place of
       
     5 ** a legal notice, here is a blessing:
       
     6 **
       
     7 **    May you do good and not evil.
       
     8 **    May you find forgiveness for yourself and forgive others.
       
     9 **    May you share freely, never taking more than you give.
       
    10 **
       
    11 *************************************************************************
       
    12 ** This file contains routines used for analyzing expressions and
       
    13 ** for generating VDBE code that evaluates expressions in SQLite.
       
    14 **
       
    15 ** $Id: expr.c,v 1.387 2008/07/28 19:34:53 drh Exp $
       
    16 */
       
    17 #include "sqliteInt.h"
       
    18 #include <ctype.h>
       
    19 
       
    20 /*
       
    21 ** Return the 'affinity' of the expression pExpr if any.
       
    22 **
       
    23 ** If pExpr is a column, a reference to a column via an 'AS' alias,
       
    24 ** or a sub-select with a column as the return value, then the 
       
    25 ** affinity of that column is returned. Otherwise, 0x00 is returned,
       
    26 ** indicating no affinity for the expression.
       
    27 **
       
    28 ** i.e. the WHERE clause expresssions in the following statements all
       
    29 ** have an affinity:
       
    30 **
       
    31 ** CREATE TABLE t1(a);
       
    32 ** SELECT * FROM t1 WHERE a;
       
    33 ** SELECT a AS b FROM t1 WHERE b;
       
    34 ** SELECT * FROM t1 WHERE (select a from t1);
       
    35 */
       
    36 char sqlite3ExprAffinity(Expr *pExpr){
       
    37   int op = pExpr->op;
       
    38   if( op==TK_SELECT ){
       
    39     return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr);
       
    40   }
       
    41 #ifndef SQLITE_OMIT_CAST
       
    42   if( op==TK_CAST ){
       
    43     return sqlite3AffinityType(&pExpr->token);
       
    44   }
       
    45 #endif
       
    46   return pExpr->affinity;
       
    47 }
       
    48 
       
    49 /*
       
    50 ** Set the collating sequence for expression pExpr to be the collating
       
    51 ** sequence named by pToken.   Return a pointer to the revised expression.
       
    52 ** The collating sequence is marked as "explicit" using the EP_ExpCollate
       
    53 ** flag.  An explicit collating sequence will override implicit
       
    54 ** collating sequences.
       
    55 */
       
    56 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pName){
       
    57   char *zColl = 0;            /* Dequoted name of collation sequence */
       
    58   CollSeq *pColl;
       
    59   sqlite3 *db = pParse->db;
       
    60   zColl = sqlite3NameFromToken(db, pName);
       
    61   if( pExpr && zColl ){
       
    62     pColl = sqlite3LocateCollSeq(pParse, zColl, -1);
       
    63     if( pColl ){
       
    64       pExpr->pColl = pColl;
       
    65       pExpr->flags |= EP_ExpCollate;
       
    66     }
       
    67   }
       
    68   sqlite3DbFree(db, zColl);
       
    69   return pExpr;
       
    70 }
       
    71 
       
    72 /*
       
    73 ** Return the default collation sequence for the expression pExpr. If
       
    74 ** there is no default collation type, return 0.
       
    75 */
       
    76 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
       
    77   CollSeq *pColl = 0;
       
    78   if( pExpr ){
       
    79     int op;
       
    80     pColl = pExpr->pColl;
       
    81     op = pExpr->op;
       
    82     if( (op==TK_CAST || op==TK_UPLUS) && !pColl ){
       
    83       return sqlite3ExprCollSeq(pParse, pExpr->pLeft);
       
    84     }
       
    85   }
       
    86   if( sqlite3CheckCollSeq(pParse, pColl) ){ 
       
    87     pColl = 0;
       
    88   }
       
    89   return pColl;
       
    90 }
       
    91 
       
    92 /*
       
    93 ** pExpr is an operand of a comparison operator.  aff2 is the
       
    94 ** type affinity of the other operand.  This routine returns the
       
    95 ** type affinity that should be used for the comparison operator.
       
    96 */
       
    97 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
       
    98   char aff1 = sqlite3ExprAffinity(pExpr);
       
    99   if( aff1 && aff2 ){
       
   100     /* Both sides of the comparison are columns. If one has numeric
       
   101     ** affinity, use that. Otherwise use no affinity.
       
   102     */
       
   103     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
       
   104       return SQLITE_AFF_NUMERIC;
       
   105     }else{
       
   106       return SQLITE_AFF_NONE;
       
   107     }
       
   108   }else if( !aff1 && !aff2 ){
       
   109     /* Neither side of the comparison is a column.  Compare the
       
   110     ** results directly.
       
   111     */
       
   112     return SQLITE_AFF_NONE;
       
   113   }else{
       
   114     /* One side is a column, the other is not. Use the columns affinity. */
       
   115     assert( aff1==0 || aff2==0 );
       
   116     return (aff1 + aff2);
       
   117   }
       
   118 }
       
   119 
       
   120 /*
       
   121 ** pExpr is a comparison operator.  Return the type affinity that should
       
   122 ** be applied to both operands prior to doing the comparison.
       
   123 */
       
   124 static char comparisonAffinity(Expr *pExpr){
       
   125   char aff;
       
   126   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
       
   127           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
       
   128           pExpr->op==TK_NE );
       
   129   assert( pExpr->pLeft );
       
   130   aff = sqlite3ExprAffinity(pExpr->pLeft);
       
   131   if( pExpr->pRight ){
       
   132     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
       
   133   }
       
   134   else if( pExpr->pSelect ){
       
   135     aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff);
       
   136   }
       
   137   else if( !aff ){
       
   138     aff = SQLITE_AFF_NONE;
       
   139   }
       
   140   return aff;
       
   141 }
       
   142 
       
   143 /*
       
   144 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
       
   145 ** idx_affinity is the affinity of an indexed column. Return true
       
   146 ** if the index with affinity idx_affinity may be used to implement
       
   147 ** the comparison in pExpr.
       
   148 */
       
   149 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
       
   150   char aff = comparisonAffinity(pExpr);
       
   151   switch( aff ){
       
   152     case SQLITE_AFF_NONE:
       
   153       return 1;
       
   154     case SQLITE_AFF_TEXT:
       
   155       return idx_affinity==SQLITE_AFF_TEXT;
       
   156     default:
       
   157       return sqlite3IsNumericAffinity(idx_affinity);
       
   158   }
       
   159 }
       
   160 
       
   161 /*
       
   162 ** Return the P5 value that should be used for a binary comparison
       
   163 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
       
   164 */
       
   165 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
       
   166   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
       
   167   aff = sqlite3CompareAffinity(pExpr1, aff) | jumpIfNull;
       
   168   return aff;
       
   169 }
       
   170 
       
   171 /*
       
   172 ** Return a pointer to the collation sequence that should be used by
       
   173 ** a binary comparison operator comparing pLeft and pRight.
       
   174 **
       
   175 ** If the left hand expression has a collating sequence type, then it is
       
   176 ** used. Otherwise the collation sequence for the right hand expression
       
   177 ** is used, or the default (BINARY) if neither expression has a collating
       
   178 ** type.
       
   179 **
       
   180 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
       
   181 ** it is not considered.
       
   182 */
       
   183 CollSeq *sqlite3BinaryCompareCollSeq(
       
   184   Parse *pParse, 
       
   185   Expr *pLeft, 
       
   186   Expr *pRight
       
   187 ){
       
   188   CollSeq *pColl;
       
   189   assert( pLeft );
       
   190   if( pLeft->flags & EP_ExpCollate ){
       
   191     assert( pLeft->pColl );
       
   192     pColl = pLeft->pColl;
       
   193   }else if( pRight && pRight->flags & EP_ExpCollate ){
       
   194     assert( pRight->pColl );
       
   195     pColl = pRight->pColl;
       
   196   }else{
       
   197     pColl = sqlite3ExprCollSeq(pParse, pLeft);
       
   198     if( !pColl ){
       
   199       pColl = sqlite3ExprCollSeq(pParse, pRight);
       
   200     }
       
   201   }
       
   202   return pColl;
       
   203 }
       
   204 
       
   205 /*
       
   206 ** Generate the operands for a comparison operation.  Before
       
   207 ** generating the code for each operand, set the EP_AnyAff
       
   208 ** flag on the expression so that it will be able to used a
       
   209 ** cached column value that has previously undergone an
       
   210 ** affinity change.
       
   211 */
       
   212 static void codeCompareOperands(
       
   213   Parse *pParse,    /* Parsing and code generating context */
       
   214   Expr *pLeft,      /* The left operand */
       
   215   int *pRegLeft,    /* Register where left operand is stored */
       
   216   int *pFreeLeft,   /* Free this register when done */
       
   217   Expr *pRight,     /* The right operand */
       
   218   int *pRegRight,   /* Register where right operand is stored */
       
   219   int *pFreeRight   /* Write temp register for right operand there */
       
   220 ){
       
   221   while( pLeft->op==TK_UPLUS ) pLeft = pLeft->pLeft;
       
   222   pLeft->flags |= EP_AnyAff;
       
   223   *pRegLeft = sqlite3ExprCodeTemp(pParse, pLeft, pFreeLeft);
       
   224   while( pRight->op==TK_UPLUS ) pRight = pRight->pLeft;
       
   225   pRight->flags |= EP_AnyAff;
       
   226   *pRegRight = sqlite3ExprCodeTemp(pParse, pRight, pFreeRight);
       
   227 }
       
   228 
       
   229 /*
       
   230 ** Generate code for a comparison operator.
       
   231 */
       
   232 static int codeCompare(
       
   233   Parse *pParse,    /* The parsing (and code generating) context */
       
   234   Expr *pLeft,      /* The left operand */
       
   235   Expr *pRight,     /* The right operand */
       
   236   int opcode,       /* The comparison opcode */
       
   237   int in1, int in2, /* Register holding operands */
       
   238   int dest,         /* Jump here if true.  */
       
   239   int jumpIfNull    /* If true, jump if either operand is NULL */
       
   240 ){
       
   241   int p5;
       
   242   int addr;
       
   243   CollSeq *p4;
       
   244 
       
   245   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
       
   246   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
       
   247   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
       
   248                            (void*)p4, P4_COLLSEQ);
       
   249   sqlite3VdbeChangeP5(pParse->pVdbe, p5);
       
   250   if( (p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_NONE ){
       
   251     sqlite3ExprCacheAffinityChange(pParse, in1, 1);
       
   252     sqlite3ExprCacheAffinityChange(pParse, in2, 1);
       
   253   }
       
   254   return addr;
       
   255 }
       
   256 
       
   257 #if SQLITE_MAX_EXPR_DEPTH>0
       
   258 /*
       
   259 ** Check that argument nHeight is less than or equal to the maximum
       
   260 ** expression depth allowed. If it is not, leave an error message in
       
   261 ** pParse.
       
   262 */
       
   263 static int checkExprHeight(Parse *pParse, int nHeight){
       
   264   int rc = SQLITE_OK;
       
   265   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
       
   266   if( nHeight>mxHeight ){
       
   267     sqlite3ErrorMsg(pParse, 
       
   268        "Expression tree is too large (maximum depth %d)", mxHeight
       
   269     );
       
   270     rc = SQLITE_ERROR;
       
   271   }
       
   272   return rc;
       
   273 }
       
   274 
       
   275 /* The following three functions, heightOfExpr(), heightOfExprList()
       
   276 ** and heightOfSelect(), are used to determine the maximum height
       
   277 ** of any expression tree referenced by the structure passed as the
       
   278 ** first argument.
       
   279 **
       
   280 ** If this maximum height is greater than the current value pointed
       
   281 ** to by pnHeight, the second parameter, then set *pnHeight to that
       
   282 ** value.
       
   283 */
       
   284 static void heightOfExpr(Expr *p, int *pnHeight){
       
   285   if( p ){
       
   286     if( p->nHeight>*pnHeight ){
       
   287       *pnHeight = p->nHeight;
       
   288     }
       
   289   }
       
   290 }
       
   291 static void heightOfExprList(ExprList *p, int *pnHeight){
       
   292   if( p ){
       
   293     int i;
       
   294     for(i=0; i<p->nExpr; i++){
       
   295       heightOfExpr(p->a[i].pExpr, pnHeight);
       
   296     }
       
   297   }
       
   298 }
       
   299 static void heightOfSelect(Select *p, int *pnHeight){
       
   300   if( p ){
       
   301     heightOfExpr(p->pWhere, pnHeight);
       
   302     heightOfExpr(p->pHaving, pnHeight);
       
   303     heightOfExpr(p->pLimit, pnHeight);
       
   304     heightOfExpr(p->pOffset, pnHeight);
       
   305     heightOfExprList(p->pEList, pnHeight);
       
   306     heightOfExprList(p->pGroupBy, pnHeight);
       
   307     heightOfExprList(p->pOrderBy, pnHeight);
       
   308     heightOfSelect(p->pPrior, pnHeight);
       
   309   }
       
   310 }
       
   311 
       
   312 /*
       
   313 ** Set the Expr.nHeight variable in the structure passed as an 
       
   314 ** argument. An expression with no children, Expr.pList or 
       
   315 ** Expr.pSelect member has a height of 1. Any other expression
       
   316 ** has a height equal to the maximum height of any other 
       
   317 ** referenced Expr plus one.
       
   318 */
       
   319 static void exprSetHeight(Expr *p){
       
   320   int nHeight = 0;
       
   321   heightOfExpr(p->pLeft, &nHeight);
       
   322   heightOfExpr(p->pRight, &nHeight);
       
   323   heightOfExprList(p->pList, &nHeight);
       
   324   heightOfSelect(p->pSelect, &nHeight);
       
   325   p->nHeight = nHeight + 1;
       
   326 }
       
   327 
       
   328 /*
       
   329 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
       
   330 ** the height is greater than the maximum allowed expression depth,
       
   331 ** leave an error in pParse.
       
   332 */
       
   333 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
       
   334   exprSetHeight(p);
       
   335   checkExprHeight(pParse, p->nHeight);
       
   336 }
       
   337 
       
   338 /*
       
   339 ** Return the maximum height of any expression tree referenced
       
   340 ** by the select statement passed as an argument.
       
   341 */
       
   342 int sqlite3SelectExprHeight(Select *p){
       
   343   int nHeight = 0;
       
   344   heightOfSelect(p, &nHeight);
       
   345   return nHeight;
       
   346 }
       
   347 #else
       
   348   #define checkExprHeight(x,y)
       
   349   #define exprSetHeight(y)
       
   350 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
       
   351 
       
   352 /*
       
   353 ** Construct a new expression node and return a pointer to it.  Memory
       
   354 ** for this node is obtained from sqlite3_malloc().  The calling function
       
   355 ** is responsible for making sure the node eventually gets freed.
       
   356 */
       
   357 Expr *sqlite3Expr(
       
   358   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
       
   359   int op,                 /* Expression opcode */
       
   360   Expr *pLeft,            /* Left operand */
       
   361   Expr *pRight,           /* Right operand */
       
   362   const Token *pToken     /* Argument token */
       
   363 ){
       
   364   Expr *pNew;
       
   365   pNew = sqlite3DbMallocZero(db, sizeof(Expr));
       
   366   if( pNew==0 ){
       
   367     /* When malloc fails, delete pLeft and pRight. Expressions passed to 
       
   368     ** this function must always be allocated with sqlite3Expr() for this 
       
   369     ** reason. 
       
   370     */
       
   371     sqlite3ExprDelete(db, pLeft);
       
   372     sqlite3ExprDelete(db, pRight);
       
   373     return 0;
       
   374   }
       
   375   pNew->op = op;
       
   376   pNew->pLeft = pLeft;
       
   377   pNew->pRight = pRight;
       
   378   pNew->iAgg = -1;
       
   379   pNew->span.z = (u8*)"";
       
   380   if( pToken ){
       
   381     assert( pToken->dyn==0 );
       
   382     pNew->span = pNew->token = *pToken;
       
   383   }else if( pLeft ){
       
   384     if( pRight ){
       
   385       if( pRight->span.dyn==0 && pLeft->span.dyn==0 ){
       
   386         sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span);
       
   387       }
       
   388       if( pRight->flags & EP_ExpCollate ){
       
   389         pNew->flags |= EP_ExpCollate;
       
   390         pNew->pColl = pRight->pColl;
       
   391       }
       
   392     }
       
   393     if( pLeft->flags & EP_ExpCollate ){
       
   394       pNew->flags |= EP_ExpCollate;
       
   395       pNew->pColl = pLeft->pColl;
       
   396     }
       
   397   }
       
   398 
       
   399   exprSetHeight(pNew);
       
   400   return pNew;
       
   401 }
       
   402 
       
   403 /*
       
   404 ** Works like sqlite3Expr() except that it takes an extra Parse*
       
   405 ** argument and notifies the associated connection object if malloc fails.
       
   406 */
       
   407 Expr *sqlite3PExpr(
       
   408   Parse *pParse,          /* Parsing context */
       
   409   int op,                 /* Expression opcode */
       
   410   Expr *pLeft,            /* Left operand */
       
   411   Expr *pRight,           /* Right operand */
       
   412   const Token *pToken     /* Argument token */
       
   413 ){
       
   414   Expr *p = sqlite3Expr(pParse->db, op, pLeft, pRight, pToken);
       
   415   if( p ){
       
   416     checkExprHeight(pParse, p->nHeight);
       
   417   }
       
   418   return p;
       
   419 }
       
   420 
       
   421 /*
       
   422 ** When doing a nested parse, you can include terms in an expression
       
   423 ** that look like this:   #1 #2 ...  These terms refer to registers
       
   424 ** in the virtual machine.  #N is the N-th register.
       
   425 **
       
   426 ** This routine is called by the parser to deal with on of those terms.
       
   427 ** It immediately generates code to store the value in a memory location.
       
   428 ** The returns an expression that will code to extract the value from
       
   429 ** that memory location as needed.
       
   430 */
       
   431 Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){
       
   432   Vdbe *v = pParse->pVdbe;
       
   433   Expr *p;
       
   434   if( pParse->nested==0 ){
       
   435     sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken);
       
   436     return sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
       
   437   }
       
   438   if( v==0 ) return 0;
       
   439   p = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, pToken);
       
   440   if( p==0 ){
       
   441     return 0;  /* Malloc failed */
       
   442   }
       
   443   p->iTable = atoi((char*)&pToken->z[1]);
       
   444   return p;
       
   445 }
       
   446 
       
   447 /*
       
   448 ** Join two expressions using an AND operator.  If either expression is
       
   449 ** NULL, then just return the other expression.
       
   450 */
       
   451 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
       
   452   if( pLeft==0 ){
       
   453     return pRight;
       
   454   }else if( pRight==0 ){
       
   455     return pLeft;
       
   456   }else{
       
   457     return sqlite3Expr(db, TK_AND, pLeft, pRight, 0);
       
   458   }
       
   459 }
       
   460 
       
   461 /*
       
   462 ** Set the Expr.span field of the given expression to span all
       
   463 ** text between the two given tokens.  Both tokens must be pointing
       
   464 ** at the same string.
       
   465 */
       
   466 void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){
       
   467   assert( pRight!=0 );
       
   468   assert( pLeft!=0 );
       
   469   if( pExpr ){
       
   470     pExpr->span.z = pLeft->z;
       
   471     pExpr->span.n = pRight->n + (pRight->z - pLeft->z);
       
   472   }
       
   473 }
       
   474 
       
   475 /*
       
   476 ** Construct a new expression node for a function with multiple
       
   477 ** arguments.
       
