persistentstorage/sql/SQLite/mem3.c
changeset 0 08ec8eefde2f
equal deleted inserted replaced
-1:000000000000 0:08ec8eefde2f
       
     1 /*
       
     2 ** 2007 October 14
       
     3 **
       
     4 ** The author disclaims copyright to this source code.  In place of
       
     5 ** a legal notice, here is a blessing:
       
     6 **
       
     7 **    May you do good and not evil.
       
     8 **    May you find forgiveness for yourself and forgive others.
       
     9 **    May you share freely, never taking more than you give.
       
    10 **
       
    11 *************************************************************************
       
    12 ** This file contains the C functions that implement a memory
       
    13 ** allocation subsystem for use by SQLite. 
       
    14 **
       
    15 ** This version of the memory allocation subsystem omits all
       
    16 ** use of malloc(). The SQLite user supplies a block of memory
       
    17 ** before calling sqlite3_initialize() from which allocations
       
    18 ** are made and returned by the xMalloc() and xRealloc() 
       
    19 ** implementations. Once sqlite3_initialize() has been called,
       
    20 ** the amount of memory available to SQLite is fixed and cannot
       
    21 ** be changed.
       
    22 **
       
    23 ** This version of the memory allocation subsystem is included
       
    24 ** in the build only if SQLITE_ENABLE_MEMSYS3 is defined.
       
    25 **
       
    26 ** $Id: mem3.c,v 1.20 2008/07/18 18:56:17 drh Exp $
       
    27 */
       
    28 #include "sqliteInt.h"
       
    29 
       
    30 /*
       
    31 ** This version of the memory allocator is only built into the library
       
    32 ** SQLITE_ENABLE_MEMSYS3 is defined. Defining this symbol does not
       
    33 ** mean that the library will use a memory-pool by default, just that
       
    34 ** it is available. The mempool allocator is activated by calling
       
    35 ** sqlite3_config().
       
    36 */
       
    37 #ifdef SQLITE_ENABLE_MEMSYS3
       
    38 
       
    39 /*
       
    40 ** Maximum size (in Mem3Blocks) of a "small" chunk.
       
    41 */
       
    42 #define MX_SMALL 10
       
    43 
       
    44 
       
    45 /*
       
    46 ** Number of freelist hash slots
       
    47 */
       
    48 #define N_HASH  61
       
    49 
       
    50 /*
       
    51 ** A memory allocation (also called a "chunk") consists of two or 
       
    52 ** more blocks where each block is 8 bytes.  The first 8 bytes are 
       
    53 ** a header that is not returned to the user.
       
    54 **
       
    55 ** A chunk is two or more blocks that is either checked out or
       
    56 ** free.  The first block has format u.hdr.  u.hdr.size4x is 4 times the
       
    57 ** size of the allocation in blocks if the allocation is free.
       
    58 ** The u.hdr.size4x&1 bit is true if the chunk is checked out and
       
    59 ** false if the chunk is on the freelist.  The u.hdr.size4x&2 bit
       
    60 ** is true if the previous chunk is checked out and false if the
       
    61 ** previous chunk is free.  The u.hdr.prevSize field is the size of
       
    62 ** the previous chunk in blocks if the previous chunk is on the
       
    63 ** freelist. If the previous chunk is checked out, then
       
    64 ** u.hdr.prevSize can be part of the data for that chunk and should
       
    65 ** not be read or written.
       
    66 **
       
    67 ** We often identify a chunk by its index in mem3.aPool[].  When
       
    68 ** this is done, the chunk index refers to the second block of
       
    69 ** the chunk.  In this way, the first chunk has an index of 1.
       
    70 ** A chunk index of 0 means "no such chunk" and is the equivalent
       
    71 ** of a NULL pointer.
       
    72 **
       
    73 ** The second block of free chunks is of the form u.list.  The
       
    74 ** two fields form a double-linked list of chunks of related sizes.
       
