persistentstorage/sql/SQLite/vdbe.c
changeset 0 08ec8eefde2f
child 23 26645d81f48d
equal deleted inserted replaced
-1:000000000000 0:08ec8eefde2f
       
     1 /*
       
     2 ** 2001 September 15
       
     3 **
       
     4 ** The author disclaims copyright to this source code.  In place of
       
     5 ** a legal notice, here is a blessing:
       
     6 **
       
     7 **    May you do good and not evil.
       
     8 **    May you find forgiveness for yourself and forgive others.
       
     9 **    May you share freely, never taking more than you give.
       
    10 **
       
    11 *************************************************************************
       
    12 ** The code in this file implements execution method of the 
       
    13 ** Virtual Database Engine (VDBE).  A separate file ("vdbeaux.c")
       
    14 ** handles housekeeping details such as creating and deleting
       
    15 ** VDBE instances.  This file is solely interested in executing
       
    16 ** the VDBE program.
       
    17 **
       
    18 ** In the external interface, an "sqlite3_stmt*" is an opaque pointer
       
    19 ** to a VDBE.
       
    20 **
       
    21 ** The SQL parser generates a program which is then executed by
       
    22 ** the VDBE to do the work of the SQL statement.  VDBE programs are 
       
    23 ** similar in form to assembly language.  The program consists of
       
    24 ** a linear sequence of operations.  Each operation has an opcode 
       
    25 ** and 5 operands.  Operands P1, P2, and P3 are integers.  Operand P4 
       
    26 ** is a null-terminated string.  Operand P5 is an unsigned character.
       
    27 ** Few opcodes use all 5 operands.
       
    28 **
       
    29 ** Computation results are stored on a set of registers numbered beginning
       
    30 ** with 1 and going up to Vdbe.nMem.  Each register can store
       
    31 ** either an integer, a null-terminated string, a floating point
       
    32 ** number, or the SQL "NULL" value.  An implicit conversion from one
       
    33 ** type to the other occurs as necessary.
       
    34 ** 
       
    35 ** Most of the code in this file is taken up by the sqlite3VdbeExec()
       
    36 ** function which does the work of interpreting a VDBE program.
       
    37 ** But other routines are also provided to help in building up
       
    38 ** a program instruction by instruction.
       
    39 **
       
    40 ** Various scripts scan this source file in order to generate HTML
       
    41 ** documentation, headers files, or other derived files.  The formatting
       
    42 ** of the code in this file is, therefore, important.  See other comments
       
    43 ** in this file for details.  If in doubt, do not deviate from existing
       
    44 ** commenting and indentation practices when changing or adding code.
       
    45 **
       
    46 ** $Id: vdbe.c,v 1.772 2008/08/02 15:10:09 danielk1977 Exp $
       
    47 */
       
    48 #include "sqliteInt.h"
       
    49 #include <ctype.h>
       
    50 #include "vdbeInt.h"
       
    51 
       
    52 /*
       
    53 ** The following global variable is incremented every time a cursor
       
    54 ** moves, either by the OP_MoveXX, OP_Next, or OP_Prev opcodes.  The test
       
    55 ** procedures use this information to make sure that indices are
       
    56 ** working correctly.  This variable has no function other than to
       
    57 ** help verify the correct operation of the library.
       
    58 */
       
    59 #ifdef SQLITE_TEST
       
    60 int sqlite3_search_count = 0;
       
    61 #endif
       
    62 
       
    63 /*
       
    64 ** When this global variable is positive, it gets decremented once before
       
    65 ** each instruction in the VDBE.  When reaches zero, the u1.isInterrupted
       
    66 ** field of the sqlite3 structure is set in order to simulate and interrupt.
       
    67 **
       
    68 ** This facility is used for testing purposes only.  It does not function
       
    69 ** in an ordinary build.
       
    70 */
       
    71 #ifdef SQLITE_TEST
       
    72 int sqlite3_interrupt_count = 0;
       
    73 #endif
       
    74 
       
    75 /*
       
    76 ** The next global variable is incremented each type the OP_Sort opcode
       
    77 ** is executed.  The test procedures use this information to make sure that
       
    78 ** sorting is occurring or not occurring at appropriate times.   This variable
       
    79 ** has no function other than to help verify the correct operation of the
       
    80 ** library.
       