   478 */
       
   479 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
       
   480   Expr *pNew;
       
   481   sqlite3 *db = pParse->db;
       
   482   assert( pToken );
       
   483   pNew = sqlite3DbMallocZero(db, sizeof(Expr) );
       
   484   if( pNew==0 ){
       
   485     sqlite3ExprListDelete(db, pList); /* Avoid leaking memory when malloc fails */
       
   486     return 0;
       
   487   }
       
   488   pNew->op = TK_FUNCTION;
       
   489   pNew->pList = pList;
       
   490   assert( pToken->dyn==0 );
       
   491   pNew->token = *pToken;
       
   492   pNew->span = pNew->token;
       
   493 
       
   494   sqlite3ExprSetHeight(pParse, pNew);
       
   495   return pNew;
       
   496 }
       
   497 
       
   498 /*
       
   499 ** Assign a variable number to an expression that encodes a wildcard
       
   500 ** in the original SQL statement.  
       
   501 **
       
   502 ** Wildcards consisting of a single "?" are assigned the next sequential
       
   503 ** variable number.
       
   504 **
       
   505 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
       
   506 ** sure "nnn" is not too be to avoid a denial of service attack when
       
   507 ** the SQL statement comes from an external source.
       
   508 **
       
   509 ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number
       
   510 ** as the previous instance of the same wildcard.  Or if this is the first
       
   511 ** instance of the wildcard, the next sequenial variable number is
       
   512 ** assigned.
       
   513 */
       
   514 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
       
   515   Token *pToken;
       
   516   sqlite3 *db = pParse->db;
       
   517 
       
   518   if( pExpr==0 ) return;
       
   519   pToken = &pExpr->token;
       
   520   assert( pToken->n>=1 );
       
   521   assert( pToken->z!=0 );
       
   522   assert( pToken->z[0]!=0 );
       
   523   if( pToken->n==1 ){
       
   524     /* Wildcard of the form "?".  Assign the next variable number */
       
   525     pExpr->iTable = ++pParse->nVar;
       
   526   }else if( pToken->z[0]=='?' ){
       
   527     /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
       
   528     ** use it as the variable number */
       
   529     int i;
       
   530     pExpr->iTable = i = atoi((char*)&pToken->z[1]);
       
   531     testcase( i==0 );
       
   532     testcase( i==1 );
       
   533     testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
       
   534     testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
       
   535     if( i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
       
   536       sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
       
   537           db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
       
   538     }
       
   539     if( i>pParse->nVar ){
       
   540       pParse->nVar = i;
       
   541     }
       
   542   }else{
       
   543     /* Wildcards of the form ":aaa" or "$aaa".  Reuse the same variable
       
   544     ** number as the prior appearance of the same name, or if the name
       
   545     ** has never appeared before, reuse the same variable number
       
   546     */
       
   547     int i, n;
       
   548     n = pToken->n;
       
   549     for(i=0; i<pParse->nVarExpr; i++){
       
   550       Expr *pE;
       
   551       if( (pE = pParse->apVarExpr[i])!=0
       
   552           && pE->token.n==n
       
   553           && memcmp(pE->token.z, pToken->z, n)==0 ){
       
   554         pExpr->iTable = pE->iTable;
       
   555         break;
       
   556       }
       
   557     }
       
   558     if( i>=pParse->nVarExpr ){
       
   559       pExpr->iTable = ++pParse->nVar;
       
   560       if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
       
   561         pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
       
   562         pParse->apVarExpr =
       
   563             sqlite3DbReallocOrFree(
       
   564               db,
       
   565               pParse->apVarExpr,
       
   566               pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0])
       
   567             );
       
   568       }
       
   569       if( !db->mallocFailed ){
       
   570         assert( pParse->apVarExpr!=0 );
       
   571         pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
       
   572       }
       
   573     }
       
   574   } 
       
   575   if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
       
   576     sqlite3ErrorMsg(pParse, "too many SQL variables");
       
   577   }
       
   578 }
       
   579 
       
   580 /*
       
   581 ** Recursively delete an expression tree.
       
   582 */
       
   583 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
       
   584   if( p==0 ) return;
       
   585   if( p->span.dyn ) sqlite3DbFree(db, (char*)p->span.z);
       
   586   if( p->token.dyn ) sqlite3DbFree(db, (char*)p->token.z);
       
   587   sqlite3ExprDelete(db, p->pLeft);
       
   588   sqlite3ExprDelete(db, p->pRight);
       
   589   sqlite3ExprListDelete(db, p->pList);
       
   590   sqlite3SelectDelete(db, p->pSelect);
       
   591   sqlite3DbFree(db, p);
       
   592 }
       
   593 
       
   594 /*
       
   595 ** The Expr.token field might be a string literal that is quoted.
       
   596 ** If so, remove the quotation marks.
       
   597 */
       
   598 void sqlite3DequoteExpr(sqlite3 *db, Expr *p){
       
   599   if( ExprHasAnyProperty(p, EP_Dequoted) ){
       
   600     return;
       
   601   }
       
   602   ExprSetProperty(p, EP_Dequoted);
       
   603   if( p->token.dyn==0 ){
       
   604     sqlite3TokenCopy(db, &p->token, &p->token);
       
   605   }
       
   606   sqlite3Dequote((char*)p->token.z);
       
   607 }
       
   608 
       
   609 
       
   610 /*
       
   611 ** The following group of routines make deep copies of expressions,
       
   612 ** expression lists, ID lists, and select statements.  The copies can
       
   613 ** be deleted (by being passed to their respective ...Delete() routines)
       
   614 ** without effecting the originals.
       
   615 **
       
   616 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
       
   617 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 
       
   618 ** by subsequent calls to sqlite*ListAppend() routines.
       
   619 **
       
   620 ** Any tables that the SrcList might point to are not duplicated.
       
   621 */
       
   622 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p){
       
   623   Expr *pNew;
       
   624   if( p==0 ) return 0;
       
   625   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
       
   626   if( pNew==0 ) return 0;
       
   627   memcpy(pNew, p, sizeof(*pNew));
       
   628   if( p->token.z!=0 ){
       
   629     pNew->token.z = (u8*)sqlite3DbStrNDup(db, (char*)p->token.z, p->token.n);
       
   630     pNew->token.dyn = 1;
       
   631   }else{
       
   632     assert( pNew->token.z==0 );
       
   633   }
       
   634   pNew->span.z = 0;
       
   635   pNew->pLeft = sqlite3ExprDup(db, p->pLeft);
       
   636   pNew->pRight = sqlite3ExprDup(db, p->pRight);
       
   637   pNew->pList = sqlite3ExprListDup(db, p->pList);
       
   638   pNew->pSelect = sqlite3SelectDup(db, p->pSelect);
       
   639   return pNew;
       
   640 }
       
   641 void sqlite3TokenCopy(sqlite3 *db, Token *pTo, Token *pFrom){
       
   642   if( pTo->dyn ) sqlite3DbFree(db, (char*)pTo->z);
       
   643   if( pFrom->z ){
       
   644     pTo->n = pFrom->n;
       
   645     pTo->z = (u8*)sqlite3DbStrNDup(db, (char*)pFrom->z, pFrom->n);
       
   646     pTo->dyn = 1;
       
   647   }else{
       
   648     pTo->z = 0;
       
   649   }
       
   650 }
       
   651 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p){
       
   652   ExprList *pNew;
       
   653   struct ExprList_item *pItem, *pOldItem;
       
   654   int i;
       
   655   if( p==0 ) return 0;
       
   656   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
       
   657   if( pNew==0 ) return 0;
       
   658   pNew->iECursor = 0;
       
   659   pNew->nExpr = pNew->nAlloc = p->nExpr;
       
   660   pNew->a = pItem = sqlite3DbMallocRaw(db,  p->nExpr*sizeof(p->a[0]) );
       
   661   if( pItem==0 ){
       
   662     sqlite3DbFree(db, pNew);
       
   663     return 0;
       
   664   } 
       
   665   pOldItem = p->a;
       
   666   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
       
   667     Expr *pNewExpr, *pOldExpr;
       
   668     pItem->pExpr = pNewExpr = sqlite3ExprDup(db, pOldExpr = pOldItem->pExpr);
       
   669     if( pOldExpr->span.z!=0 && pNewExpr ){
       
   670       /* Always make a copy of the span for top-level expressions in the
       
   671       ** expression list.  The logic in SELECT processing that determines
       
   672       ** the names of columns in the result set needs this information */
       
   673       sqlite3TokenCopy(db, &pNewExpr->span, &pOldExpr->span);
       
   674     }
       
   675     assert( pNewExpr==0 || pNewExpr->span.z!=0 
       
   676             || pOldExpr->span.z==0
       
   677             || db->mallocFailed );
       
   678     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
       
   679     pItem->sortOrder = pOldItem->sortOrder;
       
   680     pItem->isAgg = pOldItem->isAgg;
       
   681     pItem->done = 0;
       
   682   }
       
   683   return pNew;
       
   684 }
       
   685 
       
   686 /*
       
   687 ** If cursors, triggers, views and subqueries are all omitted from
       
   688 ** the build, then none of the following routines, except for 
       
   689 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
       
   690 ** called with a NULL argument.
       
   691 */
       
   692 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
       
   693  || !defined(SQLITE_OMIT_SUBQUERY)
       
   694 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p){
       
   695   SrcList *pNew;
       
   696   int i;
       
   697   int nByte;
       
   698   if( p==0 ) return 0;
       
   699   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
       
   700   pNew = sqlite3DbMallocRaw(db, nByte );
       
   701   if( pNew==0 ) return 0;
       
   702   pNew->nSrc = pNew->nAlloc = p->nSrc;
       
   703   for(i=0; i<p->nSrc; i++){
       
   704     struct SrcList_item *pNewItem = &pNew->a[i];
       
   705     struct SrcList_item *pOldItem = &p->a[i];
       
   706     Table *pTab;
       
   707     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
       
   708     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
       
   709     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
       
   710     pNewItem->jointype = pOldItem->jointype;
       
   711     pNewItem->iCursor = pOldItem->iCursor;
       
   712     pNewItem->isPopulated = pOldItem->isPopulated;
       
   713     pTab = pNewItem->pTab = pOldItem->pTab;
       
   714     if( pTab ){
       
   715       pTab->nRef++;
       
   716     }
       
   717     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect);
       
   718     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn);
       
   719     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
       
   720     pNewItem->colUsed = pOldItem->colUsed;
       
   721   }
       
   722   return pNew;
       
   723 }
       
   724 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
       
   725   IdList *pNew;
       
   726   int i;
       
   727   if( p==0 ) return 0;
       
   728   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
       
   729   if( pNew==0 ) return 0;
       
   730   pNew->nId = pNew->nAlloc = p->nId;
       
   731   pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
       
   732   if( pNew->a==0 ){
       
   733     sqlite3DbFree(db, pNew);
       
   734     return 0;
       
   735   }
       
   736   for(i=0; i<p->nId; i++){
       
   737     struct IdList_item *pNewItem = &pNew->a[i];
       
   738     struct IdList_item *pOldItem = &p->a[i];
       
   739     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
       
   740     pNewItem->idx = pOldItem->idx;
       
   741   }
       
   742   return pNew;
       
   743 }
       
   744 Select *sqlite3SelectDup(sqlite3 *db, Select *p){
       
   745   Select *pNew;
       
   746   if( p==0 ) return 0;
       
   747   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
       
   748   if( pNew==0 ) return 0;
       
   749   pNew->isDistinct = p->isDistinct;
       
   750   pNew->pEList = sqlite3ExprListDup(db, p->pEList);
       
   751   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc);
       
   752   pNew->pWhere = sqlite3ExprDup(db, p->pWhere);
       
   753   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy);
       
   754   pNew->pHaving = sqlite3ExprDup(db, p->pHaving);
       
   755   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy);
       
   756   pNew->op = p->op;
       
   757   pNew->pPrior = sqlite3SelectDup(db, p->pPrior);
       
   758   pNew->pLimit = sqlite3ExprDup(db, p->pLimit);
       
   759   pNew->pOffset = sqlite3ExprDup(db, p->pOffset);
       
   760   pNew->iLimit = 0;
       
   761   pNew->iOffset = 0;
       
   762   pNew->isResolved = p->isResolved;
       
   763   pNew->isAgg = p->isAgg;
       
   764   pNew->usesEphm = 0;
       
   765   pNew->disallowOrderBy = 0;
       
   766   pNew->pRightmost = 0;
       
   767   pNew->addrOpenEphm[0] = -1;
       
   768   pNew->addrOpenEphm[1] = -1;
       
   769   pNew->addrOpenEphm[2] = -1;
       
   770   return pNew;
       
   771 }
       
   772 #else
       
   773 Select *sqlite3SelectDup(sqlite3 *db, Select *p){
       
   774   assert( p==0 );
       
   775   return 0;
       
   776 }
       
   777 #endif
       
   778 
       
   779 
       
   780 /*
       
   781 ** Add a new element to the end of an expression list.  If pList is
       
   782 ** initially NULL, then create a new expression list.
       
   783 */
       
   784 ExprList *sqlite3ExprListAppend(
       
   785   Parse *pParse,          /* Parsing context */
       
   786   ExprList *pList,        /* List to which to append. Might be NULL */
       
   787   Expr *pExpr,            /* Expression to be appended */
       
   788   Token *pName            /* AS keyword for the expression */
       
   789 ){
       
   790   sqlite3 *db = pParse->db;
       
   791   if( pList==0 ){
       
   792     pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
       
   793     if( pList==0 ){
       
   794       goto no_mem;
       
   795     }
       
   796     assert( pList->nAlloc==0 );
       
   797   }
       
   798   if( pList->nAlloc<=pList->nExpr ){
       
   799     struct ExprList_item *a;
       
   800     int n = pList->nAlloc*2 + 4;
       
   801     a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0]));
       
   802     if( a==0 ){
       
   803       goto no_mem;
       
   804     }
       
   805     pList->a = a;
       
   806     pList->nAlloc = n;
       
   807   }
       
   808   assert( pList->a!=0 );
       
   809   if( pExpr || pName ){
       
   810     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
       
   811     memset(pItem, 0, sizeof(*pItem));
       
   812     pItem->zName = sqlite3NameFromToken(db, pName);
       
   813     pItem->pExpr = pExpr;
       
   814   }
       
   815   return pList;
       
   816 
       
   817 no_mem:     
       
   818   /* Avoid leaking memory if malloc has failed. */
       
   819   sqlite3ExprDelete(db, pExpr);
       
   820   sqlite3ExprListDelete(db, pList);
       
   821   return 0;
       
   822 }
       
   823 
       
   824 /*
       
   825 ** If the expression list pEList contains more than iLimit elements,
       
   826 ** leave an error message in pParse.
       
   827 */
       
   828 void sqlite3ExprListCheckLength(
       
   829   Parse *pParse,
       
   830   ExprList *pEList,
       
   831   const char *zObject
       
   832 ){
       
   833   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
       
   834   testcase( pEList && pEList->nExpr==mx );
       
   835   testcase( pEList && pEList->nExpr==mx+1 );
       
   836   if( pEList && pEList->nExpr>mx ){
       
   837     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
       
   838   }
       
   839 }
       
   840 
       
   841 /*
       
   842 ** Delete an entire expression list.
       
   843 */
       
   844 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
       
   845   int i;
       
   846   struct ExprList_item *pItem;
       
   847   if( pList==0 ) return;
       
   848   assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
       
   849   assert( pList->nExpr<=pList->nAlloc );
       
   850   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
       
   851     sqlite3ExprDelete(db, pItem->pExpr);
       
   852     sqlite3DbFree(db, pItem->zName);
       
   853   }
       
   854   sqlite3DbFree(db, pList->a);
       
   855   sqlite3DbFree(db, pList);
       
   856 }
       
   857 
       
   858 /*
       
   859 ** Walk an expression tree.  Call xFunc for each node visited.  xFunc
       
   860 ** is called on the node before xFunc is called on the nodes children.
       
   861 **
       
   862 ** The return value from xFunc determines whether the tree walk continues.
       
   863 ** 0 means continue walking the tree.  1 means do not walk children
       
   864 ** of the current node but continue with siblings.  2 means abandon
       
   865 ** the tree walk completely.
       
   866 **
       
   867 ** The return value from this routine is 1 to abandon the tree walk
       
   868 ** and 0 to continue.
       
   869 **
       
   870 ** NOTICE:  This routine does *not* descend into subqueries.
       
   871 */
       
   872 static int walkExprList(ExprList *, int (*)(void *, Expr*), void *);
       
   873 static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){
       
   874   int rc;
       
   875   if( pExpr==0 ) return 0;
       
   876   rc = (*xFunc)(pArg, pExpr);
       
   877   if( rc==0 ){
       
   878     if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1;
       
   879     if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1;
       
   880     if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1;
       
   881   }
       
   882   return rc>1;
       
   883 }
       
   884 
       
   885 /*
       
   886 ** Call walkExprTree() for every expression in list p.
       
   887 */
       
   888 static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){
       
   889   int i;
       
   890   struct ExprList_item *pItem;
       
   891   if( !p ) return 0;
       
   892   for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){
       
   893     if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1;
       
   894   }
       
   895   return 0;
       
   896 }
       
   897 
       
   898 /*
       
   899 ** Call walkExprTree() for every expression in Select p, not including
       
   900 ** expressions that are part of sub-selects in any FROM clause or the LIMIT
       
   901 ** or OFFSET expressions..
       
   902 */
       
   903 static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){
       
   904   walkExprList(p->pEList, xFunc, pArg);
       
   905   walkExprTree(p->pWhere, xFunc, pArg);
       
   906   walkExprList(p->pGroupBy, xFunc, pArg);
       
   907   walkExprTree(p->pHaving, xFunc, pArg);
       
   908   walkExprList(p->pOrderBy, xFunc, pArg);
       
   909   if( p->pPrior ){
       
   910     walkSelectExpr(p->pPrior, xFunc, pArg);
       
   911   }
       
   912   return 0;
       
   913 }
       
   914 
       
   915 
       
   916 /*
       
   917 ** This routine is designed as an xFunc for walkExprTree().
       
   918 **
       
   919 ** pArg is really a pointer to an integer.  If we can tell by looking
       
   920 ** at pExpr that the expression that contains pExpr is not a constant
       
   921 ** expression, then set *pArg to 0 and return 2 to abandon the tree walk.
       
   922 ** If pExpr does does not disqualify the expression from being a constant
       
   923 ** then do nothing.
       
   924 **
       
   925 ** After walking the whole tree, if no nodes are found that disqualify
       
   926 ** the expression as constant, then we assume the whole expression
       
   927 ** is constant.  See sqlite3ExprIsConstant() for additional information.
       