    75 ** Pointers to the head of the list are stored in mem3.aiSmall[] 
       
    76 ** for smaller chunks and mem3.aiHash[] for larger chunks.
       
    77 **
       
    78 ** The second block of a chunk is user data if the chunk is checked 
       
    79 ** out.  If a chunk is checked out, the user data may extend into
       
    80 ** the u.hdr.prevSize value of the following chunk.
       
    81 */
       
    82 typedef struct Mem3Block Mem3Block;
       
    83 struct Mem3Block {
       
    84   union {
       
    85     struct {
       
    86       u32 prevSize;   /* Size of previous chunk in Mem3Block elements */
       
    87       u32 size4x;     /* 4x the size of current chunk in Mem3Block elements */
       
    88     } hdr;
       
    89     struct {
       
    90       u32 next;       /* Index in mem3.aPool[] of next free chunk */
       
    91       u32 prev;       /* Index in mem3.aPool[] of previous free chunk */
       
    92     } list;
       
    93   } u;
       
    94 };
       
    95 
       
    96 /*
       
    97 ** All of the static variables used by this module are collected
       
    98 ** into a single structure named "mem3".  This is to keep the
       
    99 ** static variables organized and to reduce namespace pollution
       
   100 ** when this module is combined with other in the amalgamation.
       
   101 */
       
   102 static struct {
       
   103   /*
       
   104   ** True if we are evaluating an out-of-memory callback.
       
   105   */
       
   106   int alarmBusy;
       
   107   
       
   108   /*
       
   109   ** Mutex to control access to the memory allocation subsystem.
       
   110   */
       
   111   sqlite3_mutex *mutex;
       
   112   
       
   113   /*
       
   114   ** The minimum amount of free space that we have seen.
       
   115   */
       
   116   u32 mnMaster;
       
   117 
       
   118   /*
       
   119   ** iMaster is the index of the master chunk.  Most new allocations
       
   120   ** occur off of this chunk.  szMaster is the size (in Mem3Blocks)
       
   121   ** of the current master.  iMaster is 0 if there is not master chunk.
       
   122   ** The master chunk is not in either the aiHash[] or aiSmall[].
       
   123   */
       
   124   u32 iMaster;
       
   125   u32 szMaster;
       
   126 
       
   127   /*
       
   128   ** Array of lists of free blocks according to the block size 
       
   129   ** for smaller chunks, or a hash on the block size for larger
       
   130   ** chunks.
       
   131   */
       
   132   u32 aiSmall[MX_SMALL-1];   /* For sizes 2 through MX_SMALL, inclusive */
       
   133   u32 aiHash[N_HASH];        /* For sizes MX_SMALL+1 and larger */
       
   134 
       
   135   /*
       
   136   ** Memory available for allocation. nPool is the size of the array
       
   137   ** (in Mem3Blocks) pointed to by aPool less 2.
       
   138   */
       
   139   u32 nPool;
       
   140   Mem3Block *aPool;
       
   141 } mem3;
       
   142 
       
   143 /*
       
   144 ** Unlink the chunk at mem3.aPool[i] from list it is currently
       
   145 ** on.  *pRoot is the list that i is a member of.
       
   146 */
       
   147 static void memsys3UnlinkFromList(u32 i, u32 *pRoot){
       
   148   u32 next = mem3.aPool[i].u.list.next;
       
   149   u32 prev = mem3.aPool[i].u.list.prev;
       
   150   assert( sqlite3_mutex_held(mem3.mutex) );
       
   151   if( prev==0 ){
       
   152     *pRoot = next;
       
   153   }else{
       
   154     mem3.aPool[prev].u.list.next = next;
       
   155   }
       
   156   if( next ){
       
   157     mem3.aPool[next].u.list.prev = prev;
       
   158   }
       
   159   mem3.aPool[i].u.list.next = 0;
       
   160   mem3.aPool[i].u.list.prev = 0;
       
   161 }
       
   162 
       
   163 /*
       
   164 ** Unlink the chunk at index i from 
       
   165 ** whatever list is currently a member of.
       