    81 */
       
    82 #ifdef SQLITE_TEST
       
    83 int sqlite3_sort_count = 0;
       
    84 #endif
       
    85 
       
    86 /*
       
    87 ** The next global variable records the size of the largest MEM_Blob
       
    88 ** or MEM_Str that has been used by a VDBE opcode.  The test procedures
       
    89 ** use this information to make sure that the zero-blob functionality
       
    90 ** is working correctly.   This variable has no function other than to
       
    91 ** help verify the correct operation of the library.
       
    92 */
       
    93 #ifdef SQLITE_TEST
       
    94 int sqlite3_max_blobsize = 0;
       
    95 static void updateMaxBlobsize(Mem *p){
       
    96   if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
       
    97     sqlite3_max_blobsize = p->n;
       
    98   }
       
    99 }
       
   100 #endif
       
   101 
       
   102 /*
       
   103 ** Test a register to see if it exceeds the current maximum blob size.
       
   104 ** If it does, record the new maximum blob size.
       
   105 */
       
   106 #if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
       
   107 # define UPDATE_MAX_BLOBSIZE(P)  updateMaxBlobsize(P)
       
   108 #else
       
   109 # define UPDATE_MAX_BLOBSIZE(P)
       
   110 #endif
       
   111 
       
   112 /*
       
   113 ** Release the memory associated with a register.  This
       
   114 ** leaves the Mem.flags field in an inconsistent state.
       
   115 */
       
   116 #define Release(P) if((P)->flags&MEM_Dyn){ sqlite3VdbeMemRelease(P); }
       
   117 
       
   118 /*
       
   119 ** Convert the given register into a string if it isn't one
       
   120 ** already. Return non-zero if a malloc() fails.
       
   121 */
       
   122 #define Stringify(P, enc) \
       
   123    if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
       
   124      { goto no_mem; }
       
   125 
       
   126 /*
       
   127 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
       
   128 ** a pointer to a dynamically allocated string where some other entity
       
   129 ** is responsible for deallocating that string.  Because the register
       
   130 ** does not control the string, it might be deleted without the register
       
   131 ** knowing it.
       
   132 **
       
   133 ** This routine converts an ephemeral string into a dynamically allocated
       
   134 ** string that the register itself controls.  In other words, it
       
   135 ** converts an MEM_Ephem string into an MEM_Dyn string.
       
   136 */
       
   137 #define Deephemeralize(P) \
       
   138    if( ((P)->flags&MEM_Ephem)!=0 \
       
   139        && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
       
   140 
       
   141 /*
       
   142 ** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
       
   143 ** P if required.
       
   144 */
       
   145 #define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
       
   146 
       
   147 /*
       
   148 ** Argument pMem points at a register that will be passed to a
       
   149 ** user-defined function or returned to the user as the result of a query.
       
   150 ** The second argument, 'db_enc' is the text encoding used by the vdbe for
       
   151 ** register variables.  This routine sets the pMem->enc and pMem->type
       
   152 ** variables used by the sqlite3_value_*() routines.
       
   153 */
       
   154 #define storeTypeInfo(A,B) _storeTypeInfo(A)
       
   155 static void _storeTypeInfo(Mem *pMem){
       
   156   int flags = pMem->flags;
       
   157   if( flags & MEM_Null ){
       
   158     pMem->type = SQLITE_NULL;
       
   159   }
       
   160   else if( flags & MEM_Int ){
       
   161     pMem->type = SQLITE_INTEGER;
       
   162   }
       
   163   else if( flags & MEM_Real ){
       
   164     pMem->type = SQLITE_FLOAT;
       
   165   }
       
   166   else if( flags & MEM_Str ){
       
   167     pMem->type = SQLITE_TEXT;
       
   168   }else{
       
   169     pMem->type = SQLITE_BLOB;
       
   170   }
       
   171 }
       
   172 
       
   173 /*
       
   174 ** Properties of opcodes.  The OPFLG_INITIALIZER macro is
       
   175 ** created by mkopcodeh.awk during compilation.  Data is obtained
       
   176 ** from the comments following the "case OP_xxxx:" statements in
       
   177 ** this file.  
       