   928 */
       
   929 static int exprNodeIsConstant(void *pArg, Expr *pExpr){
       
   930   int *pN = (int*)pArg;
       
   931 
       
   932   /* If *pArg is 3 then any term of the expression that comes from
       
   933   ** the ON or USING clauses of a join disqualifies the expression
       
   934   ** from being considered constant. */
       
   935   if( (*pN)==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
       
   936     *pN = 0;
       
   937     return 2;
       
   938   }
       
   939 
       
   940   switch( pExpr->op ){
       
   941     /* Consider functions to be constant if all their arguments are constant
       
   942     ** and *pArg==2 */
       
   943     case TK_FUNCTION:
       
   944       if( (*pN)==2 ) return 0;
       
   945       /* Fall through */
       
   946     case TK_ID:
       
   947     case TK_COLUMN:
       
   948     case TK_DOT:
       
   949     case TK_AGG_FUNCTION:
       
   950     case TK_AGG_COLUMN:
       
   951 #ifndef SQLITE_OMIT_SUBQUERY
       
   952     case TK_SELECT:
       
   953     case TK_EXISTS:
       
   954       testcase( pExpr->op==TK_SELECT );
       
   955       testcase( pExpr->op==TK_EXISTS );
       
   956 #endif
       
   957       testcase( pExpr->op==TK_ID );
       
   958       testcase( pExpr->op==TK_COLUMN );
       
   959       testcase( pExpr->op==TK_DOT );
       
   960       testcase( pExpr->op==TK_AGG_FUNCTION );
       
   961       testcase( pExpr->op==TK_AGG_COLUMN );
       
   962       *pN = 0;
       
   963       return 2;
       
   964     case TK_IN:
       
   965       if( pExpr->pSelect ){
       
   966         *pN = 0;
       
   967         return 2;
       
   968       }
       
   969     default:
       
   970       return 0;
       
   971   }
       
   972 }
       
   973 
       
   974 /*
       
   975 ** Walk an expression tree.  Return 1 if the expression is constant
       
   976 ** and 0 if it involves variables or function calls.
       
   977 **
       
   978 ** For the purposes of this function, a double-quoted string (ex: "abc")
       
   979 ** is considered a variable but a single-quoted string (ex: 'abc') is
       
   980 ** a constant.
       
   981 */
       
   982 int sqlite3ExprIsConstant(Expr *p){
       
   983   int isConst = 1;
       
   984   walkExprTree(p, exprNodeIsConstant, &isConst);
       
   985   return isConst;
       
   986 }
       
   987 
       
   988 /*
       
   989 ** Walk an expression tree.  Return 1 if the expression is constant
       
   990 ** that does no originate from the ON or USING clauses of a join.
       
   991 ** Return 0 if it involves variables or function calls or terms from
       
   992 ** an ON or USING clause.
       
   993 */
       
   994 int sqlite3ExprIsConstantNotJoin(Expr *p){
       
   995   int isConst = 3;
       
   996   walkExprTree(p, exprNodeIsConstant, &isConst);
       
   997   return isConst!=0;
       
   998 }
       
   999 
       
  1000 /*
       
  1001 ** Walk an expression tree.  Return 1 if the expression is constant
       
  1002 ** or a function call with constant arguments.  Return and 0 if there
       
  1003 ** are any variables.
       
  1004 **
       
  1005 ** For the purposes of this function, a double-quoted string (ex: "abc")
       
  1006 ** is considered a variable but a single-quoted string (ex: 'abc') is
       
  1007 ** a constant.
       
  1008 */
       
  1009 int sqlite3ExprIsConstantOrFunction(Expr *p){
       
  1010   int isConst = 2;
       
  1011   walkExprTree(p, exprNodeIsConstant, &isConst);
       
  1012   return isConst!=0;
       
  1013 }
       
  1014 
       
  1015 /*
       
  1016 ** If the expression p codes a constant integer that is small enough
       
  1017 ** to fit in a 32-bit integer, return 1 and put the value of the integer
       
  1018 ** in *pValue.  If the expression is not an integer or if it is too big
       
  1019 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
       
  1020 */
       
  1021 int sqlite3ExprIsInteger(Expr *p, int *pValue){
       
  1022   int rc = 0;
       
  1023   if( p->flags & EP_IntValue ){
       
  1024     *pValue = p->iTable;
       
  1025     return 1;
       
  1026   }
       
  1027   switch( p->op ){
       
  1028     case TK_INTEGER: {
       
  1029       rc = sqlite3GetInt32((char*)p->token.z, pValue);
       
  1030       break;
       
  1031     }
       
  1032     case TK_UPLUS: {
       
  1033       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
       
  1034       break;
       
  1035     }
       
  1036     case TK_UMINUS: {
       
  1037       int v;
       
  1038       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
       
  1039         *pValue = -v;
       
  1040         rc = 1;
       
  1041       }
       
  1042       break;
       
  1043     }
       
  1044     default: break;
       
  1045   }
       
  1046   if( rc ){
       
  1047     p->op = TK_INTEGER;
       
  1048     p->flags |= EP_IntValue;
       
  1049     p->iTable = *pValue;
       
  1050   }
       
  1051   return rc;
       
  1052 }
       
  1053 
       
  1054 /*
       
  1055 ** Return TRUE if the given string is a row-id column name.
       
  1056 */
       
  1057 int sqlite3IsRowid(const char *z){
       
  1058   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
       
  1059   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
       
  1060   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
       
  1061   return 0;
       
  1062 }
       
  1063 
       
  1064 /*
       
  1065 ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up
       
  1066 ** that name in the set of source tables in pSrcList and make the pExpr 
       
  1067 ** expression node refer back to that source column.  The following changes
       
  1068 ** are made to pExpr:
       
  1069 **
       
  1070 **    pExpr->iDb           Set the index in db->aDb[] of the database holding
       
  1071 **                         the table.
       
  1072 **    pExpr->iTable        Set to the cursor number for the table obtained
       
  1073 **                         from pSrcList.
       
  1074 **    pExpr->iColumn       Set to the column number within the table.
       
  1075 **    pExpr->op            Set to TK_COLUMN.
       
  1076 **    pExpr->pLeft         Any expression this points to is deleted
       
  1077 **    pExpr->pRight        Any expression this points to is deleted.
       
  1078 **
       
  1079 ** The pDbToken is the name of the database (the "X").  This value may be
       
  1080 ** NULL meaning that name is of the form Y.Z or Z.  Any available database
       
  1081 ** can be used.  The pTableToken is the name of the table (the "Y").  This
       
  1082 ** value can be NULL if pDbToken is also NULL.  If pTableToken is NULL it
       
  1083 ** means that the form of the name is Z and that columns from any table
       
  1084 ** can be used.
       
  1085 **
       
  1086 ** If the name cannot be resolved unambiguously, leave an error message
       
  1087 ** in pParse and return non-zero.  Return zero on success.
       
  1088 */
       
  1089 static int lookupName(
       
  1090   Parse *pParse,       /* The parsing context */
       
  1091   Token *pDbToken,     /* Name of the database containing table, or NULL */
       
  1092   Token *pTableToken,  /* Name of table containing column, or NULL */
       
  1093   Token *pColumnToken, /* Name of the column. */
       
  1094   NameContext *pNC,    /* The name context used to resolve the name */
       
  1095   Expr *pExpr          /* Make this EXPR node point to the selected column */
       
  1096 ){
       
  1097   char *zDb = 0;       /* Name of the database.  The "X" in X.Y.Z */
       
  1098   char *zTab = 0;      /* Name of the table.  The "Y" in X.Y.Z or Y.Z */
       
  1099   char *zCol = 0;      /* Name of the column.  The "Z" */
       
  1100   int i, j;            /* Loop counters */
       
  1101   int cnt = 0;         /* Number of matching column names */
       
  1102   int cntTab = 0;      /* Number of matching table names */
       
  1103   sqlite3 *db = pParse->db;  /* The database */
       
  1104   struct SrcList_item *pItem;       /* Use for looping over pSrcList items */
       
  1105   struct SrcList_item *pMatch = 0;  /* The matching pSrcList item */
       
  1106   NameContext *pTopNC = pNC;        /* First namecontext in the list */
       
  1107   Schema *pSchema = 0;              /* Schema of the expression */
       
  1108 
       
  1109   assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */
       
  1110   zDb = sqlite3NameFromToken(db, pDbToken);
       
  1111   zTab = sqlite3NameFromToken(db, pTableToken);
       
  1112   zCol = sqlite3NameFromToken(db, pColumnToken);
       
  1113   if( db->mallocFailed ){
       
  1114     goto lookupname_end;
       
  1115   }
       
  1116 
       
  1117   pExpr->iTable = -1;
       
  1118   while( pNC && cnt==0 ){
       
  1119     ExprList *pEList;
       
  1120     SrcList *pSrcList = pNC->pSrcList;
       
  1121 
       
  1122     if( pSrcList ){
       
  1123       for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){
       
  1124         Table *pTab;
       
  1125         int iDb;
       
  1126         Column *pCol;
       
  1127   
       
  1128         pTab = pItem->pTab;
       
  1129         assert( pTab!=0 );
       
  1130         iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
       
  1131         assert( pTab->nCol>0 );
       
  1132         if( zTab ){
       
  1133           if( pItem->zAlias ){
       
  1134             char *zTabName = pItem->zAlias;
       
  1135             if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
       
  1136           }else{
       
  1137             char *zTabName = pTab->zName;
       
  1138             if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
       
  1139             if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){
       
  1140               continue;
       
  1141             }
       
  1142           }
       
  1143         }
       
  1144         if( 0==(cntTab++) ){
       
  1145           pExpr->iTable = pItem->iCursor;
       
  1146           pSchema = pTab->pSchema;
       
  1147           pMatch = pItem;
       
  1148         }
       
  1149         for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
       
  1150           if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
       
  1151             const char *zColl = pTab->aCol[j].zColl;
       
  1152             IdList *pUsing;
       
  1153             cnt++;
       
  1154             pExpr->iTable = pItem->iCursor;
       
  1155             pMatch = pItem;
       
  1156             pSchema = pTab->pSchema;
       
  1157             /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
       
  1158             pExpr->iColumn = j==pTab->iPKey ? -1 : j;
       
  1159             pExpr->affinity = pTab->aCol[j].affinity;
       
  1160             if( (pExpr->flags & EP_ExpCollate)==0 ){
       
  1161               pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
       
  1162             }
       
  1163             if( i<pSrcList->nSrc-1 ){
       
  1164               if( pItem[1].jointype & JT_NATURAL ){
       
  1165                 /* If this match occurred in the left table of a natural join,
       
  1166                 ** then skip the right table to avoid a duplicate match */
       
  1167                 pItem++;
       
  1168                 i++;
       
  1169               }else if( (pUsing = pItem[1].pUsing)!=0 ){
       
  1170                 /* If this match occurs on a column that is in the USING clause
       
  1171                 ** of a join, skip the search of the right table of the join
       
  1172                 ** to avoid a duplicate match there. */
       
  1173                 int k;
       
  1174                 for(k=0; k<pUsing->nId; k++){
       
  1175                   if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){
       
  1176                     pItem++;
       
  1177                     i++;
       
  1178                     break;
       
  1179                   }
       
  1180                 }
       
  1181               }
       
  1182             }
       
  1183             break;
       
  1184           }
       
  1185         }
       
  1186       }
       
  1187     }
       
  1188 
       
  1189 #ifndef SQLITE_OMIT_TRIGGER
       
  1190     /* If we have not already resolved the name, then maybe 
       
  1191     ** it is a new.* or old.* trigger argument reference
       
  1192     */
       
  1193     if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){
       
  1194       TriggerStack *pTriggerStack = pParse->trigStack;
       
  1195       Table *pTab = 0;
       
  1196       u32 *piColMask;
       
  1197       if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){
       
  1198         pExpr->iTable = pTriggerStack->newIdx;
       
  1199         assert( pTriggerStack->pTab );
       
  1200         pTab = pTriggerStack->pTab;
       
  1201         piColMask = &(pTriggerStack->newColMask);
       
  1202       }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){
       
  1203         pExpr->iTable = pTriggerStack->oldIdx;
       
  1204         assert( pTriggerStack->pTab );
       
  1205         pTab = pTriggerStack->pTab;
       
  1206         piColMask = &(pTriggerStack->oldColMask);
       
  1207       }
       
  1208 
       
  1209       if( pTab ){ 
       
  1210         int iCol;
       
  1211         Column *pCol = pTab->aCol;
       
  1212 
       
  1213         pSchema = pTab->pSchema;
       
  1214         cntTab++;
       
  1215         for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) {
       
  1216           if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
       
  1217             const char *zColl = pTab->aCol[iCol].zColl;
       
  1218             cnt++;
       
  1219             pExpr->iColumn = iCol==pTab->iPKey ? -1 : iCol;
       
  1220             pExpr->affinity = pTab->aCol[iCol].affinity;
       
  1221             if( (pExpr->flags & EP_ExpCollate)==0 ){
       
  1222               pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
       
  1223             }
       
  1224             pExpr->pTab = pTab;
       
  1225             if( iCol>=0 ){
       
  1226               testcase( iCol==31 );
       
  1227               testcase( iCol==32 );
       
  1228               *piColMask |= ((u32)1<<iCol) | (iCol>=32?0xffffffff:0);
       
  1229             }
       
  1230             break;
       
  1231           }
       
  1232         }
       
  1233       }
       
  1234     }
       
  1235 #endif /* !defined(SQLITE_OMIT_TRIGGER) */
       
  1236 
       
  1237     /*
       
  1238     ** Perhaps the name is a reference to the ROWID
       
  1239     */
       
  1240     if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){
       
  1241       cnt = 1;
       
  1242       pExpr->iColumn = -1;
       
  1243       pExpr->affinity = SQLITE_AFF_INTEGER;
       
  1244     }
       
  1245 
       
  1246     /*
       
  1247     ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
       
  1248     ** might refer to an result-set alias.  This happens, for example, when
       
  1249     ** we are resolving names in the WHERE clause of the following command:
       
  1250     **
       
  1251     **     SELECT a+b AS x FROM table WHERE x<10;
       
  1252     **
       
  1253     ** In cases like this, replace pExpr with a copy of the expression that
       
  1254     ** forms the result set entry ("a+b" in the example) and return immediately.
       
  1255     ** Note that the expression in the result set should have already been
       
  1256     ** resolved by the time the WHERE clause is resolved.
       
  1257     */
       
  1258     if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){
       
  1259       for(j=0; j<pEList->nExpr; j++){
       
  1260         char *zAs = pEList->a[j].zName;
       
  1261         if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
       
  1262           Expr *pDup, *pOrig;
       
  1263           assert( pExpr->pLeft==0 && pExpr->pRight==0 );
       
  1264           assert( pExpr->pList==0 );
       
  1265           assert( pExpr->pSelect==0 );
       
  1266           pOrig = pEList->a[j].pExpr;
       
  1267           if( !pNC->allowAgg && ExprHasProperty(pOrig, EP_Agg) ){
       
  1268             sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs);
       
  1269             sqlite3DbFree(db, zCol);
       
  1270             return 2;
       
  1271           }
       
  1272           pDup = sqlite3ExprDup(db, pOrig);
       
  1273           if( pExpr->flags & EP_ExpCollate ){
       
  1274             pDup->pColl = pExpr->pColl;
       
  1275             pDup->flags |= EP_ExpCollate;
       
  1276           }
       
  1277           if( pExpr->span.dyn ) sqlite3DbFree(db, (char*)pExpr->span.z);
       
  1278           if( pExpr->token.dyn ) sqlite3DbFree(db, (char*)pExpr->token.z);
       
  1279           memcpy(pExpr, pDup, sizeof(*pExpr));
       
  1280           sqlite3DbFree(db, pDup);
       
  1281           cnt = 1;
       
  1282           pMatch = 0;
       
  1283           assert( zTab==0 && zDb==0 );
       
  1284           goto lookupname_end_2;
       
  1285         }
       
  1286       } 
       
  1287     }
       
  1288 
       
  1289     /* Advance to the next name context.  The loop will exit when either
       
  1290     ** we have a match (cnt>0) or when we run out of name contexts.
       
  1291     */
       
  1292     if( cnt==0 ){
       
  1293       pNC = pNC->pNext;
       
  1294     }
       
  1295   }
       
  1296 
       
  1297   /*
       
  1298   ** If X and Y are NULL (in other words if only the column name Z is
       
  1299   ** supplied) and the value of Z is enclosed in double-quotes, then
       
  1300   ** Z is a string literal if it doesn't match any column names.  In that
       
  1301   ** case, we need to return right away and not make any changes to
       
  1302   ** pExpr.
       
  1303   **
       
  1304   ** Because no reference was made to outer contexts, the pNC->nRef
       
  1305   ** fields are not changed in any context.
       
  1306   */
       
  1307   if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){
       
  1308     sqlite3DbFree(db, zCol);
       
  1309     return 0;
       
  1310   }
       
  1311 
       
  1312   /*
       
  1313   ** cnt==0 means there was not match.  cnt>1 means there were two or
       
  1314   ** more matches.  Either way, we have an error.
       
  1315   */
       
  1316   if( cnt!=1 ){
       
  1317     const char *zErr;
       
  1318     zErr = cnt==0 ? "no such column" : "ambiguous column name";
       
  1319     if( zDb ){
       
  1320       sqlite3ErrorMsg(pParse, "%s: %s.%s.%s", zErr, zDb, zTab, zCol);
       
  1321     }else if( zTab ){
       
  1322       sqlite3ErrorMsg(pParse, "%s: %s.%s", zErr, zTab, zCol);
       
  1323     }else{
       
  1324       sqlite3ErrorMsg(pParse, "%s: %s", zErr, zCol);
       
  1325     }
       
  1326     pTopNC->nErr++;
       
  1327   }
       
  1328 
       
  1329   /* If a column from a table in pSrcList is referenced, then record
       
  1330   ** this fact in the pSrcList.a[].colUsed bitmask.  Column 0 causes
       
  1331   ** bit 0 to be set.  Column 1 sets bit 1.  And so forth.  If the
       
  1332   ** column number is greater than the number of bits in the bitmask
       
  1333   ** then set the high-order bit of the bitmask.
       
  1334   */
       
  1335   if( pExpr->iColumn>=0 && pMatch!=0 ){
       
  1336     int n = pExpr->iColumn;
       
  1337     testcase( n==sizeof(Bitmask)*8-1 );
       
  1338     if( n>=sizeof(Bitmask)*8 ){
       
  1339       n = sizeof(Bitmask)*8-1;
       
  1340     }
       
  1341     assert( pMatch->iCursor==pExpr->iTable );
       
  1342     pMatch->colUsed |= ((Bitmask)1)<<n;
       
  1343   }
       
  1344 
       
  1345 lookupname_end:
       
  1346   /* Clean up and return
       
  1347   */
       
  1348   sqlite3DbFree(db, zDb);
       
  1349   sqlite3DbFree(db, zTab);
       
  1350   sqlite3ExprDelete(db, pExpr->pLeft);
       
  1351   pExpr->pLeft = 0;
       
  1352   sqlite3ExprDelete(db, pExpr->pRight);
       
  1353   pExpr->pRight = 0;
       
  1354   pExpr->op = TK_COLUMN;
       
  1355 lookupname_end_2:
       
  1356   sqlite3DbFree(db, zCol);
       
  1357   if( cnt==1 ){
       
  1358     assert( pNC!=0 );
       
  1359     sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList);
       
  1360     if( pMatch && !pMatch->pSelect ){
       
  1361       pExpr->pTab = pMatch->pTab;
       
  1362     }
       
  1363     /* Increment the nRef value on all name contexts from TopNC up to
       
  1364     ** the point where the name matched. */
       
  1365     for(;;){
       
  1366       assert( pTopNC!=0 );
       
  1367       pTopNC->nRef++;
       
  1368       if( pTopNC==pNC ) break;
       
  1369       pTopNC = pTopNC->pNext;
       
  1370     }
       
  1371     return 0;
       
  1372   } else {
       
  1373     return 1;
       
  1374   }
       
  1375 }
       
  1376 
       
  1377 /*
       
  1378 ** This routine is designed as an xFunc for walkExprTree().
       
  1379 **
       
  1380 ** Resolve symbolic names into TK_COLUMN operators for the current
       
  1381 ** node in the expression tree.  Return 0 to continue the search down
       
  1382 ** the tree or 2 to abort the tree walk.
       