   166 */
       
   167 static void memsys3Unlink(u32 i){
       
   168   u32 size, hash;
       
   169   assert( sqlite3_mutex_held(mem3.mutex) );
       
   170   assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 );
       
   171   assert( i>=1 );
       
   172   size = mem3.aPool[i-1].u.hdr.size4x/4;
       
   173   assert( size==mem3.aPool[i+size-1].u.hdr.prevSize );
       
   174   assert( size>=2 );
       
   175   if( size <= MX_SMALL ){
       
   176     memsys3UnlinkFromList(i, &mem3.aiSmall[size-2]);
       
   177   }else{
       
   178     hash = size % N_HASH;
       
   179     memsys3UnlinkFromList(i, &mem3.aiHash[hash]);
       
   180   }
       
   181 }
       
   182 
       
   183 /*
       
   184 ** Link the chunk at mem3.aPool[i] so that is on the list rooted
       
   185 ** at *pRoot.
       
   186 */
       
   187 static void memsys3LinkIntoList(u32 i, u32 *pRoot){
       
   188   assert( sqlite3_mutex_held(mem3.mutex) );
       
   189   mem3.aPool[i].u.list.next = *pRoot;
       
   190   mem3.aPool[i].u.list.prev = 0;
       
   191   if( *pRoot ){
       
   192     mem3.aPool[*pRoot].u.list.prev = i;
       
   193   }
       
   194   *pRoot = i;
       
   195 }
       
   196 
       
   197 /*
       
   198 ** Link the chunk at index i into either the appropriate
       
   199 ** small chunk list, or into the large chunk hash table.
       
   200 */
       
   201 static void memsys3Link(u32 i){
       
   202   u32 size, hash;
       
   203   assert( sqlite3_mutex_held(mem3.mutex) );
       
   204   assert( i>=1 );
       
   205   assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 );
       
   206   size = mem3.aPool[i-1].u.hdr.size4x/4;
       
   207   assert( size==mem3.aPool[i+size-1].u.hdr.prevSize );
       
   208   assert( size>=2 );
       
   209   if( size <= MX_SMALL ){
       
   210     memsys3LinkIntoList(i, &mem3.aiSmall[size-2]);
       
   211   }else{
       
   212     hash = size % N_HASH;
       
   213     memsys3LinkIntoList(i, &mem3.aiHash[hash]);
       
   214   }
       
   215 }
       
   216 
       
   217 /*
       
   218 ** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
       
   219 ** will already be held (obtained by code in malloc.c) if
       
   220 ** sqlite3Config.bMemStat is true.
       
   221 */
       
   222 static void memsys3Enter(void){
       
   223   if( sqlite3Config.bMemstat==0 && mem3.mutex==0 ){
       
   224     mem3.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
       
   225   }
       
   226   sqlite3_mutex_enter(mem3.mutex);
       
   227 }
       
   228 static void memsys3Leave(void){
       
   229   sqlite3_mutex_leave(mem3.mutex);
       
   230 }
       
   231 
       
   232 /*
       
   233 ** Called when we are unable to satisfy an allocation of nBytes.
       
   234 */
       
   235 static void memsys3OutOfMemory(int nByte){
       
   236   if( !mem3.alarmBusy ){
       
   237     mem3.alarmBusy = 1;
       
   238     assert( sqlite3_mutex_held(mem3.mutex) );
       
   239     sqlite3_mutex_leave(mem3.mutex);
       
   240     sqlite3_release_memory(nByte);
       
   241     sqlite3_mutex_enter(mem3.mutex);
       
   242     mem3.alarmBusy = 0;
       
   243   }
       
   244 }
       
   245 
       
   246 
       
   247 /*
       
   248 ** Chunk i is a free chunk that has been unlinked.  Adjust its 
       
   249 ** size parameters for check-out and return a pointer to the 
       
   250 ** user portion of the chunk.
       