   178 */
       
   179 static unsigned char opcodeProperty[] = OPFLG_INITIALIZER;
       
   180 
       
   181 /*
       
   182 ** Return true if an opcode has any of the OPFLG_xxx properties
       
   183 ** specified by mask.
       
   184 */
       
   185 int sqlite3VdbeOpcodeHasProperty(int opcode, int mask){
       
   186   assert( opcode>0 && opcode<sizeof(opcodeProperty) );
       
   187   return (opcodeProperty[opcode]&mask)!=0;
       
   188 }
       
   189 
       
   190 /*
       
   191 ** Allocate cursor number iCur.  Return a pointer to it.  Return NULL
       
   192 ** if we run out of memory.
       
   193 */
       
   194 static Cursor *allocateCursor(
       
   195   Vdbe *p, 
       
   196   int iCur, 
       
   197   Op *pOp,
       
   198   int iDb, 
       
   199   int isBtreeCursor
       
   200 ){
       
   201   /* Find the memory cell that will be used to store the blob of memory
       
   202   ** required for this Cursor structure. It is convenient to use a 
       
   203   ** vdbe memory cell to manage the memory allocation required for a
       
   204   ** Cursor structure for the following reasons:
       
   205   **
       
   206   **   * Sometimes cursor numbers are used for a couple of different
       
   207   **     purposes in a vdbe program. The different uses might require
       
   208   **     different sized allocations. Memory cells provide growable
       
   209   **     allocations.
       
   210   **
       
   211   **   * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
       
   212   **     be freed lazily via the sqlite3_release_memory() API. This
       
   213   **     minimizes the number of malloc calls made by the system.
       
   214   **
       
   215   ** Memory cells for cursors are allocated at the top of the address
       
   216   ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
       
   217   ** cursor 1 is managed by memory cell (p->nMem-1), etc.
       
   218   */
       
   219   Mem *pMem = &p->aMem[p->nMem-iCur];
       
   220 
       
   221   int nByte;
       
   222   Cursor *pCx = 0;
       
   223   /* If the opcode of pOp is OP_SetNumColumns, then pOp->p2 contains
       
   224   ** the number of fields in the records contained in the table or
       
   225   ** index being opened. Use this to reserve space for the 
       
   226   ** Cursor.aType[] array.
       
   227   */
       
   228   int nField = 0;
       
   229   if( pOp->opcode==OP_SetNumColumns || pOp->opcode==OP_OpenEphemeral ){
       
   230     nField = pOp->p2;
       
   231   }
       
   232   nByte = 
       
   233       sizeof(Cursor) + 
       
   234       (isBtreeCursor?sqlite3BtreeCursorSize():0) + 
       
   235       2*nField*sizeof(u32);
       
   236 
       
   237   assert( iCur<p->nCursor );
       
   238   if( p->apCsr[iCur] ){
       
   239     sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
       
   240     p->apCsr[iCur] = 0;
       
   241   }
       
   242   if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){
       
   243     p->apCsr[iCur] = pCx = (Cursor *)pMem->z;
       
   244     memset(pMem->z, 0, nByte);
       
   245     pCx->iDb = iDb;
       
   246     pCx->nField = nField;
       
   247     if( nField ){
       
   248       pCx->aType = (u32 *)&pMem->z[sizeof(Cursor)];
       
   249     }
       
   250     if( isBtreeCursor ){
       
   251       pCx->pCursor = (BtCursor *)&pMem->z[sizeof(Cursor)+2*nField*sizeof(u32)];
       
   252     }
       
   253   }
       
   254   return pCx;
       
   255 }
       
   256 
       
   257 /*
       
   258 ** Try to convert a value into a numeric representation if we can
       
   259 ** do so without loss of information.  In other words, if the string
       
   260 ** looks like a number, convert it into a number.  If it does not
       
   261 ** look like a number, leave it alone.
       