  1383 **
       
  1384 ** This routine also does error checking and name resolution for
       
  1385 ** function names.  The operator for aggregate functions is changed
       
  1386 ** to TK_AGG_FUNCTION.
       
  1387 */
       
  1388 static int nameResolverStep(void *pArg, Expr *pExpr){
       
  1389   NameContext *pNC = (NameContext*)pArg;
       
  1390   Parse *pParse;
       
  1391 
       
  1392   if( pExpr==0 ) return 1;
       
  1393   assert( pNC!=0 );
       
  1394   pParse = pNC->pParse;
       
  1395 
       
  1396   if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1;
       
  1397   ExprSetProperty(pExpr, EP_Resolved);
       
  1398 #ifndef NDEBUG
       
  1399   if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){
       
  1400     SrcList *pSrcList = pNC->pSrcList;
       
  1401     int i;
       
  1402     for(i=0; i<pNC->pSrcList->nSrc; i++){
       
  1403       assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab);
       
  1404     }
       
  1405   }
       
  1406 #endif
       
  1407   switch( pExpr->op ){
       
  1408     /* Double-quoted strings (ex: "abc") are used as identifiers if
       
  1409     ** possible.  Otherwise they remain as strings.  Single-quoted
       
  1410     ** strings (ex: 'abc') are always string literals.
       
  1411     */
       
  1412     case TK_STRING: {
       
  1413       if( pExpr->token.z[0]=='\'' ) break;
       
  1414       /* Fall thru into the TK_ID case if this is a double-quoted string */
       
  1415     }
       
  1416     /* A lone identifier is the name of a column.
       
  1417     */
       
  1418     case TK_ID: {
       
  1419       lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr);
       
  1420       return 1;
       
  1421     }
       
  1422   
       
  1423     /* A table name and column name:     ID.ID
       
  1424     ** Or a database, table and column:  ID.ID.ID
       
  1425     */
       
  1426     case TK_DOT: {
       
  1427       Token *pColumn;
       
  1428       Token *pTable;
       
  1429       Token *pDb;
       
  1430       Expr *pRight;
       
  1431 
       
  1432       /* if( pSrcList==0 ) break; */
       
  1433       pRight = pExpr->pRight;
       
  1434       if( pRight->op==TK_ID ){
       
  1435         pDb = 0;
       
  1436         pTable = &pExpr->pLeft->token;
       
  1437         pColumn = &pRight->token;
       
  1438       }else{
       
  1439         assert( pRight->op==TK_DOT );
       
  1440         pDb = &pExpr->pLeft->token;
       
  1441         pTable = &pRight->pLeft->token;
       
  1442         pColumn = &pRight->pRight->token;
       
  1443       }
       
  1444       lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr);
       
  1445       return 1;
       
  1446     }
       
  1447 
       
  1448     /* Resolve function names
       
  1449     */
       
  1450     case TK_CONST_FUNC:
       
  1451     case TK_FUNCTION: {
       
  1452       ExprList *pList = pExpr->pList;    /* The argument list */
       
  1453       int n = pList ? pList->nExpr : 0;  /* Number of arguments */
       
  1454       int no_such_func = 0;       /* True if no such function exists */
       
  1455       int wrong_num_args = 0;     /* True if wrong number of arguments */
       
  1456       int is_agg = 0;             /* True if is an aggregate function */
       
  1457       int i;
       
  1458       int auth;                   /* Authorization to use the function */
       
  1459       int nId;                    /* Number of characters in function name */
       
  1460       const char *zId;            /* The function name. */
       
  1461       FuncDef *pDef;              /* Information about the function */
       
  1462       int enc = ENC(pParse->db);  /* The database encoding */
       
  1463 
       
  1464       zId = (char*)pExpr->token.z;
       
  1465       nId = pExpr->token.n;
       
  1466       pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0);
       
  1467       if( pDef==0 ){
       
  1468         pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0);
       
  1469         if( pDef==0 ){
       
  1470           no_such_func = 1;
       
  1471         }else{
       
  1472           wrong_num_args = 1;
       
  1473         }
       
  1474       }else{
       
  1475         is_agg = pDef->xFunc==0;
       
  1476       }
       
  1477 #ifndef SQLITE_OMIT_AUTHORIZATION
       
  1478       if( pDef ){
       
  1479         auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0);
       
  1480         if( auth!=SQLITE_OK ){
       
  1481           if( auth==SQLITE_DENY ){
       
  1482             sqlite3ErrorMsg(pParse, "not authorized to use function: %s",
       
  1483                                     pDef->zName);
       
  1484             pNC->nErr++;
       
  1485           }
       
  1486           pExpr->op = TK_NULL;
       
  1487           return 1;
       
  1488         }
       
  1489       }
       
  1490 #endif
       
  1491       if( is_agg && !pNC->allowAgg ){
       
  1492         sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId);
       
  1493         pNC->nErr++;
       
  1494         is_agg = 0;
       
  1495       }else if( no_such_func ){
       
  1496         sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId);
       
  1497         pNC->nErr++;
       
  1498       }else if( wrong_num_args ){
       
  1499         sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()",
       
  1500              nId, zId);
       
  1501         pNC->nErr++;
       
  1502       }
       
  1503       if( is_agg ){
       
  1504         pExpr->op = TK_AGG_FUNCTION;
       
  1505         pNC->hasAgg = 1;
       
  1506       }
       
  1507       if( is_agg ) pNC->allowAgg = 0;
       
  1508       for(i=0; pNC->nErr==0 && i<n; i++){
       
  1509         walkExprTree(pList->a[i].pExpr, nameResolverStep, pNC);
       
  1510       }
       
  1511       if( is_agg ) pNC->allowAgg = 1;
       
  1512       /* FIX ME:  Compute pExpr->affinity based on the expected return
       
  1513       ** type of the function 
       
  1514       */
       
  1515       return is_agg;
       
  1516     }
       
  1517 #ifndef SQLITE_OMIT_SUBQUERY
       
  1518     case TK_SELECT:
       
  1519     case TK_EXISTS:
       
  1520 #endif
       
  1521     case TK_IN: {
       
  1522       if( pExpr->pSelect ){
       
  1523         int nRef = pNC->nRef;
       
  1524 #ifndef SQLITE_OMIT_CHECK
       
  1525         if( pNC->isCheck ){
       
  1526           sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints");
       
  1527         }
       
  1528 #endif
       
  1529         sqlite3SelectResolve(pParse, pExpr->pSelect, pNC);
       
  1530         assert( pNC->nRef>=nRef );
       
  1531         if( nRef!=pNC->nRef ){
       
  1532           ExprSetProperty(pExpr, EP_VarSelect);
       
  1533         }
       
  1534       }
       
  1535       break;
       
  1536     }
       
  1537 #ifndef SQLITE_OMIT_CHECK
       
  1538     case TK_VARIABLE: {
       
  1539       if( pNC->isCheck ){
       
  1540         sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints");
       
  1541       }
       
  1542       break;
       
  1543     }
       
  1544 #endif
       
  1545   }
       
  1546   return 0;
       
  1547 }
       
  1548 
       
  1549 /*
       
  1550 ** This routine walks an expression tree and resolves references to
       
  1551 ** table columns.  Nodes of the form ID.ID or ID resolve into an
       
  1552 ** index to the table in the table list and a column offset.  The 
       
  1553 ** Expr.opcode for such nodes is changed to TK_COLUMN.  The Expr.iTable
       
  1554 ** value is changed to the index of the referenced table in pTabList
       
  1555 ** plus the "base" value.  The base value will ultimately become the
       
  1556 ** VDBE cursor number for a cursor that is pointing into the referenced
       
  1557 ** table.  The Expr.iColumn value is changed to the index of the column 
       
  1558 ** of the referenced table.  The Expr.iColumn value for the special
       
  1559 ** ROWID column is -1.  Any INTEGER PRIMARY KEY column is tried as an
       
  1560 ** alias for ROWID.
       
  1561 **
       
  1562 ** Also resolve function names and check the functions for proper
       
  1563 ** usage.  Make sure all function names are recognized and all functions
       
  1564 ** have the correct number of arguments.  Leave an error message
       
  1565 ** in pParse->zErrMsg if anything is amiss.  Return the number of errors.
       
  1566 **
       
  1567 ** If the expression contains aggregate functions then set the EP_Agg
       
  1568 ** property on the expression.
       
  1569 */
       
  1570 int sqlite3ExprResolveNames( 
       
  1571   NameContext *pNC,       /* Namespace to resolve expressions in. */
       
  1572   Expr *pExpr             /* The expression to be analyzed. */
       
  1573 ){
       
  1574   int savedHasAgg;
       
  1575 
       
  1576   if( pExpr==0 ) return 0;
       
  1577 #if SQLITE_MAX_EXPR_DEPTH>0
       
  1578   {
       
  1579     if( checkExprHeight(pNC->pParse, pExpr->nHeight + pNC->pParse->nHeight) ){
       
  1580       return 1;
       
  1581     }
       
  1582     pNC->pParse->nHeight += pExpr->nHeight;
       
  1583   }
       
  1584 #endif
       
  1585   savedHasAgg = pNC->hasAgg;
       
  1586   pNC->hasAgg = 0;
       
  1587   walkExprTree(pExpr, nameResolverStep, pNC);
       
  1588 #if SQLITE_MAX_EXPR_DEPTH>0
       
  1589   pNC->pParse->nHeight -= pExpr->nHeight;
       
  1590 #endif
       
  1591   if( pNC->nErr>0 ){
       
  1592     ExprSetProperty(pExpr, EP_Error);
       
  1593   }
       
  1594   if( pNC->hasAgg ){
       
  1595     ExprSetProperty(pExpr, EP_Agg);
       
  1596   }else if( savedHasAgg ){
       
  1597     pNC->hasAgg = 1;
       
  1598   }
       
  1599   return ExprHasProperty(pExpr, EP_Error);
       
  1600 }
       
  1601 
       
  1602 /*
       
  1603 ** A pointer instance of this structure is used to pass information
       
  1604 ** through walkExprTree into codeSubqueryStep().
       
  1605 */
       
  1606 typedef struct QueryCoder QueryCoder;
       
  1607 struct QueryCoder {
       
  1608   Parse *pParse;       /* The parsing context */
       
  1609   NameContext *pNC;    /* Namespace of first enclosing query */
       
  1610 };
       
  1611 
       
  1612 #ifdef SQLITE_TEST
       
  1613   int sqlite3_enable_in_opt = 1;
       
  1614 #else
       
  1615   #define sqlite3_enable_in_opt 1
       
  1616 #endif
       
  1617 
       
  1618 /*
       
  1619 ** Return true if the IN operator optimization is enabled and
       
  1620 ** the SELECT statement p exists and is of the
       
  1621 ** simple form:
       
  1622 **
       
  1623 **     SELECT <column> FROM <table>
       
  1624 **
       
  1625 ** If this is the case, it may be possible to use an existing table
       
  1626 ** or index instead of generating an epheremal table.
       
  1627 */
       
  1628 #ifndef SQLITE_OMIT_SUBQUERY
       
  1629 static int isCandidateForInOpt(Select *p){
       
  1630   SrcList *pSrc;
       
  1631   ExprList *pEList;
       
  1632   Table *pTab;
       
  1633   if( !sqlite3_enable_in_opt ) return 0; /* IN optimization must be enabled */
       
  1634   if( p==0 ) return 0;                   /* right-hand side of IN is SELECT */
       
  1635   if( p->pPrior ) return 0;              /* Not a compound SELECT */
       
  1636   if( p->isDistinct ) return 0;          /* No DISTINCT keyword */
       
  1637   if( p->isAgg ) return 0;               /* Contains no aggregate functions */
       
  1638   if( p->pGroupBy ) return 0;            /* Has no GROUP BY clause */
       
  1639   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
       
  1640   if( p->pOffset ) return 0;
       
  1641   if( p->pWhere ) return 0;              /* Has no WHERE clause */
       
  1642   pSrc = p->pSrc;
       
  1643   if( pSrc==0 ) return 0;                /* A single table in the FROM clause */
       
  1644   if( pSrc->nSrc!=1 ) return 0;
       
  1645   if( pSrc->a[0].pSelect ) return 0;     /* FROM clause is not a subquery */
       
  1646   pTab = pSrc->a[0].pTab;
       
  1647   if( pTab==0 ) return 0;
       
  1648   if( pTab->pSelect ) return 0;          /* FROM clause is not a view */
       
  1649   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
       
  1650   pEList = p->pEList;
       
  1651   if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
       
  1652   if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
       
  1653   return 1;
       
  1654 }
       
  1655 #endif /* SQLITE_OMIT_SUBQUERY */
       
  1656 
       
  1657 /*
       
  1658 ** This function is used by the implementation of the IN (...) operator.
       
  1659 ** It's job is to find or create a b-tree structure that may be used
       
  1660 ** either to test for membership of the (...) set or to iterate through
       
  1661 ** its members, skipping duplicates.
       
  1662 **
       
  1663 ** The cursor opened on the structure (database table, database index 
       
  1664 ** or ephermal table) is stored in pX->iTable before this function returns.
       
  1665 ** The returned value indicates the structure type, as follows:
       
  1666 **
       
  1667 **   IN_INDEX_ROWID - The cursor was opened on a database table.
       
  1668 **   IN_INDEX_INDEX - The cursor was opened on a database index.
       
  1669 **   IN_INDEX_EPH -   The cursor was opened on a specially created and
       
  1670 **                    populated epheremal table.
       
  1671 **
       
  1672 ** An existing structure may only be used if the SELECT is of the simple
       
  1673 ** form:
       
  1674 **
       
  1675 **     SELECT <column> FROM <table>
       
  1676 **
       
  1677 ** If prNotFound parameter is 0, then the structure will be used to iterate
       
  1678 ** through the set members, skipping any duplicates. In this case an
       
  1679 ** epheremal table must be used unless the selected <column> is guaranteed
       
  1680 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
       
  1681 ** is unique by virtue of a constraint or implicit index.
       
  1682 **
       
  1683 ** If the prNotFound parameter is not 0, then the structure will be used 
       
  1684 ** for fast set membership tests. In this case an epheremal table must 
       
  1685 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 
       
  1686 ** be found with <column> as its left-most column.
       
  1687 **
       
  1688 ** When the structure is being used for set membership tests, the user
       
  1689 ** needs to know whether or not the structure contains an SQL NULL 
       
  1690 ** value in order to correctly evaluate expressions like "X IN (Y, Z)".
       
  1691 ** If there is a chance that the structure may contain a NULL value at
       
  1692 ** runtime, then a register is allocated and the register number written
       
  1693 ** to *prNotFound. If there is no chance that the structure contains a
       
  1694 ** NULL value, then *prNotFound is left unchanged.
       
  1695 **
       
  1696 ** If a register is allocated and its location stored in *prNotFound, then
       
  1697 ** its initial value is NULL. If the structure does not remain constant
       
  1698 ** for the duration of the query (i.e. the set is a correlated sub-select), 
       
  1699 ** the value of the allocated register is reset to NULL each time the 
       
  1700 ** structure is repopulated. This allows the caller to use vdbe code 
       
  1701 ** equivalent to the following:
       
  1702 **
       
  1703 **   if( register==NULL ){
       
  1704 **     has_null = <test if data structure contains null>
       
  1705 **     register = 1
       
  1706 **   }
       
  1707 **
       
  1708 ** in order to avoid running the <test if data structure contains null>
       
  1709 ** test more often than is necessary.
       
  1710 */
       
  1711 #ifndef SQLITE_OMIT_SUBQUERY
       
  1712 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
       
  1713   Select *p;
       
  1714   int eType = 0;
       
  1715   int iTab = pParse->nTab++;
       
  1716   int mustBeUnique = !prNotFound;
       
  1717 
       
  1718   /* The follwing if(...) expression is true if the SELECT is of the 
       
  1719   ** simple form:
       
  1720   **
       
  1721   **     SELECT <column> FROM <table>
       
  1722   **
       
  1723   ** If this is the case, it may be possible to use an existing table
       
  1724   ** or index instead of generating an epheremal table.
       
  1725   */
       
  1726   p = pX->pSelect;
       
  1727   if( isCandidateForInOpt(p) ){
       
  1728     sqlite3 *db = pParse->db;
       
  1729     Index *pIdx;
       
  1730     Expr *pExpr = p->pEList->a[0].pExpr;
       
  1731     int iCol = pExpr->iColumn;
       
  1732     Vdbe *v = sqlite3GetVdbe(pParse);
       
  1733 
       
  1734     /* This function is only called from two places. In both cases the vdbe
       
  1735     ** has already been allocated. So assume sqlite3GetVdbe() is always
       
  1736     ** successful here.
       
  1737     */
       
  1738     assert(v);
       
  1739     if( iCol<0 ){
       
  1740       int iMem = ++pParse->nMem;
       
  1741       int iAddr;
       
  1742       Table *pTab = p->pSrc->a[0].pTab;
       
  1743       int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
       
  1744       sqlite3VdbeUsesBtree(v, iDb);
       
  1745 
       
  1746       iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
       
  1747       sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
       
  1748 
       
  1749       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
       
  1750       eType = IN_INDEX_ROWID;
       
  1751 
       
  1752       sqlite3VdbeJumpHere(v, iAddr);
       
  1753     }else{
       
  1754       /* The collation sequence used by the comparison. If an index is to 
       
  1755       ** be used in place of a temp-table, it must be ordered according
       
  1756       ** to this collation sequence.
       
  1757       */
       
  1758       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
       
  1759 
       
  1760       /* Check that the affinity that will be used to perform the 
       
  1761       ** comparison is the same as the affinity of the column. If
       
  1762       ** it is not, it is not possible to use any index.
       
  1763       */
       
  1764       Table *pTab = p->pSrc->a[0].pTab;
       
  1765       char aff = comparisonAffinity(pX);
       
  1766       int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE);
       
  1767 
       
  1768       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
       
  1769         if( (pIdx->aiColumn[0]==iCol)
       
  1770          && (pReq==sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], -1, 0))
       
  1771          && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
       
  1772         ){
       
  1773           int iDb;
       
  1774           int iMem = ++pParse->nMem;
       
  1775           int iAddr;
       
  1776           char *pKey;
       
  1777   
       
  1778           pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
       
  1779           iDb = sqlite3SchemaToIndex(db, pIdx->pSchema);
       
  1780           sqlite3VdbeUsesBtree(v, iDb);
       
  1781 
       
  1782           iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
       
  1783           sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
       
  1784   
       
  1785           sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pIdx->nColumn);
       
  1786           sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
       
  1787                                pKey,P4_KEYINFO_HANDOFF);
       
  1788           VdbeComment((v, "%s", pIdx->zName));
       
  1789           eType = IN_INDEX_INDEX;
       
  1790 
       
  1791           sqlite3VdbeJumpHere(v, iAddr);
       
  1792           if( prNotFound && !pTab->aCol[iCol].notNull ){
       
  1793             *prNotFound = ++pParse->nMem;
       
  1794           }
       
  1795         }
       
  1796       }
       
  1797     }
       
  1798   }
       
  1799 
       
  1800   if( eType==0 ){
       
  1801     int rMayHaveNull = 0;
       
  1802     if( prNotFound ){
       
  1803       *prNotFound = rMayHaveNull = ++pParse->nMem;
       
  1804     }
       
  1805     sqlite3CodeSubselect(pParse, pX, rMayHaveNull);
       
  1806     eType = IN_INDEX_EPH;
       
  1807   }else{
       
  1808     pX->iTable = iTab;
       
  1809   }
       
  1810   return eType;
       
  1811 }
       
  1812 #endif
       
  1813 
       
  1814 /*
       
  1815 ** Generate code for scalar subqueries used as an expression
       
  1816 ** and IN operators.  Examples:
       
  1817 **
       
  1818 **     (SELECT a FROM b)          -- subquery
       
  1819 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
       
  1820 **     x IN (4,5,11)              -- IN operator with list on right-hand side
       
  1821 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
       
  1822 **
       
  1823 ** The pExpr parameter describes the expression that contains the IN
       
  1824 ** operator or subquery.
       