   251 */
       
   252 static void *memsys3Checkout(u32 i, int nBlock){
       
   253   u32 x;
       
   254   assert( sqlite3_mutex_held(mem3.mutex) );
       
   255   assert( i>=1 );
       
   256   assert( mem3.aPool[i-1].u.hdr.size4x/4==nBlock );
       
   257   assert( mem3.aPool[i+nBlock-1].u.hdr.prevSize==nBlock );
       
   258   x = mem3.aPool[i-1].u.hdr.size4x;
       
   259   mem3.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2);
       
   260   mem3.aPool[i+nBlock-1].u.hdr.prevSize = nBlock;
       
   261   mem3.aPool[i+nBlock-1].u.hdr.size4x |= 2;
       
   262   return &mem3.aPool[i];
       
   263 }
       
   264 
       
   265 /*
       
   266 ** Carve a piece off of the end of the mem3.iMaster free chunk.
       
   267 ** Return a pointer to the new allocation.  Or, if the master chunk
       
   268 ** is not large enough, return 0.
       
   269 */
       
   270 static void *memsys3FromMaster(int nBlock){
       
   271   assert( sqlite3_mutex_held(mem3.mutex) );
       
   272   assert( mem3.szMaster>=nBlock );
       
   273   if( nBlock>=mem3.szMaster-1 ){
       
   274     /* Use the entire master */
       
   275     void *p = memsys3Checkout(mem3.iMaster, mem3.szMaster);
       
   276     mem3.iMaster = 0;
       
   277     mem3.szMaster = 0;
       
   278     mem3.mnMaster = 0;
       
   279     return p;
       
   280   }else{
       
   281     /* Split the master block.  Return the tail. */
       
   282     u32 newi, x;
       
   283     newi = mem3.iMaster + mem3.szMaster - nBlock;
       
   284     assert( newi > mem3.iMaster+1 );
       
   285     mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = nBlock;
       
   286     mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x |= 2;
       
   287     mem3.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1;
       
   288     mem3.szMaster -= nBlock;
       
   289     mem3.aPool[newi-1].u.hdr.prevSize = mem3.szMaster;
       
   290     x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
       
   291     mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
       
   292     if( mem3.szMaster < mem3.mnMaster ){
       
   293       mem3.mnMaster = mem3.szMaster;
       
   294     }
       
   295     return (void*)&mem3.aPool[newi];
       
   296   }
       
   297 }
       
   298 
       
   299 /*
       
   300 ** *pRoot is the head of a list of free chunks of the same size
       
   301 ** or same size hash.  In other words, *pRoot is an entry in either
       
   302 ** mem3.aiSmall[] or mem3.aiHash[].  
       
   303 **
       
   304 ** This routine examines all entries on the given list and tries
       
   305 ** to coalesce each entries with adjacent free chunks.  
       
   306 **
       
   307 ** If it sees a chunk that is larger than mem3.iMaster, it replaces 
       
   308 ** the current mem3.iMaster with the new larger chunk.  In order for
       
   309 ** this mem3.iMaster replacement to work, the master chunk must be
       
   310 ** linked into the hash tables.  That is not the normal state of
       
   311 ** affairs, of course.  The calling routine must link the master
       
   312 ** chunk before invoking this routine, then must unlink the (possibly
       
   313 ** changed) master chunk once this routine has finished.
       
   314 */
       
   315 static void memsys3Merge(u32 *pRoot){
       
   316   u32 iNext, prev, size, i, x;
       
   317 
       
   318   assert( sqlite3_mutex_held(mem3.mutex) );
       
   319   for(i=*pRoot; i>0; i=iNext){
       
   320     iNext = mem3.aPool[i].u.list.next;
       
   321     size = mem3.aPool[i-1].u.hdr.size4x;
       
   322     assert( (size&1)==0 );
       
   323     if( (size&2)==0 ){
       
   324       memsys3UnlinkFromList(i, pRoot);
       
   325       assert( i > mem3.aPool[i-1].u.hdr.prevSize );
       