   262 */
       
   263 static void applyNumericAffinity(Mem *pRec){
       
   264   if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
       
   265     int realnum;
       
   266     sqlite3VdbeMemNulTerminate(pRec);
       
   267     if( (pRec->flags&MEM_Str)
       
   268          && sqlite3IsNumber(pRec->z, &realnum, pRec->enc) ){
       
   269       i64 value;
       
   270       sqlite3VdbeChangeEncoding(pRec, SQLITE_UTF8);
       
   271       if( !realnum && sqlite3Atoi64(pRec->z, &value) ){
       
   272         pRec->u.i = value;
       
   273         MemSetTypeFlag(pRec, MEM_Int);
       
   274       }else{
       
   275         sqlite3VdbeMemRealify(pRec);
       
   276       }
       
   277     }
       
   278   }
       
   279 }
       
   280 
       
   281 /*
       
   282 ** Processing is determine by the affinity parameter:
       
   283 **
       
   284 ** SQLITE_AFF_INTEGER:
       
   285 ** SQLITE_AFF_REAL:
       
   286 ** SQLITE_AFF_NUMERIC:
       
   287 **    Try to convert pRec to an integer representation or a 
       
   288 **    floating-point representation if an integer representation
       
   289 **    is not possible.  Note that the integer representation is
       
   290 **    always preferred, even if the affinity is REAL, because
       
   291 **    an integer representation is more space efficient on disk.
       
   292 **
       
   293 ** SQLITE_AFF_TEXT:
       
   294 **    Convert pRec to a text representation.
       
   295 **
       
   296 ** SQLITE_AFF_NONE:
       
   297 **    No-op.  pRec is unchanged.
       
   298 */
       
   299 static void applyAffinity(
       
   300   Mem *pRec,          /* The value to apply affinity to */
       
   301   char affinity,      /* The affinity to be applied */
       
   302   u8 enc              /* Use this text encoding */
       
   303 ){
       
   304   if( affinity==SQLITE_AFF_TEXT ){
       
   305     /* Only attempt the conversion to TEXT if there is an integer or real
       
   306     ** representation (blob and NULL do not get converted) but no string
       
   307     ** representation.
       
   308     */
       
   309     if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
       
   310       sqlite3VdbeMemStringify(pRec, enc);
       
   311     }
       
   312     pRec->flags &= ~(MEM_Real|MEM_Int);
       
   313   }else if( affinity!=SQLITE_AFF_NONE ){
       
   314     assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
       
   315              || affinity==SQLITE_AFF_NUMERIC );
       
   316     applyNumericAffinity(pRec);
       
   317     if( pRec->flags & MEM_Real ){
       
   318       sqlite3VdbeIntegerAffinity(pRec);
       
   319     }
       
   320   }
       
   321 }
       
   322 
       
   323 /*
       
   324 ** Try to convert the type of a function argument or a result column
       
   325 ** into a numeric representation.  Use either INTEGER or REAL whichever
       
   326 ** is appropriate.  But only do the conversion if it is possible without
       
   327 ** loss of information and return the revised type of the argument.
       
   328 **
       
   329 ** This is an EXPERIMENTAL api and is subject to change or removal.
       
   330 */
       
   331 int sqlite3_value_numeric_type(sqlite3_value *pVal){
       
   332   Mem *pMem = (Mem*)pVal;
       
   333   applyNumericAffinity(pMem);
       
   334   storeTypeInfo(pMem, 0);
       
   335   return pMem->type;
       
   336 }
       
   337 
       
   338 /*
       
   339 ** Exported version of applyAffinity(). This one works on sqlite3_value*, 
       
   340 ** not the internal Mem* type.
       
   341 */
       
   342 void sqlite3ValueApplyAffinity(
       
   343   sqlite3_value *pVal, 
       
   344   u8 affinity, 
       
   345   u8 enc
       
   346 ){
       
   347   applyAffinity((Mem *)pVal, affinity, enc);
       
   348 }
       
   349 
       
   350 #ifdef SQLITE_DEBUG
       
   351 /*
       
   352 ** Write a nice string representation of the contents of cell pMem
       
   353 ** into buffer zBuf, length nBuf.
       