  1825 */
       
  1826 #ifndef SQLITE_OMIT_SUBQUERY
       
  1827 void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr, int rMayHaveNull){
       
  1828   int testAddr = 0;                       /* One-time test address */
       
  1829   Vdbe *v = sqlite3GetVdbe(pParse);
       
  1830   if( v==0 ) return;
       
  1831 
       
  1832 
       
  1833   /* This code must be run in its entirety every time it is encountered
       
  1834   ** if any of the following is true:
       
  1835   **
       
  1836   **    *  The right-hand side is a correlated subquery
       
  1837   **    *  The right-hand side is an expression list containing variables
       
  1838   **    *  We are inside a trigger
       
  1839   **
       
  1840   ** If all of the above are false, then we can run this code just once
       
  1841   ** save the results, and reuse the same result on subsequent invocations.
       
  1842   */
       
  1843   if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){
       
  1844     int mem = ++pParse->nMem;
       
  1845     sqlite3VdbeAddOp1(v, OP_If, mem);
       
  1846     testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem);
       
  1847     assert( testAddr>0 || pParse->db->mallocFailed );
       
  1848   }
       
  1849 
       
  1850   switch( pExpr->op ){
       
  1851     case TK_IN: {
       
  1852       char affinity;
       
  1853       KeyInfo keyInfo;
       
  1854       int addr;        /* Address of OP_OpenEphemeral instruction */
       
  1855 
       
  1856       if( rMayHaveNull ){
       
  1857         sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
       
  1858       }
       
  1859 
       
  1860       affinity = sqlite3ExprAffinity(pExpr->pLeft);
       
  1861 
       
  1862       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
       
  1863       ** expression it is handled the same way. A virtual table is 
       
  1864       ** filled with single-field index keys representing the results
       
  1865       ** from the SELECT or the <exprlist>.
       
  1866       **
       
  1867       ** If the 'x' expression is a column value, or the SELECT...
       
  1868       ** statement returns a column value, then the affinity of that
       
  1869       ** column is used to build the index keys. If both 'x' and the
       
  1870       ** SELECT... statement are columns, then numeric affinity is used
       
  1871       ** if either column has NUMERIC or INTEGER affinity. If neither
       
  1872       ** 'x' nor the SELECT... statement are columns, then numeric affinity
       
  1873       ** is used.
       
  1874       */
       
  1875       pExpr->iTable = pParse->nTab++;
       
  1876       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, 1);
       
  1877       memset(&keyInfo, 0, sizeof(keyInfo));
       
  1878       keyInfo.nField = 1;
       
  1879 
       
  1880       if( pExpr->pSelect ){
       
  1881         /* Case 1:     expr IN (SELECT ...)
       
  1882         **
       
  1883         ** Generate code to write the results of the select into the temporary
       
  1884         ** table allocated and opened above.
       
  1885         */
       
  1886         SelectDest dest;
       
  1887         ExprList *pEList;
       
  1888 
       
  1889         sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
       
  1890         dest.affinity = (int)affinity;
       
  1891         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
       
  1892         if( sqlite3Select(pParse, pExpr->pSelect, &dest, 0, 0, 0) ){
       
  1893           return;
       
  1894         }
       
  1895         pEList = pExpr->pSelect->pEList;
       
  1896         if( pEList && pEList->nExpr>0 ){ 
       
  1897           keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
       
  1898               pEList->a[0].pExpr);
       
  1899         }
       
  1900       }else if( pExpr->pList ){
       
  1901         /* Case 2:     expr IN (exprlist)
       
  1902         **
       
  1903         ** For each expression, build an index key from the evaluation and
       
  1904         ** store it in the temporary table. If <expr> is a column, then use
       
  1905         ** that columns affinity when building index keys. If <expr> is not
       
  1906         ** a column, use numeric affinity.
       
  1907         */
       
  1908         int i;
       
  1909         ExprList *pList = pExpr->pList;
       
  1910         struct ExprList_item *pItem;
       
  1911         int r1, r2, r3;
       
  1912 
       
  1913         if( !affinity ){
       
  1914           affinity = SQLITE_AFF_NONE;
       
  1915         }
       
  1916         keyInfo.aColl[0] = pExpr->pLeft->pColl;
       
  1917 
       
  1918         /* Loop through each expression in <exprlist>. */
       
  1919         r1 = sqlite3GetTempReg(pParse);
       
  1920         r2 = sqlite3GetTempReg(pParse);
       
  1921         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
       
  1922           Expr *pE2 = pItem->pExpr;
       
  1923 
       
  1924           /* If the expression is not constant then we will need to
       
  1925           ** disable the test that was generated above that makes sure
       
  1926           ** this code only executes once.  Because for a non-constant
       
  1927           ** expression we need to rerun this code each time.
       
  1928           */
       
  1929           if( testAddr && !sqlite3ExprIsConstant(pE2) ){
       
  1930             sqlite3VdbeChangeToNoop(v, testAddr-1, 2);
       
  1931             testAddr = 0;
       
  1932           }
       
  1933 
       
  1934           /* Evaluate the expression and insert it into the temp table */
       
  1935           pParse->disableColCache++;
       
  1936           r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
       
  1937           assert( pParse->disableColCache>0 );
       
  1938           pParse->disableColCache--;
       
  1939           sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
       
  1940           sqlite3ExprCacheAffinityChange(pParse, r3, 1);
       
  1941           sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
       
  1942         }
       
  1943         sqlite3ReleaseTempReg(pParse, r1);
       
  1944         sqlite3ReleaseTempReg(pParse, r2);
       
  1945       }
       
  1946       sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO);
       
  1947       break;
       
  1948     }
       
  1949 
       
  1950     case TK_EXISTS:
       
  1951     case TK_SELECT: {
       
  1952       /* This has to be a scalar SELECT.  Generate code to put the
       
  1953       ** value of this select in a memory cell and record the number
       
  1954       ** of the memory cell in iColumn.
       
  1955       */
       
  1956       static const Token one = { (u8*)"1", 0, 1 };
       
  1957       Select *pSel;
       
  1958       SelectDest dest;
       
  1959 
       
  1960       pSel = pExpr->pSelect;
       
  1961       sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
       
  1962       if( pExpr->op==TK_SELECT ){
       
  1963         dest.eDest = SRT_Mem;
       
  1964         sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm);
       
  1965         VdbeComment((v, "Init subquery result"));
       
  1966       }else{
       
  1967         dest.eDest = SRT_Exists;
       
  1968         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm);
       
  1969         VdbeComment((v, "Init EXISTS result"));
       
  1970       }
       
  1971       sqlite3ExprDelete(pParse->db, pSel->pLimit);
       
  1972       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one);
       
  1973       if( sqlite3Select(pParse, pSel, &dest, 0, 0, 0) ){
       
  1974         return;
       
  1975       }
       
  1976       pExpr->iColumn = dest.iParm;
       
  1977       break;
       
  1978     }
       
  1979   }
       
  1980 
       
  1981   if( testAddr ){
       
  1982     sqlite3VdbeJumpHere(v, testAddr-1);
       
  1983   }
       
  1984 
       
  1985   return;
       
  1986 }
       
  1987 #endif /* SQLITE_OMIT_SUBQUERY */
       
  1988 
       
  1989 /*
       
  1990 ** Duplicate an 8-byte value
       
  1991 */
       
  1992 static char *dup8bytes(Vdbe *v, const char *in){
       
  1993   char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
       
  1994   if( out ){
       
  1995     memcpy(out, in, 8);
       
  1996   }
       
  1997   return out;
       
  1998 }
       
  1999 
       
  2000 /*
       
  2001 ** Generate an instruction that will put the floating point
       
  2002 ** value described by z[0..n-1] into register iMem.
       
  2003 **
       
  2004 ** The z[] string will probably not be zero-terminated.  But the 
       
  2005 ** z[n] character is guaranteed to be something that does not look
       
  2006 ** like the continuation of the number.
       
  2007 */
       
  2008 static void codeReal(Vdbe *v, const char *z, int n, int negateFlag, int iMem){
       
  2009   assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed );
       
  2010   if( z ){
       
  2011     double value;
       
  2012     char *zV;
       
  2013     assert( !isdigit(z[n]) );
       
  2014     sqlite3AtoF(z, &value);
       
  2015     if( sqlite3IsNaN(value) ){
       
  2016       sqlite3VdbeAddOp2(v, OP_Null, 0, iMem);
       
  2017     }else{
       
  2018       if( negateFlag ) value = -value;
       
  2019       zV = dup8bytes(v, (char*)&value);
       
  2020       sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
       
  2021     }
       
  2022   }
       
  2023 }
       
  2024 
       
  2025 
       
  2026 /*
       
  2027 ** Generate an instruction that will put the integer describe by
       
  2028 ** text z[0..n-1] into register iMem.
       
  2029 **
       
  2030 ** The z[] string will probably not be zero-terminated.  But the 
       
  2031 ** z[n] character is guaranteed to be something that does not look
       
  2032 ** like the continuation of the number.
       
  2033 */
       
  2034 static void codeInteger(Vdbe *v, Expr *pExpr, int negFlag, int iMem){
       
  2035   const char *z;
       
  2036   if( pExpr->flags & EP_IntValue ){
       
  2037     int i = pExpr->iTable;
       
  2038     if( negFlag ) i = -i;
       
  2039     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
       
  2040   }else if( (z = (char*)pExpr->token.z)!=0 ){
       
  2041     int i;
       
  2042     int n = pExpr->token.n;
       
  2043     assert( !isdigit(z[n]) );
       
  2044     if( sqlite3GetInt32(z, &i) ){
       
  2045       if( negFlag ) i = -i;
       
  2046       sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
       
  2047     }else if( sqlite3FitsIn64Bits(z, negFlag) ){
       
  2048       i64 value;
       
  2049       char *zV;
       
  2050       sqlite3Atoi64(z, &value);
       
  2051       if( negFlag ) value = -value;
       
  2052       zV = dup8bytes(v, (char*)&value);
       
  2053       sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
       
  2054     }else{
       
  2055       codeReal(v, z, n, negFlag, iMem);
       
  2056     }
       
  2057   }
       
  2058 }
       
  2059 
       
  2060 
       
  2061 /*
       
  2062 ** Generate code that will extract the iColumn-th column from
       
  2063 ** table pTab and store the column value in a register.  An effort
       
  2064 ** is made to store the column value in register iReg, but this is
       
  2065 ** not guaranteed.  The location of the column value is returned.
       
  2066 **
       
  2067 ** There must be an open cursor to pTab in iTable when this routine
       
  2068 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
       
  2069 **
       
  2070 ** This routine might attempt to reuse the value of the column that
       
  2071 ** has already been loaded into a register.  The value will always
       
  2072 ** be used if it has not undergone any affinity changes.  But if
       
  2073 ** an affinity change has occurred, then the cached value will only be
       
  2074 ** used if allowAffChng is true.
       
  2075 */
       
  2076 int sqlite3ExprCodeGetColumn(
       
  2077   Parse *pParse,   /* Parsing and code generating context */
       
  2078   Table *pTab,     /* Description of the table we are reading from */
       
  2079   int iColumn,     /* Index of the table column */
       
  2080   int iTable,      /* The cursor pointing to the table */
       
  2081   int iReg,        /* Store results here */
       
  2082   int allowAffChng /* True if prior affinity changes are OK */
       
  2083 ){
       
  2084   Vdbe *v = pParse->pVdbe;
       
  2085   int i;
       
  2086   struct yColCache *p;
       
  2087 
       
  2088   for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
       
  2089     if( p->iTable==iTable && p->iColumn==iColumn
       
  2090            && (!p->affChange || allowAffChng) ){
       
  2091 #if 0
       
  2092       sqlite3VdbeAddOp0(v, OP_Noop);
       
  2093       VdbeComment((v, "OPT: tab%d.col%d -> r%d", iTable, iColumn, p->iReg));
       
  2094 #endif
       
  2095       return p->iReg;
       
  2096     }
       
  2097   }  
       
  2098   assert( v!=0 );
       
  2099   if( iColumn<0 ){
       
  2100     int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid;
       
  2101     sqlite3VdbeAddOp2(v, op, iTable, iReg);
       
  2102   }else if( pTab==0 ){
       
  2103     sqlite3VdbeAddOp3(v, OP_Column, iTable, iColumn, iReg);
       
  2104   }else{
       
  2105     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
       
  2106     sqlite3VdbeAddOp3(v, op, iTable, iColumn, iReg);
       
  2107     sqlite3ColumnDefault(v, pTab, iColumn);
       
  2108 #ifndef SQLITE_OMIT_FLOATING_POINT
       
  2109     if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){
       
  2110       sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
       
  2111     }
       
  2112 #endif
       
  2113   }
       
  2114   if( pParse->disableColCache==0 ){
       
  2115     i = pParse->iColCache;
       
  2116     p = &pParse->aColCache[i];
       
  2117     p->iTable = iTable;
       
  2118     p->iColumn = iColumn;
       
  2119     p->iReg = iReg;
       
  2120     p->affChange = 0;
       
  2121     i++;
       
  2122     if( i>=ArraySize(pParse->aColCache) ) i = 0;
       
  2123     if( i>pParse->nColCache ) pParse->nColCache = i;
       
  2124     pParse->iColCache = i;
       
  2125   }
       
  2126   return iReg;
       
  2127 }
       
  2128 
       
  2129 /*
       
  2130 ** Clear all column cache entries associated with the vdbe
       
  2131 ** cursor with cursor number iTable.
       
  2132 */
       
  2133 void sqlite3ExprClearColumnCache(Parse *pParse, int iTable){
       
  2134   if( iTable<0 ){
       
  2135     pParse->nColCache = 0;
       
  2136     pParse->iColCache = 0;
       
  2137   }else{
       
  2138     int i;
       
  2139     for(i=0; i<pParse->nColCache; i++){
       
  2140       if( pParse->aColCache[i].iTable==iTable ){
       
  2141         testcase( i==pParse->nColCache-1 );
       
  2142         pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache];
       
  2143         pParse->iColCache = pParse->nColCache;
       
  2144       }
       
  2145     }
       
  2146   }
       
  2147 }
       
  2148 
       
  2149 /*
       
  2150 ** Record the fact that an affinity change has occurred on iCount
       
  2151 ** registers starting with iStart.
       
  2152 */
       
  2153 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
       
  2154   int iEnd = iStart + iCount - 1;
       
  2155   int i;
       
  2156   for(i=0; i<pParse->nColCache; i++){
       
  2157     int r = pParse->aColCache[i].iReg;
       
  2158     if( r>=iStart && r<=iEnd ){
       
  2159       pParse->aColCache[i].affChange = 1;
       
  2160     }
       
  2161   }
       
  2162 }
       
  2163 
       
  2164 /*
       
  2165 ** Generate code to move content from registers iFrom...iFrom+nReg-1
       
  2166 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
       
  2167 */
       
  2168 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
       
  2169   int i;
       
  2170   if( iFrom==iTo ) return;
       
  2171   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
       
  2172   for(i=0; i<pParse->nColCache; i++){
       
  2173     int x = pParse->aColCache[i].iReg;
       
  2174     if( x>=iFrom && x<iFrom+nReg ){
       
  2175       pParse->aColCache[i].iReg += iTo-iFrom;
       
  2176     }
       
  2177   }
       
  2178 }
       
  2179 
       
  2180 /*
       
  2181 ** Generate code to copy content from registers iFrom...iFrom+nReg-1
       
  2182 ** over to iTo..iTo+nReg-1.
       
  2183 */
       
  2184 void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){
       
  2185   int i;
       
  2186   if( iFrom==iTo ) return;
       
  2187   for(i=0; i<nReg; i++){
       
  2188     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i);
       
  2189   }
       
  2190 }
       
  2191 
       
  2192 /*
       
  2193 ** Return true if any register in the range iFrom..iTo (inclusive)
       
  2194 ** is used as part of the column cache.
       
  2195 */
       
  2196 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
       
  2197   int i;
       
  2198   for(i=0; i<pParse->nColCache; i++){
       
  2199     int r = pParse->aColCache[i].iReg;
       
  2200     if( r>=iFrom && r<=iTo ) return 1;
       
  2201   }
       
  2202   return 0;
       
  2203 }
       
  2204 
       
  2205 /*
       
  2206 ** Theres is a value in register iCurrent.  We ultimately want
       
  2207 ** the value to be in register iTarget.  It might be that
       
  2208 ** iCurrent and iTarget are the same register.
       
  2209 **
       
  2210 ** We are going to modify the value, so we need to make sure it
       
  2211 ** is not a cached register.  If iCurrent is a cached register,
       
  2212 ** then try to move the value over to iTarget.  If iTarget is a
       
  2213 ** cached register, then clear the corresponding cache line.
       
  2214 **
       
  2215 ** Return the register that the value ends up in.
       
  2216 */
       
  2217 int sqlite3ExprWritableRegister(Parse *pParse, int iCurrent, int iTarget){
       
  2218   int i;
       
  2219   assert( pParse->pVdbe!=0 );
       
  2220   if( !usedAsColumnCache(pParse, iCurrent, iCurrent) ){
       
  2221     return iCurrent;
       
  2222   }
       
  2223   if( iCurrent!=iTarget ){
       
  2224     sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, iCurrent, iTarget);
       
  2225   }
       
  2226   for(i=0; i<pParse->nColCache; i++){
       
  2227     if( pParse->aColCache[i].iReg==iTarget ){
       
  2228       pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache];
       
  2229       pParse->iColCache = pParse->nColCache;
       
  2230     }
       
  2231   }
       
  2232   return iTarget;
       
  2233 }
       
  2234 
       
  2235 /*
       
  2236 ** If the last instruction coded is an ephemeral copy of any of
       
  2237 ** the registers in the nReg registers beginning with iReg, then
       
  2238 ** convert the last instruction from OP_SCopy to OP_Copy.
       
  2239 */
       
  2240 void sqlite3ExprHardCopy(Parse *pParse, int iReg, int nReg){
       
  2241   int addr;
       
  2242   VdbeOp *pOp;
       
  2243   Vdbe *v;
       
  2244 
       
  2245   v = pParse->pVdbe;
       
  2246   addr = sqlite3VdbeCurrentAddr(v);
       
  2247   pOp = sqlite3VdbeGetOp(v, addr-1);
       
  2248   assert( pOp || pParse->db->mallocFailed );
       
  2249   if( pOp && pOp->opcode==OP_SCopy && pOp->p1>=iReg && pOp->p1<iReg+nReg ){
       
  2250     pOp->opcode = OP_Copy;
       
  2251   }
       
  2252 }
       
  2253 
       
  2254 /*
       
  2255 ** Generate code into the current Vdbe to evaluate the given
       
  2256 ** expression.  Attempt to store the results in register "target".
       
  2257 ** Return the register where results are stored.
       