   326       prev = i - mem3.aPool[i-1].u.hdr.prevSize;
       
   327       if( prev==iNext ){
       
   328         iNext = mem3.aPool[prev].u.list.next;
       
   329       }
       
   330       memsys3Unlink(prev);
       
   331       size = i + size/4 - prev;
       
   332       x = mem3.aPool[prev-1].u.hdr.size4x & 2;
       
   333       mem3.aPool[prev-1].u.hdr.size4x = size*4 | x;
       
   334       mem3.aPool[prev+size-1].u.hdr.prevSize = size;
       
   335       memsys3Link(prev);
       
   336       i = prev;
       
   337     }else{
       
   338       size /= 4;
       
   339     }
       
   340     if( size>mem3.szMaster ){
       
   341       mem3.iMaster = i;
       
   342       mem3.szMaster = size;
       
   343     }
       
   344   }
       
   345 }
       
   346 
       
   347 /*
       
   348 ** Return a block of memory of at least nBytes in size.
       
   349 ** Return NULL if unable.
       
   350 **
       
   351 ** This function assumes that the necessary mutexes, if any, are
       
   352 ** already held by the caller. Hence "Unsafe".
       
   353 */
       
   354 static void *memsys3MallocUnsafe(int nByte){
       
   355   u32 i;
       
   356   int nBlock;
       
   357   int toFree;
       
   358 
       
   359   assert( sqlite3_mutex_held(mem3.mutex) );
       
   360   assert( sizeof(Mem3Block)==8 );
       
   361   if( nByte<=12 ){
       
   362     nBlock = 2;
       
   363   }else{
       
   364     nBlock = (nByte + 11)/8;
       
   365   }
       
   366   assert( nBlock>=2 );
       
   367 
       
   368   /* STEP 1:
       
   369   ** Look for an entry of the correct size in either the small
       
   370   ** chunk table or in the large chunk hash table.  This is
       
   371   ** successful most of the time (about 9 times out of 10).
       
   372   */
       
   373   if( nBlock <= MX_SMALL ){
       
   374     i = mem3.aiSmall[nBlock-2];
       
   375     if( i>0 ){
       
   376       memsys3UnlinkFromList(i, &mem3.aiSmall[nBlock-2]);
       
   377       return memsys3Checkout(i, nBlock);
       
   378     }
       
   379   }else{
       
   380     int hash = nBlock % N_HASH;
       
   381     for(i=mem3.aiHash[hash]; i>0; i=mem3.aPool[i].u.list.next){
       
   382       if( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ){
       
   383         memsys3UnlinkFromList(i, &mem3.aiHash[hash]);
       
   384         return memsys3Checkout(i, nBlock);
       
   385       }
       
   386     }
       
   387   }
       
   388 
       
   389   /* STEP 2:
       
   390   ** Try to satisfy the allocation by carving a piece off of the end
       
   391   ** of the master chunk.  This step usually works if step 1 fails.
       
   392   */
       
   393   if( mem3.szMaster>=nBlock ){
       
   394     return memsys3FromMaster(nBlock);
       
   395   }
       
   396 
       
   397 
       
   398   /* STEP 3:  
       
   399   ** Loop through the entire memory pool.  Coalesce adjacent free
       
   400   ** chunks.  Recompute the master chunk as the largest free chunk.
       
   401   ** Then try again to satisfy the allocation by carving a piece off
       
   402   ** of the end of the master chunk.  This step happens very
       
   403   ** rarely (we hope!)
       