   354 */
       
   355 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
       
   356   char *zCsr = zBuf;
       
   357   int f = pMem->flags;
       
   358 
       
   359   static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
       
   360 
       
   361   if( f&MEM_Blob ){
       
   362     int i;
       
   363     char c;
       
   364     if( f & MEM_Dyn ){
       
   365       c = 'z';
       
   366       assert( (f & (MEM_Static|MEM_Ephem))==0 );
       
   367     }else if( f & MEM_Static ){
       
   368       c = 't';
       
   369       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
       
   370     }else if( f & MEM_Ephem ){
       
   371       c = 'e';
       
   372       assert( (f & (MEM_Static|MEM_Dyn))==0 );
       
   373     }else{
       
   374       c = 's';
       
   375     }
       
   376 
       
   377     sqlite3_snprintf(100, zCsr, "%c", c);
       
   378     zCsr += strlen(zCsr);
       
   379     sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
       
   380     zCsr += strlen(zCsr);
       
   381     for(i=0; i<16 && i<pMem->n; i++){
       
   382       sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
       
   383       zCsr += strlen(zCsr);
       
   384     }
       
   385     for(i=0; i<16 && i<pMem->n; i++){
       
   386       char z = pMem->z[i];
       
   387       if( z<32 || z>126 ) *zCsr++ = '.';
       
   388       else *zCsr++ = z;
       
   389     }
       
   390 
       
   391     sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
       
   392     zCsr += strlen(zCsr);
       
   393     if( f & MEM_Zero ){
       
   394       sqlite3_snprintf(100, zCsr,"+%lldz",pMem->u.i);
       
   395       zCsr += strlen(zCsr);
       
   396     }
       
   397     *zCsr = '\0';
       
   398   }else if( f & MEM_Str ){
       
   399     int j, k;
       
   400     zBuf[0] = ' ';
       
   401     if( f & MEM_Dyn ){
       
   402       zBuf[1] = 'z';
       
   403       assert( (f & (MEM_Static|MEM_Ephem))==0 );
       
   404     }else if( f & MEM_Static ){
       
   405       zBuf[1] = 't';
       
   406       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
       
   407     }else if( f & MEM_Ephem ){
       
   408       zBuf[1] = 'e';
       
   409       assert( (f & (MEM_Static|MEM_Dyn))==0 );
       
   410     }else{
       
   411       zBuf[1] = 's';
       
   412     }
       
   413     k = 2;
       
   414     sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
       
   415     k += strlen(&zBuf[k]);
       
   416     zBuf[k++] = '[';
       
   417     for(j=0; j<15 && j<pMem->n; j++){
       
   418       u8 c = pMem->z[j];
       
   419       if( c>=0x20 && c<0x7f ){
       
   420         zBuf[k++] = c;
       
   421       }else{
       
   422         zBuf[k++] = '.';
       
   423       }
       
   424     }
       
   425     zBuf[k++] = ']';
       
   426     sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
       
   427     k += strlen(&zBuf[k]);
       
   428     zBuf[k++] = 0;
       
   429   }
       
   430 }
       
   431 #endif
       
   432 
       
   433 #ifdef SQLITE_DEBUG
       
   434 /*
       
   435 ** Print the value of a register for tracing purposes:
       
   436 */
       
   437 static void memTracePrint(FILE *out, Mem *p){
       
   438   if( p->flags & MEM_Null ){
       
   439     fprintf(out, " NULL");
       
   440   }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
       
   441     fprintf(out, " si:%lld", p->u.i);
       
   442   }else if( p->flags & MEM_Int ){
       
   443     fprintf(out, " i:%lld", p->u.i);
       
   444   }else if( p->flags & MEM_Real ){
       
   445     fprintf(out, " r:%g", p->r);
       
   446   }else{
       
   447     char zBuf[200];
       
   448     sqlite3VdbeMemPrettyPrint(p, zBuf);
       
   449     fprintf(out, " ");
       
   450     fprintf(out, "%s", zBuf);
       
   451   }
       
   452 }
       
   453 static void registerTrace(FILE *out, int iReg, Mem *p){
       
   454   fprintf(out, "REG[%d] = ", iReg);
       
   455   memTracePrint(out, p);
       
   456   fprintf(out, "\n");
       
   457 }
       
   458 #endif
       
   459 
       
   460 #ifdef SQLITE_DEBUG
       
   461 #  define REGISTER_TRACE(R,M) if(p->trace)registerTrace(p->trace,R,M)
       
   462 #else
       
   463 #  define REGISTER_TRACE(R,M)
       
   464 #endif
       
   465 
       
   466 
       
   467 #ifdef VDBE_PROFILE
       
   468 
       
   469 /* 
       
   470 ** hwtime.h contains inline assembler code for implementing 
       
   471 ** high-performance timing routines.
       