  2258 **
       
  2259 ** With this routine, there is no guaranteed that results will
       
  2260 ** be stored in target.  The result might be stored in some other
       
  2261 ** register if it is convenient to do so.  The calling function
       
  2262 ** must check the return code and move the results to the desired
       
  2263 ** register.
       
  2264 */
       
  2265 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
       
  2266   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
       
  2267   int op;                   /* The opcode being coded */
       
  2268   int inReg = target;       /* Results stored in register inReg */
       
  2269   int regFree1 = 0;         /* If non-zero free this temporary register */
       
  2270   int regFree2 = 0;         /* If non-zero free this temporary register */
       
  2271   int r1, r2, r3, r4;       /* Various register numbers */
       
  2272 
       
  2273   assert( v!=0 || pParse->db->mallocFailed );
       
  2274   assert( target>0 && target<=pParse->nMem );
       
  2275   if( v==0 ) return 0;
       
  2276 
       
  2277   if( pExpr==0 ){
       
  2278     op = TK_NULL;
       
  2279   }else{
       
  2280     op = pExpr->op;
       
  2281   }
       
  2282   switch( op ){
       
  2283     case TK_AGG_COLUMN: {
       
  2284       AggInfo *pAggInfo = pExpr->pAggInfo;
       
  2285       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
       
  2286       if( !pAggInfo->directMode ){
       
  2287         assert( pCol->iMem>0 );
       
  2288         inReg = pCol->iMem;
       
  2289         break;
       
  2290       }else if( pAggInfo->useSortingIdx ){
       
  2291         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx,
       
  2292                               pCol->iSorterColumn, target);
       
  2293         break;
       
  2294       }
       
  2295       /* Otherwise, fall thru into the TK_COLUMN case */
       
  2296     }
       
  2297     case TK_COLUMN: {
       
  2298       if( pExpr->iTable<0 ){
       
  2299         /* This only happens when coding check constraints */
       
  2300         assert( pParse->ckBase>0 );
       
  2301         inReg = pExpr->iColumn + pParse->ckBase;
       
  2302       }else{
       
  2303         testcase( (pExpr->flags & EP_AnyAff)!=0 );
       
  2304         inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
       
  2305                                  pExpr->iColumn, pExpr->iTable, target,
       
  2306                                  pExpr->flags & EP_AnyAff);
       
  2307       }
       
  2308       break;
       
  2309     }
       
  2310     case TK_INTEGER: {
       
  2311       codeInteger(v, pExpr, 0, target);
       
  2312       break;
       
  2313     }
       
  2314     case TK_FLOAT: {
       
  2315       codeReal(v, (char*)pExpr->token.z, pExpr->token.n, 0, target);
       
  2316       break;
       
  2317     }
       
  2318     case TK_STRING: {
       
  2319       sqlite3DequoteExpr(pParse->db, pExpr);
       
  2320       sqlite3VdbeAddOp4(v,OP_String8, 0, target, 0,
       
  2321                         (char*)pExpr->token.z, pExpr->token.n);
       
  2322       break;
       
  2323     }
       
  2324     case TK_NULL: {
       
  2325       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
       
  2326       break;
       
  2327     }
       
  2328 #ifndef SQLITE_OMIT_BLOB_LITERAL
       
  2329     case TK_BLOB: {
       
  2330       int n;
       
  2331       const char *z;
       
  2332       char *zBlob;
       
  2333       assert( pExpr->token.n>=3 );
       
  2334       assert( pExpr->token.z[0]=='x' || pExpr->token.z[0]=='X' );
       
  2335       assert( pExpr->token.z[1]=='\'' );
       
  2336       assert( pExpr->token.z[pExpr->token.n-1]=='\'' );
       
  2337       n = pExpr->token.n - 3;
       
  2338       z = (char*)pExpr->token.z + 2;
       
  2339       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
       
  2340       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
       
  2341       break;
       
  2342     }
       
  2343 #endif
       
  2344     case TK_VARIABLE: {
       
  2345       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iTable, target);
       
  2346       if( pExpr->token.n>1 ){
       
  2347         sqlite3VdbeChangeP4(v, -1, (char*)pExpr->token.z, pExpr->token.n);
       
  2348       }
       
  2349       break;
       
  2350     }
       
  2351     case TK_REGISTER: {
       
  2352       inReg = pExpr->iTable;
       
  2353       break;
       
  2354     }
       
  2355 #ifndef SQLITE_OMIT_CAST
       
  2356     case TK_CAST: {
       
  2357       /* Expressions of the form:   CAST(pLeft AS token) */
       
  2358       int aff, to_op;
       
  2359       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
       
  2360       aff = sqlite3AffinityType(&pExpr->token);
       
  2361       to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
       
  2362       assert( to_op==OP_ToText    || aff!=SQLITE_AFF_TEXT    );
       
  2363       assert( to_op==OP_ToBlob    || aff!=SQLITE_AFF_NONE    );
       
  2364       assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
       
  2365       assert( to_op==OP_ToInt     || aff!=SQLITE_AFF_INTEGER );
       
  2366       assert( to_op==OP_ToReal    || aff!=SQLITE_AFF_REAL    );
       
  2367       testcase( to_op==OP_ToText );
       
  2368       testcase( to_op==OP_ToBlob );
       
  2369       testcase( to_op==OP_ToNumeric );
       
  2370       testcase( to_op==OP_ToInt );
       
  2371       testcase( to_op==OP_ToReal );
       
  2372       sqlite3VdbeAddOp1(v, to_op, inReg);
       
  2373       testcase( usedAsColumnCache(pParse, inReg, inReg) );
       
  2374       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
       
  2375       break;
       
  2376     }
       
  2377 #endif /* SQLITE_OMIT_CAST */
       
  2378     case TK_LT:
       
  2379     case TK_LE:
       
  2380     case TK_GT:
       
  2381     case TK_GE:
       
  2382     case TK_NE:
       
  2383     case TK_EQ: {
       
  2384       assert( TK_LT==OP_Lt );
       
  2385       assert( TK_LE==OP_Le );
       
  2386       assert( TK_GT==OP_Gt );
       
  2387       assert( TK_GE==OP_Ge );
       
  2388       assert( TK_EQ==OP_Eq );
       
  2389       assert( TK_NE==OP_Ne );
       
  2390       testcase( op==TK_LT );
       
  2391       testcase( op==TK_LE );
       
  2392       testcase( op==TK_GT );
       
  2393       testcase( op==TK_GE );
       
  2394       testcase( op==TK_EQ );
       
  2395       testcase( op==TK_NE );
       
  2396       codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
       
  2397                                   pExpr->pRight, &r2, &regFree2);
       
  2398       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
       
  2399                   r1, r2, inReg, SQLITE_STOREP2);
       
  2400       testcase( regFree1==0 );
       
  2401       testcase( regFree2==0 );
       
  2402       break;
       
  2403     }
       
  2404     case TK_AND:
       
  2405     case TK_OR:
       
  2406     case TK_PLUS:
       
  2407     case TK_STAR:
       
  2408     case TK_MINUS:
       
  2409     case TK_REM:
       
  2410     case TK_BITAND:
       
  2411     case TK_BITOR:
       
  2412     case TK_SLASH:
       
  2413     case TK_LSHIFT:
       
  2414     case TK_RSHIFT: 
       
  2415     case TK_CONCAT: {
       
  2416       assert( TK_AND==OP_And );
       
  2417       assert( TK_OR==OP_Or );
       
  2418       assert( TK_PLUS==OP_Add );
       
  2419       assert( TK_MINUS==OP_Subtract );
       
  2420       assert( TK_REM==OP_Remainder );
       
  2421       assert( TK_BITAND==OP_BitAnd );
       
  2422       assert( TK_BITOR==OP_BitOr );
       
  2423       assert( TK_SLASH==OP_Divide );
       
  2424       assert( TK_LSHIFT==OP_ShiftLeft );
       
  2425       assert( TK_RSHIFT==OP_ShiftRight );
       
  2426       assert( TK_CONCAT==OP_Concat );
       
  2427       testcase( op==TK_AND );
       
  2428       testcase( op==TK_OR );
       
  2429       testcase( op==TK_PLUS );
       
  2430       testcase( op==TK_MINUS );
       
  2431       testcase( op==TK_REM );
       
  2432       testcase( op==TK_BITAND );
       
  2433       testcase( op==TK_BITOR );
       
  2434       testcase( op==TK_SLASH );
       
  2435       testcase( op==TK_LSHIFT );
       
  2436       testcase( op==TK_RSHIFT );
       
  2437       testcase( op==TK_CONCAT );
       
  2438       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
       
  2439       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
       
  2440       sqlite3VdbeAddOp3(v, op, r2, r1, target);
       
  2441       testcase( regFree1==0 );
       
  2442       testcase( regFree2==0 );
       
  2443       break;
       
  2444     }
       
  2445     case TK_UMINUS: {
       
  2446       Expr *pLeft = pExpr->pLeft;
       
  2447       assert( pLeft );
       
  2448       if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){
       
  2449         if( pLeft->op==TK_FLOAT ){
       
  2450           codeReal(v, (char*)pLeft->token.z, pLeft->token.n, 1, target);
       
  2451         }else{
       
  2452           codeInteger(v, pLeft, 1, target);
       
  2453         }
       
  2454       }else{
       
  2455         regFree1 = r1 = sqlite3GetTempReg(pParse);
       
  2456         sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
       
  2457         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
       
  2458         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
       
  2459         testcase( regFree2==0 );
       
  2460       }
       
  2461       inReg = target;
       
  2462       break;
       
  2463     }
       
  2464     case TK_BITNOT:
       
  2465     case TK_NOT: {
       
  2466       assert( TK_BITNOT==OP_BitNot );
       
  2467       assert( TK_NOT==OP_Not );
       
  2468       testcase( op==TK_BITNOT );
       
  2469       testcase( op==TK_NOT );
       
  2470       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
       
  2471       testcase( inReg==target );
       
  2472       testcase( usedAsColumnCache(pParse, inReg, inReg) );
       
  2473       inReg = sqlite3ExprWritableRegister(pParse, inReg, target);
       
  2474       sqlite3VdbeAddOp1(v, op, inReg);
       
  2475       break;
       
  2476     }
       
  2477     case TK_ISNULL:
       
  2478     case TK_NOTNULL: {
       
  2479       int addr;
       
  2480       assert( TK_ISNULL==OP_IsNull );
       
  2481       assert( TK_NOTNULL==OP_NotNull );
       
  2482       testcase( op==TK_ISNULL );
       
  2483       testcase( op==TK_NOTNULL );
       
  2484       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
       
  2485       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
       
  2486       testcase( regFree1==0 );
       
  2487       addr = sqlite3VdbeAddOp1(v, op, r1);
       
  2488       sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
       
  2489       sqlite3VdbeJumpHere(v, addr);
       
  2490       break;
       
  2491     }
       
  2492     case TK_AGG_FUNCTION: {
       
  2493       AggInfo *pInfo = pExpr->pAggInfo;
       
  2494       if( pInfo==0 ){
       
  2495         sqlite3ErrorMsg(pParse, "misuse of aggregate: %T",
       
  2496             &pExpr->span);
       
  2497       }else{
       
  2498         inReg = pInfo->aFunc[pExpr->iAgg].iMem;
       
  2499       }
       
  2500       break;
       
  2501     }
       
  2502     case TK_CONST_FUNC:
       
  2503     case TK_FUNCTION: {
       
  2504       ExprList *pList = pExpr->pList;
       
  2505       int nExpr = pList ? pList->nExpr : 0;
       
  2506       FuncDef *pDef;
       
  2507       int nId;
       
  2508       const char *zId;
       
  2509       int constMask = 0;
       
  2510       int i;
       
  2511       sqlite3 *db = pParse->db;
       
  2512       u8 enc = ENC(db);
       
  2513       CollSeq *pColl = 0;
       
  2514 
       
  2515       testcase( op==TK_CONST_FUNC );
       
  2516       testcase( op==TK_FUNCTION );
       
  2517       zId = (char*)pExpr->token.z;
       
  2518       nId = pExpr->token.n;
       
  2519       pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0);
       
  2520       assert( pDef!=0 );
       
  2521       if( pList ){
       
  2522         nExpr = pList->nExpr;
       
  2523         r1 = sqlite3GetTempRange(pParse, nExpr);
       
  2524         sqlite3ExprCodeExprList(pParse, pList, r1, 1);
       
  2525       }else{
       
  2526         nExpr = r1 = 0;
       
  2527       }
       
  2528 #ifndef SQLITE_OMIT_VIRTUALTABLE
       
  2529       /* Possibly overload the function if the first argument is
       
  2530       ** a virtual table column.
       
  2531       **
       
  2532       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
       
  2533       ** second argument, not the first, as the argument to test to
       
  2534       ** see if it is a column in a virtual table.  This is done because
       
  2535       ** the left operand of infix functions (the operand we want to
       
  2536       ** control overloading) ends up as the second argument to the
       
  2537       ** function.  The expression "A glob B" is equivalent to 
       
  2538       ** "glob(B,A).  We want to use the A in "A glob B" to test
       
  2539       ** for function overloading.  But we use the B term in "glob(B,A)".
       
  2540       */
       
  2541       if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){
       
  2542         pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[1].pExpr);
       
  2543       }else if( nExpr>0 ){
       
  2544         pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[0].pExpr);
       
  2545       }
       
  2546 #endif
       
  2547       for(i=0; i<nExpr && i<32; i++){
       
  2548         if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){
       
  2549           constMask |= (1<<i);
       
  2550         }
       
  2551         if( pDef->needCollSeq && !pColl ){
       
  2552           pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
       
  2553         }
       
  2554       }
       
  2555       if( pDef->needCollSeq ){
       
  2556         if( !pColl ) pColl = pParse->db->pDfltColl; 
       
  2557         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
       
  2558       }
       
  2559       sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
       
  2560                         (char*)pDef, P4_FUNCDEF);
       
  2561       sqlite3VdbeChangeP5(v, nExpr);
       
  2562       if( nExpr ){
       
  2563         sqlite3ReleaseTempRange(pParse, r1, nExpr);
       
  2564       }
       
  2565       sqlite3ExprCacheAffinityChange(pParse, r1, nExpr);
       
  2566       break;
       
  2567     }
       
  2568 #ifndef SQLITE_OMIT_SUBQUERY
       
  2569     case TK_EXISTS:
       
  2570     case TK_SELECT: {
       
  2571       testcase( op==TK_EXISTS );
       
  2572       testcase( op==TK_SELECT );
       
  2573       if( pExpr->iColumn==0 ){
       
  2574         sqlite3CodeSubselect(pParse, pExpr, 0);
       
  2575       }
       
  2576       inReg = pExpr->iColumn;
       
  2577       break;
       
  2578     }
       
  2579     case TK_IN: {
       
  2580       int rNotFound = 0;
       
  2581       int rMayHaveNull = 0;
       
  2582       int j2, j3, j4, j5;
       
  2583       char affinity;
       
  2584       int eType;
       
  2585 
       
  2586       VdbeNoopComment((v, "begin IN expr r%d", target));
       
  2587       eType = sqlite3FindInIndex(pParse, pExpr, &rMayHaveNull);
       
  2588       if( rMayHaveNull ){
       
  2589         rNotFound = ++pParse->nMem;
       
  2590       }
       
  2591 
       
  2592       /* Figure out the affinity to use to create a key from the results
       
  2593       ** of the expression. affinityStr stores a static string suitable for
       
  2594       ** P4 of OP_MakeRecord.
       
  2595       */
       
  2596       affinity = comparisonAffinity(pExpr);
       
  2597 
       
  2598 
       
  2599       /* Code the <expr> from "<expr> IN (...)". The temporary table
       
  2600       ** pExpr->iTable contains the values that make up the (...) set.
       
  2601       */
       
  2602       pParse->disableColCache++;
       
  2603       sqlite3ExprCode(pParse, pExpr->pLeft, target);
       
  2604       pParse->disableColCache--;
       
  2605       j2 = sqlite3VdbeAddOp1(v, OP_IsNull, target);
       
  2606       if( eType==IN_INDEX_ROWID ){
       
  2607         j3 = sqlite3VdbeAddOp1(v, OP_MustBeInt, target);
       
  2608         j4 = sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, 0, target);
       
  2609         sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
       
  2610         j5 = sqlite3VdbeAddOp0(v, OP_Goto);
       
  2611         sqlite3VdbeJumpHere(v, j3);
       
  2612         sqlite3VdbeJumpHere(v, j4);
       
  2613         sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
       
  2614       }else{
       
  2615         r2 = regFree2 = sqlite3GetTempReg(pParse);
       
  2616 
       
  2617         /* Create a record and test for set membership. If the set contains
       
  2618         ** the value, then jump to the end of the test code. The target
       
  2619         ** register still contains the true (1) value written to it earlier.
       
  2620         */
       
  2621         sqlite3VdbeAddOp4(v, OP_MakeRecord, target, 1, r2, &affinity, 1);
       
  2622         sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
       
  2623         j5 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, r2);
       
  2624 
       
  2625         /* If the set membership test fails, then the result of the 
       
  2626         ** "x IN (...)" expression must be either 0 or NULL. If the set
       
  2627         ** contains no NULL values, then the result is 0. If the set 
       
  2628         ** contains one or more NULL values, then the result of the
       
  2629         ** expression is also NULL.
       
  2630         */
       
  2631         if( rNotFound==0 ){
       
  2632           /* This branch runs if it is known at compile time (now) that 
       
  2633           ** the set contains no NULL values. This happens as the result
       
  2634           ** of a "NOT NULL" constraint in the database schema. No need
       
  2635           ** to test the data structure at runtime in this case.
       
  2636           */
       
  2637           sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
       
  2638         }else{
       
  2639           /* This block populates the rNotFound register with either NULL
       
  2640           ** or 0 (an integer value). If the data structure contains one
       
  2641           ** or more NULLs, then set rNotFound to NULL. Otherwise, set it
       
  2642           ** to 0. If register rMayHaveNull is already set to some value
       
  2643           ** other than NULL, then the test has already been run and 
       
  2644           ** rNotFound is already populated.
       
  2645           */
       
  2646           static const char nullRecord[] = { 0x02, 0x00 };
       
  2647           j3 = sqlite3VdbeAddOp1(v, OP_NotNull, rMayHaveNull);
       
  2648           sqlite3VdbeAddOp2(v, OP_Null, 0, rNotFound);
       
  2649           sqlite3VdbeAddOp4(v, OP_Blob, 2, rMayHaveNull, 0, 
       
  2650                              nullRecord, P4_STATIC);
       
  2651           j4 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, rMayHaveNull);
       
  2652           sqlite3VdbeAddOp2(v, OP_Integer, 0, rNotFound);
       
  2653           sqlite3VdbeJumpHere(v, j4);
       
  2654           sqlite3VdbeJumpHere(v, j3);
       
  2655 
       
  2656           /* Copy the value of register rNotFound (which is either NULL or 0)
       
  2657 	  ** into the target register. This will be the result of the
       
  2658           ** expression.
       
  2659           */
       
  2660           sqlite3VdbeAddOp2(v, OP_Copy, rNotFound, target);
       
  2661         }
       
  2662       }
       
  2663       sqlite3VdbeJumpHere(v, j2);
       
  2664       sqlite3VdbeJumpHere(v, j5);
       
  2665       VdbeComment((v, "end IN expr r%d", target));
       
  2666       break;
       
  2667     }
       
  2668 #endif
       
  2669     /*
       
  2670     **    x BETWEEN y AND z
       
  2671     **
       
  2672     ** This is equivalent to
       
  2673     **
       
  2674     **    x>=y AND x<=z
       
  2675     **
       
  2676     ** X is stored in pExpr->pLeft.
       