   404   */
       
   405   for(toFree=nBlock*16; toFree<(mem3.nPool*16); toFree *= 2){
       
   406     memsys3OutOfMemory(toFree);
       
   407     if( mem3.iMaster ){
       
   408       memsys3Link(mem3.iMaster);
       
   409       mem3.iMaster = 0;
       
   410       mem3.szMaster = 0;
       
   411     }
       
   412     for(i=0; i<N_HASH; i++){
       
   413       memsys3Merge(&mem3.aiHash[i]);
       
   414     }
       
   415     for(i=0; i<MX_SMALL-1; i++){
       
   416       memsys3Merge(&mem3.aiSmall[i]);
       
   417     }
       
   418     if( mem3.szMaster ){
       
   419       memsys3Unlink(mem3.iMaster);
       
   420       if( mem3.szMaster>=nBlock ){
       
   421         return memsys3FromMaster(nBlock);
       
   422       }
       
   423     }
       
   424   }
       
   425 
       
   426   /* If none of the above worked, then we fail. */
       
   427   return 0;
       
   428 }
       
   429 
       
   430 /*
       
   431 ** Free an outstanding memory allocation.
       
   432 **
       
   433 ** This function assumes that the necessary mutexes, if any, are
       
   434 ** already held by the caller. Hence "Unsafe".
       
   435 */
       
   436 void memsys3FreeUnsafe(void *pOld){
       
   437   Mem3Block *p = (Mem3Block*)pOld;
       
   438   int i;
       
   439   u32 size, x;
       
   440   assert( sqlite3_mutex_held(mem3.mutex) );
       
   441   assert( p>mem3.aPool && p<&mem3.aPool[mem3.nPool] );
       
   442   i = p - mem3.aPool;
       
   443   assert( (mem3.aPool[i-1].u.hdr.size4x&1)==1 );
       
   444   size = mem3.aPool[i-1].u.hdr.size4x/4;
       
   445   assert( i+size<=mem3.nPool+1 );
       
   446   mem3.aPool[i-1].u.hdr.size4x &= ~1;
       
   447   mem3.aPool[i+size-1].u.hdr.prevSize = size;
       
   448   mem3.aPool[i+size-1].u.hdr.size4x &= ~2;
       
   449   memsys3Link(i);
       
   450 
       
   451   /* Try to expand the master using the newly freed chunk */
       
   452   if( mem3.iMaster ){
       
   453     while( (mem3.aPool[mem3.iMaster-1].u.hdr.size4x&2)==0 ){
       
   454       size = mem3.aPool[mem3.iMaster-1].u.hdr.prevSize;
       
   455       mem3.iMaster -= size;
       
   456       mem3.szMaster += size;
       
   457       memsys3Unlink(mem3.iMaster);
       
   458       x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
       
   459       mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
       
   460       mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster;
       
   461     }
       
   462     x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
       
   463     while( (mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x&1)==0 ){
       
   464       memsys3Unlink(mem3.iMaster+mem3.szMaster);
       
   465       mem3.szMaster += mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x/4;
       
   466       mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
       
   467       mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster;
       
   468     }
       
   469   }
       
   470 }
       
   471 
       
   472 /*
       
   473 ** Return the size of an outstanding allocation, in bytes.  The
       
   474 ** size returned omits the 8-byte header overhead.  This only
       
   475 ** works for chunks that are currently checked out.
       
   476 */
       
   477 static int memsys3Size(void *p){
       
   478   Mem3Block *pBlock;
       
   479   if( p==0 ) return 0;
       
   480   pBlock = (Mem3Block*)p;
       
   481   assert( (pBlock[-1].u.hdr.size4x&1)!=0 );
       
   482   return (pBlock[-1].u.hdr.size4x&~3)*2 - 4;
       
   483 }
       
   484 
       
   485 /*
       
   486 ** Round up a request size to the next valid allocation size.
       
   487 */
       
   488 static int memsys3Roundup(int n){
       
   489   if( n<=12 ){
       
   490     return 12;
       
   491   }else{
       
   492     return ((n+11)&~7) - 4;
       
   493   }
       
   494 }
       
   495 
       
   496 /*
       
   497 ** Allocate nBytes of memory.
       
   498 */
       
   499 static void *memsys3Malloc(int nBytes){
       
   500   sqlite3_int64 *p;
       
   501   assert( nBytes>0 );          /* malloc.c filters out 0 byte requests */
       
   502   memsys3Enter();
       
   503   p = memsys3MallocUnsafe(nBytes);
       
   504   memsys3Leave();
       
   505   return (void*)p; 
       
   506 }
       
   507 
       
   508 /*
       
   509 ** Free memory.
       