   472 */
       
   473 #include "hwtime.h"
       
   474 
       
   475 #endif
       
   476 
       
   477 /*
       
   478 ** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
       
   479 ** sqlite3_interrupt() routine has been called.  If it has been, then
       
   480 ** processing of the VDBE program is interrupted.
       
   481 **
       
   482 ** This macro added to every instruction that does a jump in order to
       
   483 ** implement a loop.  This test used to be on every single instruction,
       
   484 ** but that meant we more testing that we needed.  By only testing the
       
   485 ** flag on jump instructions, we get a (small) speed improvement.
       
   486 */
       
   487 #define CHECK_FOR_INTERRUPT \
       
   488    if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
       
   489 
       
   490 #ifdef SQLITE_DEBUG
       
   491 static int fileExists(sqlite3 *db, const char *zFile){
       
   492   int res = 0;
       
   493   int rc = SQLITE_OK;
       
   494 #ifdef SQLITE_TEST
       
   495   /* If we are currently testing IO errors, then do not call OsAccess() to
       
   496   ** test for the presence of zFile. This is because any IO error that
       
   497   ** occurs here will not be reported, causing the test to fail.
       
   498   */
       
   499   extern int sqlite3_io_error_pending;
       
   500   if( sqlite3_io_error_pending<=0 )
       
   501 #endif
       
   502     rc = sqlite3OsAccess(db->pVfs, zFile, SQLITE_ACCESS_EXISTS, &res);
       
   503   return (res && rc==SQLITE_OK);
       
   504 }
       
   505 #endif
       
   506 
       
   507 /*
       
   508 ** Execute as much of a VDBE program as we can then return.
       
   509 **
       
   510 ** sqlite3VdbeMakeReady() must be called before this routine in order to
       
   511 ** close the program with a final OP_Halt and to set up the callbacks
       
   512 ** and the error message pointer.
       
   513 **
       
   514 ** Whenever a row or result data is available, this routine will either
       
   515 ** invoke the result callback (if there is one) or return with
       
   516 ** SQLITE_ROW.
       
   517 **
       
   518 ** If an attempt is made to open a locked database, then this routine
       
   519 ** will either invoke the busy callback (if there is one) or it will
       
   520 ** return SQLITE_BUSY.
       
   521 **
       
   522 ** If an error occurs, an error message is written to memory obtained
       
   523 ** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
       
   524 ** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
       
   525 **
       
   526 ** If the callback ever returns non-zero, then the program exits
       
   527 ** immediately.  There will be no error message but the p->rc field is
       
   528 ** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
       
   529 **
       
   530 ** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
       
   531 ** routine to return SQLITE_ERROR.
       
   532 **
       
   533 ** Other fatal errors return SQLITE_ERROR.
       
   534 **
       
   535 ** After this routine has finished, sqlite3VdbeFinalize() should be
       
   536 ** used to clean up the mess that was left behind.
       
   537 */
       
   538 int sqlite3VdbeExec(
       
   539   Vdbe *p                    /* The VDBE */
       
   540 ){
       
   541   int pc;                    /* The program counter */
       
   542   Op *pOp;                   /* Current operation */
       
   543   int rc = SQLITE_OK;        /* Value to return */
       
   544   sqlite3 *db = p->db;       /* The database */
       
   545   u8 encoding = ENC(db);     /* The database encoding */
       
   546   Mem *pIn1, *pIn2, *pIn3;   /* Input operands */
       
   547   Mem *pOut;                 /* Output operand */
       
   548   u8 opProperty;
       
   549   int iCompare = 0;          /* Result of last OP_Compare operation */
       
   550   int *aPermute = 0;         /* Permuation of columns for OP_Compare */
       
   551 #ifdef VDBE_PROFILE
       
   552   u64 start;                 /* CPU clock count at start of opcode */
       
   553   int origPc;                /* Program counter at start of opcode */
       
   554 #endif
       
   555 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
       
   556   int nProgressOps = 0;      /* Opcodes executed since progress callback. */
       
   557 #endif
       
   558 
       
   559   assert( p->magic==VDBE_MAGIC_RUN );  /* sqlite3_step() verifies this */
       
   560   assert( db->magic==SQLITE_MAGIC_BUSY );
       