  2677     ** Y is stored in pExpr->pList->a[0].pExpr.
       
  2678     ** Z is stored in pExpr->pList->a[1].pExpr.
       
  2679     */
       
  2680     case TK_BETWEEN: {
       
  2681       Expr *pLeft = pExpr->pLeft;
       
  2682       struct ExprList_item *pLItem = pExpr->pList->a;
       
  2683       Expr *pRight = pLItem->pExpr;
       
  2684 
       
  2685       codeCompareOperands(pParse, pLeft, &r1, &regFree1,
       
  2686                                   pRight, &r2, &regFree2);
       
  2687       testcase( regFree1==0 );
       
  2688       testcase( regFree2==0 );
       
  2689       r3 = sqlite3GetTempReg(pParse);
       
  2690       r4 = sqlite3GetTempReg(pParse);
       
  2691       codeCompare(pParse, pLeft, pRight, OP_Ge,
       
  2692                   r1, r2, r3, SQLITE_STOREP2);
       
  2693       pLItem++;
       
  2694       pRight = pLItem->pExpr;
       
  2695       sqlite3ReleaseTempReg(pParse, regFree2);
       
  2696       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
       
  2697       testcase( regFree2==0 );
       
  2698       codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
       
  2699       sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
       
  2700       sqlite3ReleaseTempReg(pParse, r3);
       
  2701       sqlite3ReleaseTempReg(pParse, r4);
       
  2702       break;
       
  2703     }
       
  2704     case TK_UPLUS: {
       
  2705       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
       
  2706       break;
       
  2707     }
       
  2708 
       
  2709     /*
       
  2710     ** Form A:
       
  2711     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
       
  2712     **
       
  2713     ** Form B:
       
  2714     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
       
  2715     **
       
  2716     ** Form A is can be transformed into the equivalent form B as follows:
       
  2717     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
       
  2718     **        WHEN x=eN THEN rN ELSE y END
       
  2719     **
       
  2720     ** X (if it exists) is in pExpr->pLeft.
       
  2721     ** Y is in pExpr->pRight.  The Y is also optional.  If there is no
       
  2722     ** ELSE clause and no other term matches, then the result of the
       
  2723     ** exprssion is NULL.
       
  2724     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
       
  2725     **
       
  2726     ** The result of the expression is the Ri for the first matching Ei,
       
  2727     ** or if there is no matching Ei, the ELSE term Y, or if there is
       
  2728     ** no ELSE term, NULL.
       
  2729     */
       
  2730     case TK_CASE: {
       
  2731       int endLabel;                     /* GOTO label for end of CASE stmt */
       
  2732       int nextCase;                     /* GOTO label for next WHEN clause */
       
  2733       int nExpr;                        /* 2x number of WHEN terms */
       
  2734       int i;                            /* Loop counter */
       
  2735       ExprList *pEList;                 /* List of WHEN terms */
       
  2736       struct ExprList_item *aListelem;  /* Array of WHEN terms */
       
  2737       Expr opCompare;                   /* The X==Ei expression */
       
  2738       Expr cacheX;                      /* Cached expression X */
       
  2739       Expr *pX;                         /* The X expression */
       
  2740       Expr *pTest;                      /* X==Ei (form A) or just Ei (form B) */
       
  2741 
       
  2742       assert(pExpr->pList);
       
  2743       assert((pExpr->pList->nExpr % 2) == 0);
       
  2744       assert(pExpr->pList->nExpr > 0);
       
  2745       pEList = pExpr->pList;
       
  2746       aListelem = pEList->a;
       
  2747       nExpr = pEList->nExpr;
       
  2748       endLabel = sqlite3VdbeMakeLabel(v);
       
  2749       if( (pX = pExpr->pLeft)!=0 ){
       
  2750         cacheX = *pX;
       
  2751         testcase( pX->op==TK_COLUMN || pX->op==TK_REGISTER );
       
  2752         cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, &regFree1);
       
  2753         testcase( regFree1==0 );
       
  2754         cacheX.op = TK_REGISTER;
       
  2755         cacheX.iColumn = 0;
       
  2756         opCompare.op = TK_EQ;
       
  2757         opCompare.pLeft = &cacheX;
       
  2758         pTest = &opCompare;
       
  2759       }
       
  2760       pParse->disableColCache++;
       
  2761       for(i=0; i<nExpr; i=i+2){
       
  2762         if( pX ){
       
  2763           opCompare.pRight = aListelem[i].pExpr;
       
  2764         }else{
       
  2765           pTest = aListelem[i].pExpr;
       
  2766         }
       
  2767         nextCase = sqlite3VdbeMakeLabel(v);
       
  2768         testcase( pTest->op==TK_COLUMN || pTest->op==TK_REGISTER );
       
  2769         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
       
  2770         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
       
  2771         testcase( aListelem[i+1].pExpr->op==TK_REGISTER );
       
  2772         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
       
  2773         sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
       
  2774         sqlite3VdbeResolveLabel(v, nextCase);
       
  2775       }
       
  2776       if( pExpr->pRight ){
       
  2777         sqlite3ExprCode(pParse, pExpr->pRight, target);
       
  2778       }else{
       
  2779         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
       
  2780       }
       
  2781       sqlite3VdbeResolveLabel(v, endLabel);
       
  2782       assert( pParse->disableColCache>0 );
       
  2783       pParse->disableColCache--;
       
  2784       break;
       
  2785     }
       
  2786 #ifndef SQLITE_OMIT_TRIGGER
       
  2787     case TK_RAISE: {
       
  2788       if( !pParse->trigStack ){
       
  2789         sqlite3ErrorMsg(pParse,
       
  2790                        "RAISE() may only be used within a trigger-program");
       
  2791         return 0;
       
  2792       }
       
  2793       if( pExpr->iColumn!=OE_Ignore ){
       
  2794          assert( pExpr->iColumn==OE_Rollback ||
       
  2795                  pExpr->iColumn == OE_Abort ||
       
  2796                  pExpr->iColumn == OE_Fail );
       
  2797          sqlite3DequoteExpr(pParse->db, pExpr);
       
  2798          sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, 0,
       
  2799                         (char*)pExpr->token.z, pExpr->token.n);
       
  2800       } else {
       
  2801          assert( pExpr->iColumn == OE_Ignore );
       
  2802          sqlite3VdbeAddOp2(v, OP_ContextPop, 0, 0);
       
  2803          sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->trigStack->ignoreJump);
       
  2804          VdbeComment((v, "raise(IGNORE)"));
       
  2805       }
       
  2806       break;
       
  2807     }
       
  2808 #endif
       
  2809   }
       
  2810   sqlite3ReleaseTempReg(pParse, regFree1);
       
  2811   sqlite3ReleaseTempReg(pParse, regFree2);
       
  2812   return inReg;
       
  2813 }
       
  2814 
       
  2815 /*
       
  2816 ** Generate code to evaluate an expression and store the results
       
  2817 ** into a register.  Return the register number where the results
       
  2818 ** are stored.
       
  2819 **
       
  2820 ** If the register is a temporary register that can be deallocated,
       
  2821 ** then write its number into *pReg.  If the result register is not
       
  2822 ** a temporary, then set *pReg to zero.
       
  2823 */
       
  2824 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
       
  2825   int r1 = sqlite3GetTempReg(pParse);
       
  2826   int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
       
  2827   if( r2==r1 ){
       
  2828     *pReg = r1;
       
  2829   }else{
       
  2830     sqlite3ReleaseTempReg(pParse, r1);
       
  2831     *pReg = 0;
       
  2832   }
       
  2833   return r2;
       
  2834 }
       
  2835 
       
  2836 /*
       
  2837 ** Generate code that will evaluate expression pExpr and store the
       
  2838 ** results in register target.  The results are guaranteed to appear
       
  2839 ** in register target.
       
  2840 */
       
  2841 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
       
  2842   int inReg;
       
  2843 
       
  2844   assert( target>0 && target<=pParse->nMem );
       
  2845   inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
       
  2846   assert( pParse->pVdbe || pParse->db->mallocFailed );
       
  2847   if( inReg!=target && pParse->pVdbe ){
       
  2848     sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
       
  2849   }
       
  2850   return target;
       
  2851 }
       
  2852 
       
  2853 /*
       
  2854 ** Generate code that evalutes the given expression and puts the result
       
  2855 ** in register target.
       
  2856 **
       
  2857 ** Also make a copy of the expression results into another "cache" register
       
  2858 ** and modify the expression so that the next time it is evaluated,
       
  2859 ** the result is a copy of the cache register.
       
  2860 **
       
  2861 ** This routine is used for expressions that are used multiple 
       
  2862 ** times.  They are evaluated once and the results of the expression
       
  2863 ** are reused.
       
  2864 */
       
  2865 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
       
  2866   Vdbe *v = pParse->pVdbe;
       
  2867   int inReg;
       
  2868   inReg = sqlite3ExprCode(pParse, pExpr, target);
       
  2869   assert( target>0 );
       
  2870   if( pExpr->op!=TK_REGISTER ){  
       
  2871     int iMem;
       
  2872     iMem = ++pParse->nMem;
       
  2873     sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
       
  2874     pExpr->iTable = iMem;
       
  2875     pExpr->iColumn = pExpr->op;
       
  2876     pExpr->op = TK_REGISTER;
       
  2877   }
       
  2878   return inReg;
       
  2879 }
       
  2880 
       
  2881 /*
       
  2882 ** Return TRUE if pExpr is an constant expression that is appropriate
       
  2883 ** for factoring out of a loop.  Appropriate expressions are:
       
  2884 **
       
  2885 **    *  Any expression that evaluates to two or more opcodes.
       
  2886 **
       
  2887 **    *  Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null, 
       
  2888 **       or OP_Variable that does not need to be placed in a 
       
  2889 **       specific register.
       
  2890 **
       
  2891 ** There is no point in factoring out single-instruction constant
       
  2892 ** expressions that need to be placed in a particular register.  
       
  2893 ** We could factor them out, but then we would end up adding an
       
  2894 ** OP_SCopy instruction to move the value into the correct register
       
  2895 ** later.  We might as well just use the original instruction and
       
  2896 ** avoid the OP_SCopy.
       
  2897 */
       
  2898 static int isAppropriateForFactoring(Expr *p){
       
  2899   if( !sqlite3ExprIsConstantNotJoin(p) ){
       
  2900     return 0;  /* Only constant expressions are appropriate for factoring */
       
  2901   }
       
  2902   if( (p->flags & EP_FixedDest)==0 ){
       
  2903     return 1;  /* Any constant without a fixed destination is appropriate */
       
  2904   }
       
  2905   while( p->op==TK_UPLUS ) p = p->pLeft;
       
  2906   switch( p->op ){
       
  2907 #ifndef SQLITE_OMIT_BLOB_LITERAL
       
  2908     case TK_BLOB:
       
  2909 #endif
       
  2910     case TK_VARIABLE:
       
  2911     case TK_INTEGER:
       
  2912     case TK_FLOAT:
       
  2913     case TK_NULL:
       
  2914     case TK_STRING: {
       
  2915       testcase( p->op==TK_BLOB );
       
  2916       testcase( p->op==TK_VARIABLE );
       
  2917       testcase( p->op==TK_INTEGER );
       
  2918       testcase( p->op==TK_FLOAT );
       
  2919       testcase( p->op==TK_NULL );
       
  2920       testcase( p->op==TK_STRING );
       
  2921       /* Single-instruction constants with a fixed destination are
       
  2922       ** better done in-line.  If we factor them, they will just end
       
  2923       ** up generating an OP_SCopy to move the value to the destination
       
  2924       ** register. */
       
  2925       return 0;
       
  2926     }
       
  2927     case TK_UMINUS: {
       
  2928        if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){
       
  2929          return 0;
       
  2930        }
       
  2931        break;
       
  2932     }
       
  2933     default: {
       
  2934       break;
       
  2935     }
       
  2936   }
       
  2937   return 1;
       
  2938 }
       
  2939 
       
  2940 /*
       
  2941 ** If pExpr is a constant expression that is appropriate for
       
  2942 ** factoring out of a loop, then evaluate the expression
       
  2943 ** into a register and convert the expression into a TK_REGISTER
       
  2944 ** expression.
       
  2945 */
       
  2946 static int evalConstExpr(void *pArg, Expr *pExpr){
       
  2947   Parse *pParse = (Parse*)pArg;
       
  2948   switch( pExpr->op ){
       
  2949     case TK_REGISTER: {
       
  2950       return 1;
       
  2951     }
       
  2952     case TK_FUNCTION:
       
  2953     case TK_AGG_FUNCTION:
       
  2954     case TK_CONST_FUNC: {
       
  2955       /* The arguments to a function have a fixed destination.
       
  2956       ** Mark them this way to avoid generated unneeded OP_SCopy
       
  2957       ** instructions. 
       
  2958       */
       
  2959       ExprList *pList = pExpr->pList;
       
  2960       if( pList ){
       
  2961         int i = pList->nExpr;
       
  2962         struct ExprList_item *pItem = pList->a;
       
  2963         for(; i>0; i--, pItem++){
       
  2964           if( pItem->pExpr ) pItem->pExpr->flags |= EP_FixedDest;
       
  2965         }
       
  2966       }
       
  2967       break;
       
  2968     }
       
  2969   }
       
  2970   if( isAppropriateForFactoring(pExpr) ){
       
  2971     int r1 = ++pParse->nMem;
       
  2972     int r2;
       
  2973     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
       
  2974     if( r1!=r2 ) sqlite3ReleaseTempReg(pParse, r1);
       
  2975     pExpr->iColumn = pExpr->op;
       
  2976     pExpr->op = TK_REGISTER;
       
  2977     pExpr->iTable = r2;
       
  2978     return 1;
       
  2979   }
       
  2980   return 0;
       
  2981 }
       
  2982 
       
  2983 /*
       
  2984 ** Preevaluate constant subexpressions within pExpr and store the
       
  2985 ** results in registers.  Modify pExpr so that the constant subexpresions
       
  2986 ** are TK_REGISTER opcodes that refer to the precomputed values.
       
  2987 */
       
  2988 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){
       
  2989    walkExprTree(pExpr, evalConstExpr, pParse);
       
  2990 }
       
  2991 
       
  2992 
       
  2993 /*
       
  2994 ** Generate code that pushes the value of every element of the given
       
  2995 ** expression list into a sequence of registers beginning at target.
       
  2996 **
       
  2997 ** Return the number of elements evaluated.
       
  2998 */
       
  2999 int sqlite3ExprCodeExprList(
       
  3000   Parse *pParse,     /* Parsing context */
       
  3001   ExprList *pList,   /* The expression list to be coded */
       
  3002   int target,        /* Where to write results */
       
  3003   int doHardCopy     /* Call sqlite3ExprHardCopy on each element if true */
       
  3004 ){
       
  3005   struct ExprList_item *pItem;
       
  3006   int i, n;
       
  3007   assert( pList!=0 || pParse->db->mallocFailed );
       
  3008   if( pList==0 ){
       
  3009     return 0;
       
  3010   }
       
  3011   assert( target>0 );
       
  3012   n = pList->nExpr;
       
  3013   for(pItem=pList->a, i=0; i<n; i++, pItem++){
       
  3014     sqlite3ExprCode(pParse, pItem->pExpr, target+i);
       
  3015     if( doHardCopy ) sqlite3ExprHardCopy(pParse, target, n);
       
  3016   }
       
  3017   return n;
       
  3018 }
       
  3019 
       
  3020 /*
       
  3021 ** Generate code for a boolean expression such that a jump is made
       
  3022 ** to the label "dest" if the expression is true but execution
       
  3023 ** continues straight thru if the expression is false.
       
  3024 **
       
  3025 ** If the expression evaluates to NULL (neither true nor false), then
       
  3026 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
       
  3027 **
       
  3028 ** This code depends on the fact that certain token values (ex: TK_EQ)
       
  3029 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
       
  3030 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
       
  3031 ** the make process cause these values to align.  Assert()s in the code
       
  3032 ** below verify that the numbers are aligned correctly.
       
  3033 */
       
  3034 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
       
  3035   Vdbe *v = pParse->pVdbe;
       
  3036   int op = 0;
       
  3037   int regFree1 = 0;
       
  3038   int regFree2 = 0;
       
  3039   int r1, r2;
       
  3040 
       
  3041   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
       
  3042   if( v==0 || pExpr==0 ) return;
       
  3043   op = pExpr->op;
       
  3044   switch( op ){
       
  3045     case TK_AND: {
       
  3046       int d2 = sqlite3VdbeMakeLabel(v);
       
  3047       testcase( jumpIfNull==0 );
       
  3048       testcase( pParse->disableColCache==0 );
       
  3049       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
       
  3050       pParse->disableColCache++;
       
  3051       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
       
  3052       assert( pParse->disableColCache>0 );
       
  3053       pParse->disableColCache--;
       
  3054       sqlite3VdbeResolveLabel(v, d2);
       
  3055       break;
       
  3056     }
       
  3057     case TK_OR: {
       
  3058       testcase( jumpIfNull==0 );
       
  3059       testcase( pParse->disableColCache==0 );
       
  3060       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
       
  3061       pParse->disableColCache++;
       
  3062       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
       
  3063       assert( pParse->disableColCache>0 );
       
  3064       pParse->disableColCache--;
       
  3065       break;
       
  3066     }
       
  3067     case TK_NOT: {
       
  3068       testcase( jumpIfNull==0 );
       
  3069       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
       
  3070       break;
       
  3071     }
       
  3072     case TK_LT:
       
  3073     case TK_LE:
       
  3074     case TK_GT:
       
  3075     case TK_GE:
       
  3076     case TK_NE:
       
  3077     case TK_EQ: {
       
  3078       assert( TK_LT==OP_Lt );
       
  3079       assert( TK_LE==OP_Le );
       
  3080       assert( TK_GT==OP_Gt );
       
  3081       assert( TK_GE==OP_Ge );
       
  3082       assert( TK_EQ==OP_Eq );
       
  3083       assert( TK_NE==OP_Ne );
       
  3084       testcase( op==TK_LT );
       
  3085       testcase( op==TK_LE );
       
  3086       testcase( op==TK_GT );
       
  3087       testcase( op==TK_GE );
       
  3088       testcase( op==TK_EQ );
       
  3089       testcase( op==TK_NE );
       
  3090       testcase( jumpIfNull==0 );
       
  3091       codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
       
  3092                                   pExpr->pRight, &r2, &regFree2);
       
  3093       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
       
  3094                   r1, r2, dest, jumpIfNull);
       
  3095       testcase( regFree1==0 );
       
  3096       testcase( regFree2==0 );
       
  3097       break;
       
  3098     }
       
  3099     case TK_ISNULL:
       
  3100     case TK_NOTNULL: {
       
  3101       assert( TK_ISNULL==OP_IsNull );
       
  3102       assert( TK_NOTNULL==OP_NotNull );
       
  3103       testcase( op==TK_ISNULL );
       
  3104       testcase( op==TK_NOTNULL );
       
  3105       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
       
  3106       sqlite3VdbeAddOp2(v, op, r1, dest);
       
  3107       testcase( regFree1==0 );
       
  3108       break;
       
  3109     }
       
  3110     case TK_BETWEEN: {
       
  3111       /*    x BETWEEN y AND z
       
  3112       **
       
  3113       ** Is equivalent to 
       
  3114       **
       
  3115       **    x>=y AND x<=z
       
  3116       **
       
  3117       ** Code it as such, taking care to do the common subexpression
       
  3118       ** elementation of x.
       