   510 */
       
   511 void memsys3Free(void *pPrior){
       
   512   assert( pPrior );
       
   513   memsys3Enter();
       
   514   memsys3FreeUnsafe(pPrior);
       
   515   memsys3Leave();
       
   516 }
       
   517 
       
   518 /*
       
   519 ** Change the size of an existing memory allocation
       
   520 */
       
   521 void *memsys3Realloc(void *pPrior, int nBytes){
       
   522   int nOld;
       
   523   void *p;
       
   524   if( pPrior==0 ){
       
   525     return sqlite3_malloc(nBytes);
       
   526   }
       
   527   if( nBytes<=0 ){
       
   528     sqlite3_free(pPrior);
       
   529     return 0;
       
   530   }
       
   531   nOld = memsys3Size(pPrior);
       
   532   if( nBytes<=nOld && nBytes>=nOld-128 ){
       
   533     return pPrior;
       
   534   }
       
   535   memsys3Enter();
       
   536   p = memsys3MallocUnsafe(nBytes);
       
   537   if( p ){
       
   538     if( nOld<nBytes ){
       
   539       memcpy(p, pPrior, nOld);
       
   540     }else{
       
   541       memcpy(p, pPrior, nBytes);
       
   542     }
       
   543     memsys3FreeUnsafe(pPrior);
       
   544   }
       
   545   memsys3Leave();
       
   546   return p;
       
   547 }
       
   548 
       
   549 /*
       
   550 ** Initialize this module.
       
   551 */
       
   552 static int memsys3Init(void *NotUsed){
       
   553   if( !sqlite3Config.pHeap ){
       
   554     return SQLITE_ERROR;
       
   555   }
       
   556 
       
   557   /* Store a pointer to the memory block in global structure mem3. */
       
   558   assert( sizeof(Mem3Block)==8 );
       
   559   mem3.aPool = (Mem3Block *)sqlite3Config.pHeap;
       
   560   mem3.nPool = (sqlite3Config.nHeap / sizeof(Mem3Block)) - 2;
       
   561 
       
   562   /* Initialize the master block. */
       
   563   mem3.szMaster = mem3.nPool;
       
   564   mem3.mnMaster = mem3.szMaster;
       
   565   mem3.iMaster = 1;
       
   566   mem3.aPool[0].u.hdr.size4x = (mem3.szMaster<<2) + 2;
       
   567   mem3.aPool[mem3.nPool].u.hdr.prevSize = mem3.nPool;
       
   568   mem3.aPool[mem3.nPool].u.hdr.size4x = 1;
       
   569 
       
   570   return SQLITE_OK;
       
   571 }
       
   572 
       
   573 /*
       
   574 ** Deinitialize this module.
       
   575 */
       
   576 static void memsys3Shutdown(void *NotUsed){
       
   577   return;
       
   578 }
       
   579 
       
   580 
       
   581 
       
   582 /*
       
   583 ** Open the file indicated and write a log of all unfreed memory 
       
   584 ** allocations into that log.
       
   585 */
       
   586 #ifdef SQLITE_DEBUG
       
   587 void sqlite3Memsys3Dump(const char *zFilename){
       
   588   FILE *out;
       
   589   int i, j;
       
   590   u32 size;
       
   591   if( zFilename==0 || zFilename[0]==0 ){
       
   592     out = stdout;
       
   593   }else{
       
   594     out = fopen(zFilename, "w");
       
   595     if( out==0 ){
       
   596       fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
       
   597                       zFilename);
       
   598       return;
       
   599     }
       
   600   }
       
   601   memsys3Enter();
       
   602   fprintf(out, "CHUNKS:\n");
       
   603   for(i=1; i<=mem3.nPool; i+=size/4){
       
   604     size = mem3.aPool[i-1].u.hdr.size4x;
       