  3119       */
       
  3120       Expr exprAnd;
       
  3121       Expr compLeft;
       
  3122       Expr compRight;
       
  3123       Expr exprX;
       
  3124 
       
  3125       exprX = *pExpr->pLeft;
       
  3126       exprAnd.op = TK_AND;
       
  3127       exprAnd.pLeft = &compLeft;
       
  3128       exprAnd.pRight = &compRight;
       
  3129       compLeft.op = TK_GE;
       
  3130       compLeft.pLeft = &exprX;
       
  3131       compLeft.pRight = pExpr->pList->a[0].pExpr;
       
  3132       compRight.op = TK_LE;
       
  3133       compRight.pLeft = &exprX;
       
  3134       compRight.pRight = pExpr->pList->a[1].pExpr;
       
  3135       exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
       
  3136       testcase( regFree1==0 );
       
  3137       exprX.op = TK_REGISTER;
       
  3138       testcase( jumpIfNull==0 );
       
  3139       sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
       
  3140       break;
       
  3141     }
       
  3142     default: {
       
  3143       r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
       
  3144       sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
       
  3145       testcase( regFree1==0 );
       
  3146       testcase( jumpIfNull==0 );
       
  3147       break;
       
  3148     }
       
  3149   }
       
  3150   sqlite3ReleaseTempReg(pParse, regFree1);
       
  3151   sqlite3ReleaseTempReg(pParse, regFree2);  
       
  3152 }
       
  3153 
       
  3154 /*
       
  3155 ** Generate code for a boolean expression such that a jump is made
       
  3156 ** to the label "dest" if the expression is false but execution
       
  3157 ** continues straight thru if the expression is true.
       
  3158 **
       
  3159 ** If the expression evaluates to NULL (neither true nor false) then
       
  3160 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
       
  3161 ** is 0.
       
  3162 */
       
  3163 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
       
  3164   Vdbe *v = pParse->pVdbe;
       
  3165   int op = 0;
       
  3166   int regFree1 = 0;
       
  3167   int regFree2 = 0;
       
  3168   int r1, r2;
       
  3169 
       
  3170   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
       
  3171   if( v==0 || pExpr==0 ) return;
       
  3172 
       
  3173   /* The value of pExpr->op and op are related as follows:
       
  3174   **
       
  3175   **       pExpr->op            op
       
  3176   **       ---------          ----------
       
  3177   **       TK_ISNULL          OP_NotNull
       
  3178   **       TK_NOTNULL         OP_IsNull
       
  3179   **       TK_NE              OP_Eq
       
  3180   **       TK_EQ              OP_Ne
       
  3181   **       TK_GT              OP_Le
       
  3182   **       TK_LE              OP_Gt
       
  3183   **       TK_GE              OP_Lt
       
  3184   **       TK_LT              OP_Ge
       
  3185   **
       
  3186   ** For other values of pExpr->op, op is undefined and unused.
       
  3187   ** The value of TK_ and OP_ constants are arranged such that we
       
  3188   ** can compute the mapping above using the following expression.
       
  3189   ** Assert()s verify that the computation is correct.
       
  3190   */
       
  3191   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
       
  3192 
       
  3193   /* Verify correct alignment of TK_ and OP_ constants
       
  3194   */
       
  3195   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
       
  3196   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
       
  3197   assert( pExpr->op!=TK_NE || op==OP_Eq );
       
  3198   assert( pExpr->op!=TK_EQ || op==OP_Ne );
       
  3199   assert( pExpr->op!=TK_LT || op==OP_Ge );
       
  3200   assert( pExpr->op!=TK_LE || op==OP_Gt );
       
  3201   assert( pExpr->op!=TK_GT || op==OP_Le );
       
  3202   assert( pExpr->op!=TK_GE || op==OP_Lt );
       
  3203 
       
  3204   switch( pExpr->op ){
       
  3205     case TK_AND: {
       
  3206       testcase( jumpIfNull==0 );
       
  3207       testcase( pParse->disableColCache==0 );
       
  3208       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
       
  3209       pParse->disableColCache++;
       
  3210       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
       
  3211       assert( pParse->disableColCache>0 );
       
  3212       pParse->disableColCache--;
       
  3213       break;
       
  3214     }
       
  3215     case TK_OR: {
       
  3216       int d2 = sqlite3VdbeMakeLabel(v);
       
  3217       testcase( jumpIfNull==0 );
       
  3218       testcase( pParse->disableColCache==0 );
       
  3219       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
       
  3220       pParse->disableColCache++;
       
  3221       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
       
  3222       assert( pParse->disableColCache>0 );
       
  3223       pParse->disableColCache--;
       
  3224       sqlite3VdbeResolveLabel(v, d2);
       
  3225       break;
       
  3226     }
       
  3227     case TK_NOT: {
       
  3228       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
       
  3229       break;
       
  3230     }
       
  3231     case TK_LT:
       
  3232     case TK_LE:
       
  3233     case TK_GT:
       
  3234     case TK_GE:
       
  3235     case TK_NE:
       
  3236     case TK_EQ: {
       
  3237       testcase( op==TK_LT );
       
  3238       testcase( op==TK_LE );
       
  3239       testcase( op==TK_GT );
       
  3240       testcase( op==TK_GE );
       
  3241       testcase( op==TK_EQ );
       
  3242       testcase( op==TK_NE );
       
  3243       testcase( jumpIfNull==0 );
       
  3244       codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
       
  3245                                   pExpr->pRight, &r2, &regFree2);
       
  3246       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
       
  3247                   r1, r2, dest, jumpIfNull);
       
  3248       testcase( regFree1==0 );
       
  3249       testcase( regFree2==0 );
       
  3250       break;
       
  3251     }
       
  3252     case TK_ISNULL:
       
  3253     case TK_NOTNULL: {
       
  3254       testcase( op==TK_ISNULL );
       
  3255       testcase( op==TK_NOTNULL );
       
  3256       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
       
  3257       sqlite3VdbeAddOp2(v, op, r1, dest);
       
  3258       testcase( regFree1==0 );
       
  3259       break;
       
  3260     }
       
  3261     case TK_BETWEEN: {
       
  3262       /*    x BETWEEN y AND z
       
  3263       **
       
  3264       ** Is equivalent to 
       
  3265       **
       
  3266       **    x>=y AND x<=z
       
  3267       **
       
  3268       ** Code it as such, taking care to do the common subexpression
       
  3269       ** elementation of x.
       
  3270       */
       
  3271       Expr exprAnd;
       
  3272       Expr compLeft;
       
  3273       Expr compRight;
       
  3274       Expr exprX;
       
  3275 
       
  3276       exprX = *pExpr->pLeft;
       
  3277       exprAnd.op = TK_AND;
       
  3278       exprAnd.pLeft = &compLeft;
       
  3279       exprAnd.pRight = &compRight;
       
  3280       compLeft.op = TK_GE;
       
  3281       compLeft.pLeft = &exprX;
       
  3282       compLeft.pRight = pExpr->pList->a[0].pExpr;
       
  3283       compRight.op = TK_LE;
       
  3284       compRight.pLeft = &exprX;
       
  3285       compRight.pRight = pExpr->pList->a[1].pExpr;
       
  3286       exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
       
  3287       testcase( regFree1==0 );
       
  3288       exprX.op = TK_REGISTER;
       
  3289       testcase( jumpIfNull==0 );
       
  3290       sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
       
  3291       break;
       
  3292     }
       
  3293     default: {
       
  3294       r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
       
  3295       sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
       
  3296       testcase( regFree1==0 );
       
  3297       testcase( jumpIfNull==0 );
       
  3298       break;
       
  3299     }
       
  3300   }
       
  3301   sqlite3ReleaseTempReg(pParse, regFree1);
       
  3302   sqlite3ReleaseTempReg(pParse, regFree2);
       
  3303 }
       
  3304 
       
  3305 /*
       
  3306 ** Do a deep comparison of two expression trees.  Return TRUE (non-zero)
       
  3307 ** if they are identical and return FALSE if they differ in any way.
       
  3308 **
       
  3309 ** Sometimes this routine will return FALSE even if the two expressions
       
  3310 ** really are equivalent.  If we cannot prove that the expressions are
       
  3311 ** identical, we return FALSE just to be safe.  So if this routine
       
  3312 ** returns false, then you do not really know for certain if the two
       
  3313 ** expressions are the same.  But if you get a TRUE return, then you
       
  3314 ** can be sure the expressions are the same.  In the places where
       
  3315 ** this routine is used, it does not hurt to get an extra FALSE - that
       
  3316 ** just might result in some slightly slower code.  But returning
       
  3317 ** an incorrect TRUE could lead to a malfunction.
       
  3318 */
       
  3319 int sqlite3ExprCompare(Expr *pA, Expr *pB){
       
  3320   int i;
       
  3321   if( pA==0||pB==0 ){
       
  3322     return pB==pA;
       
  3323   }
       
  3324   if( pA->op!=pB->op ) return 0;
       
  3325   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0;
       
  3326   if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0;
       
  3327   if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0;
       
  3328   if( pA->pList ){
       
  3329     if( pB->pList==0 ) return 0;
       
  3330     if( pA->pList->nExpr!=pB->pList->nExpr ) return 0;
       
  3331     for(i=0; i<pA->pList->nExpr; i++){
       
  3332       if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){
       
  3333         return 0;
       
  3334       }
       
  3335     }
       
  3336   }else if( pB->pList ){
       
  3337     return 0;
       
  3338   }
       
  3339   if( pA->pSelect || pB->pSelect ) return 0;
       
  3340   if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
       
  3341   if( pA->op!=TK_COLUMN && pA->token.z ){
       
  3342     if( pB->token.z==0 ) return 0;
       
  3343     if( pB->token.n!=pA->token.n ) return 0;
       
  3344     if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){
       
  3345       return 0;
       
  3346     }
       
  3347   }
       
  3348   return 1;
       
  3349 }
       
  3350 
       
  3351 
       
  3352 /*
       
  3353 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
       
  3354 ** the new element.  Return a negative number if malloc fails.
       
  3355 */
       
  3356 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
       
  3357   int i;
       
  3358   pInfo->aCol = sqlite3ArrayAllocate(
       
  3359        db,
       
  3360        pInfo->aCol,
       
  3361        sizeof(pInfo->aCol[0]),
       
  3362        3,
       
  3363        &pInfo->nColumn,
       
  3364        &pInfo->nColumnAlloc,
       
  3365        &i
       
  3366   );
       
  3367   return i;
       
  3368 }    
       
  3369 
       
  3370 /*
       
  3371 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
       
  3372 ** the new element.  Return a negative number if malloc fails.
       
  3373 */
       
  3374 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
       
  3375   int i;
       
  3376   pInfo->aFunc = sqlite3ArrayAllocate(
       
  3377        db, 
       
  3378        pInfo->aFunc,
       
  3379        sizeof(pInfo->aFunc[0]),
       
  3380        3,
       
  3381        &pInfo->nFunc,
       
  3382        &pInfo->nFuncAlloc,
       
  3383        &i
       
  3384   );
       
  3385   return i;
       
  3386 }    
       
  3387 
       
  3388 /*
       
  3389 ** This is an xFunc for walkExprTree() used to implement 
       
  3390 ** sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
       
  3391 ** for additional information.
       
  3392 **
       
  3393 ** This routine analyzes the aggregate function at pExpr.
       
  3394 */
       
  3395 static int analyzeAggregate(void *pArg, Expr *pExpr){
       
  3396   int i;
       
  3397   NameContext *pNC = (NameContext *)pArg;
       
  3398   Parse *pParse = pNC->pParse;
       
  3399   SrcList *pSrcList = pNC->pSrcList;
       
  3400   AggInfo *pAggInfo = pNC->pAggInfo;
       
  3401 
       
  3402   switch( pExpr->op ){
       
  3403     case TK_AGG_COLUMN:
       
  3404     case TK_COLUMN: {
       
  3405       /* Check to see if the column is in one of the tables in the FROM
       
  3406       ** clause of the aggregate query */
       
  3407       if( pSrcList ){
       
  3408         struct SrcList_item *pItem = pSrcList->a;
       
  3409         for(i=0; i<pSrcList->nSrc; i++, pItem++){
       
  3410           struct AggInfo_col *pCol;
       
  3411           if( pExpr->iTable==pItem->iCursor ){
       
  3412             /* If we reach this point, it means that pExpr refers to a table
       
  3413             ** that is in the FROM clause of the aggregate query.  
       
  3414             **
       
  3415             ** Make an entry for the column in pAggInfo->aCol[] if there
       
  3416             ** is not an entry there already.
       
  3417             */
       
  3418             int k;
       
  3419             pCol = pAggInfo->aCol;
       
  3420             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
       
  3421               if( pCol->iTable==pExpr->iTable &&
       
  3422                   pCol->iColumn==pExpr->iColumn ){
       
  3423                 break;
       
  3424               }
       
  3425             }
       
  3426             if( (k>=pAggInfo->nColumn)
       
  3427              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 
       
  3428             ){
       
  3429               pCol = &pAggInfo->aCol[k];
       
  3430               pCol->pTab = pExpr->pTab;
       
  3431               pCol->iTable = pExpr->iTable;
       
  3432               pCol->iColumn = pExpr->iColumn;
       
  3433               pCol->iMem = ++pParse->nMem;
       
  3434               pCol->iSorterColumn = -1;
       
  3435               pCol->pExpr = pExpr;
       
  3436               if( pAggInfo->pGroupBy ){
       
  3437                 int j, n;
       
  3438                 ExprList *pGB = pAggInfo->pGroupBy;
       
  3439                 struct ExprList_item *pTerm = pGB->a;
       
  3440                 n = pGB->nExpr;
       
  3441                 for(j=0; j<n; j++, pTerm++){
       
  3442                   Expr *pE = pTerm->pExpr;
       
  3443                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
       
  3444                       pE->iColumn==pExpr->iColumn ){
       
  3445                     pCol->iSorterColumn = j;
       
  3446                     break;
       
  3447                   }
       
  3448                 }
       
  3449               }
       
  3450               if( pCol->iSorterColumn<0 ){
       
  3451                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
       
  3452               }
       
  3453             }
       
  3454             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
       
  3455             ** because it was there before or because we just created it).
       
  3456             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
       
  3457             ** pAggInfo->aCol[] entry.
       
  3458             */
       
  3459             pExpr->pAggInfo = pAggInfo;
       
  3460             pExpr->op = TK_AGG_COLUMN;
       
  3461             pExpr->iAgg = k;
       
  3462             break;
       
  3463           } /* endif pExpr->iTable==pItem->iCursor */
       
  3464         } /* end loop over pSrcList */
       
  3465       }
       
  3466       return 1;
       
  3467     }
       
  3468     case TK_AGG_FUNCTION: {
       
  3469       /* The pNC->nDepth==0 test causes aggregate functions in subqueries
       
  3470       ** to be ignored */
       
  3471       if( pNC->nDepth==0 ){
       
  3472         /* Check to see if pExpr is a duplicate of another aggregate 
       
  3473         ** function that is already in the pAggInfo structure
       
  3474         */
       
  3475         struct AggInfo_func *pItem = pAggInfo->aFunc;
       
  3476         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
       
  3477           if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){
       
  3478             break;
       
  3479           }
       
  3480         }
       
  3481         if( i>=pAggInfo->nFunc ){
       
  3482           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
       
  3483           */
       
  3484           u8 enc = ENC(pParse->db);
       
  3485           i = addAggInfoFunc(pParse->db, pAggInfo);
       
  3486           if( i>=0 ){
       
  3487             pItem = &pAggInfo->aFunc[i];
       
  3488             pItem->pExpr = pExpr;
       
  3489             pItem->iMem = ++pParse->nMem;
       
  3490             pItem->pFunc = sqlite3FindFunction(pParse->db,
       
  3491                    (char*)pExpr->token.z, pExpr->token.n,
       
  3492                    pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0);
       
  3493             if( pExpr->flags & EP_Distinct ){
       
  3494               pItem->iDistinct = pParse->nTab++;
       
  3495             }else{
       
  3496               pItem->iDistinct = -1;
       
  3497             }
       
  3498           }
       
  3499         }
       
  3500         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
       
  3501         */
       
  3502         pExpr->iAgg = i;
       
  3503         pExpr->pAggInfo = pAggInfo;
       
  3504         return 1;
       
  3505       }
       
  3506     }
       
  3507   }
       
  3508 
       
  3509   /* Recursively walk subqueries looking for TK_COLUMN nodes that need
       
  3510   ** to be changed to TK_AGG_COLUMN.  But increment nDepth so that
       
  3511   ** TK_AGG_FUNCTION nodes in subqueries will be unchanged.
       
  3512   */
       
  3513   if( pExpr->pSelect ){
       
  3514     pNC->nDepth++;
       
  3515     walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC);
       
  3516     pNC->nDepth--;
       
  3517   }
       
  3518   return 0;
       
  3519 }
       
  3520 
       
  3521 /*
       
  3522 ** Analyze the given expression looking for aggregate functions and
       
  3523 ** for variables that need to be added to the pParse->aAgg[] array.
       
  3524 ** Make additional entries to the pParse->aAgg[] array as necessary.
       
  3525 **
       
  3526 ** This routine should only be called after the expression has been
       
  3527 ** analyzed by sqlite3ExprResolveNames().
       
  3528 */
       
  3529 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
       
  3530   walkExprTree(pExpr, analyzeAggregate, pNC);
       
  3531 }
       
  3532 
       
  3533 /*
       
  3534 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
       
  3535 ** expression list.  Return the number of errors.
       
  3536 **
       
  3537 ** If an error is found, the analysis is cut short.
       
  3538 */
       
  3539 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
       
  3540   struct ExprList_item *pItem;
       
  3541   int i;
       
  3542   if( pList ){
       
  3543     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
       
  3544       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
       
  3545     }
       
  3546   }
       
  3547 }
       
  3548 
       
  3549 /*
       
  3550 ** Allocate or deallocate temporary use registers during code generation.
       
  3551 */
       
  3552 int sqlite3GetTempReg(Parse *pParse){
       
  3553   if( pParse->nTempReg==0 ){
       
  3554     return ++pParse->nMem;
       
  3555   }
       
  3556   return pParse->aTempReg[--pParse->nTempReg];
       
  3557 }
       
  3558 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
       
  3559   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
       
  3560     sqlite3ExprWritableRegister(pParse, iReg, iReg);
       
  3561     pParse->aTempReg[pParse->nTempReg++] = iReg;
       
  3562   }
       
  3563 }
       
  3564 
       
  3565 /*
       
  3566 ** Allocate or deallocate a block of nReg consecutive registers
       
  3567 */
       
  3568 int sqlite3GetTempRange(Parse *pParse, int nReg){
       
  3569   int i, n;
       
  3570   i = pParse->iRangeReg;
       
  3571   n = pParse->nRangeReg;
       
  3572   if( nReg<=n && !usedAsColumnCache(pParse, i, i+n-1) ){
       
  3573     pParse->iRangeReg += nReg;
       
  3574     pParse->nRangeReg -= nReg;
       
  3575   }else{
       
  3576     i = pParse->nMem+1;
       
  3577     pParse->nMem += nReg;
       
  3578   }
       
  3579   return i;
       
  3580 }
       
  3581 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
       
  3582   if( nReg>pParse->nRangeReg ){
       
  3583     pParse->nRangeReg = nReg;
       
  3584     pParse->iRangeReg = iReg;
       
  3585   }
       
  3586 }