   605     if( size/4<=1 ){
       
   606       fprintf(out, "%p size error\n", &mem3.aPool[i]);
       
   607       assert( 0 );
       
   608       break;
       
   609     }
       
   610     if( (size&1)==0 && mem3.aPool[i+size/4-1].u.hdr.prevSize!=size/4 ){
       
   611       fprintf(out, "%p tail size does not match\n", &mem3.aPool[i]);
       
   612       assert( 0 );
       
   613       break;
       
   614     }
       
   615     if( ((mem3.aPool[i+size/4-1].u.hdr.size4x&2)>>1)!=(size&1) ){
       
   616       fprintf(out, "%p tail checkout bit is incorrect\n", &mem3.aPool[i]);
       
   617       assert( 0 );
       
   618       break;
       
   619     }
       
   620     if( size&1 ){
       
   621       fprintf(out, "%p %6d bytes checked out\n", &mem3.aPool[i], (size/4)*8-8);
       
   622     }else{
       
   623       fprintf(out, "%p %6d bytes free%s\n", &mem3.aPool[i], (size/4)*8-8,
       
   624                   i==mem3.iMaster ? " **master**" : "");
       
   625     }
       
   626   }
       
   627   for(i=0; i<MX_SMALL-1; i++){
       
   628     if( mem3.aiSmall[i]==0 ) continue;
       
   629     fprintf(out, "small(%2d):", i);
       
   630     for(j = mem3.aiSmall[i]; j>0; j=mem3.aPool[j].u.list.next){
       
   631       fprintf(out, " %p(%d)", &mem3.aPool[j],
       
   632               (mem3.aPool[j-1].u.hdr.size4x/4)*8-8);
       
   633     }
       
   634     fprintf(out, "\n"); 
       
   635   }
       
   636   for(i=0; i<N_HASH; i++){
       
   637     if( mem3.aiHash[i]==0 ) continue;
       
   638     fprintf(out, "hash(%2d):", i);
       
   639     for(j = mem3.aiHash[i]; j>0; j=mem3.aPool[j].u.list.next){
       
   640       fprintf(out, " %p(%d)", &mem3.aPool[j],
       
   641               (mem3.aPool[j-1].u.hdr.size4x/4)*8-8);
       
   642     }
       
   643     fprintf(out, "\n"); 
       
   644   }
       
   645   fprintf(out, "master=%d\n", mem3.iMaster);
       
   646   fprintf(out, "nowUsed=%d\n", mem3.nPool*8 - mem3.szMaster*8);
       
   647   fprintf(out, "mxUsed=%d\n", mem3.nPool*8 - mem3.mnMaster*8);
       
   648   sqlite3_mutex_leave(mem3.mutex);
       
   649   if( out==stdout ){
       
   650     fflush(stdout);
       
   651   }else{
       
   652     fclose(out);
       
   653   }
       
   654 }
       
   655 #endif
       
   656 
       
   657 /*
       
   658 ** This routine is the only routine in this file with external 
       
   659 ** linkage.
       
   660 **
       
   661 ** Populate the low-level memory allocation function pointers in
       
   662 ** sqlite3Config.m with pointers to the routines in this file. The
       
   663 ** arguments specify the block of memory to manage.
       
   664 **
       
   665 ** This routine is only called by sqlite3_config(), and therefore
       
   666 ** is not required to be threadsafe (it is not).
       
   667 */
       
   668 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void){
       
   669   static const sqlite3_mem_methods mempoolMethods = {
       
   670      memsys3Malloc,
       
   671      memsys3Free,
       
   672      memsys3Realloc,
       
   673      memsys3Size,
       
   674      memsys3Roundup,
       
   675      memsys3Init,
       
   676      memsys3Shutdown,
       
   677      0
       
   678   };
       
   679   return &mempoolMethods;
       
   680 }
       
   681 
       
   682 #endif /* SQLITE_ENABLE_MEMSYS3 */