   561   sqlite3BtreeMutexArrayEnter(&p->aMutex);
       
   562   if( p->rc==SQLITE_NOMEM ){
       
   563     /* This happens if a malloc() inside a call to sqlite3_column_text() or
       
   564     ** sqlite3_column_text16() failed.  */
       
   565     goto no_mem;
       
   566   }
       
   567   assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
       
   568   p->rc = SQLITE_OK;
       
   569   assert( p->explain==0 );
       
   570   p->pResultSet = 0;
       
   571   db->busyHandler.nBusy = 0;
       
   572   CHECK_FOR_INTERRUPT;
       
   573   sqlite3VdbeIOTraceSql(p);
       
   574 #ifdef SQLITE_DEBUG
       
   575   sqlite3BeginBenignMalloc();
       
   576   if( p->pc==0 
       
   577    && ((p->db->flags & SQLITE_VdbeListing) || fileExists(db, "vdbe_explain"))
       
   578   ){
       
   579     int i;
       
   580     printf("VDBE Program Listing:\n");
       
   581     sqlite3VdbePrintSql(p);
       
   582     for(i=0; i<p->nOp; i++){
       
   583       sqlite3VdbePrintOp(stdout, i, &p->aOp[i]);
       
   584     }
       
   585   }
       
   586   if( fileExists(db, "vdbe_trace") ){
       
   587     p->trace = stdout;
       
   588   }
       
   589   sqlite3EndBenignMalloc();
       
   590 #endif
       
   591   for(pc=p->pc; rc==SQLITE_OK; pc++){
       
   592     assert( pc>=0 && pc<p->nOp );
       
   593     if( db->mallocFailed ) goto no_mem;
       
   594 #ifdef VDBE_PROFILE
       
   595     origPc = pc;
       
   596     start = sqlite3Hwtime();
       
   597 #endif
       
   598     pOp = &p->aOp[pc];
       
   599 
       
   600     /* Only allow tracing if SQLITE_DEBUG is defined.
       
   601     */
       
   602 #ifdef SQLITE_DEBUG
       
   603     if( p->trace ){
       
   604       if( pc==0 ){
       
   605         printf("VDBE Execution Trace:\n");
       
   606         sqlite3VdbePrintSql(p);
       
   607       }
       
   608       sqlite3VdbePrintOp(p->trace, pc, pOp);
       
   609     }
       
   610     if( p->trace==0 && pc==0 ){
       
   611       sqlite3BeginBenignMalloc();
       
   612       if( fileExists(db, "vdbe_sqltrace") ){
       
   613         sqlite3VdbePrintSql(p);
       
   614       }
       
   615       sqlite3EndBenignMalloc();
       
   616     }
       
   617 #endif
       
   618       
       
   619 
       
   620     /* Check to see if we need to simulate an interrupt.  This only happens
       
   621     ** if we have a special test build.
       
   622     */
       
   623 #ifdef SQLITE_TEST
       
   624     if( sqlite3_interrupt_count>0 ){
       
   625       sqlite3_interrupt_count--;
       
   626       if( sqlite3_interrupt_count==0 ){
       
   627         sqlite3_interrupt(db);
       
   628       }
       
   629     }
       
   630 #endif
       
   631 
       
   632 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
       
   633     /* Call the progress callback if it is configured and the required number
       
   634     ** of VDBE ops have been executed (either since this invocation of
       
   635     ** sqlite3VdbeExec() or since last time the progress callback was called).
       
   636     ** If the progress callback returns non-zero, exit the virtual machine with
       
   637     ** a return code SQLITE_ABORT.
       
   638     */
       
   639     if( db->xProgress ){
       
   640       if( db->nProgressOps==nProgressOps ){
       
   641         int prc;
       
   642         if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
       
   643         prc =db->xProgress(db->pProgressArg);
       
   644         if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
       
   645         if( prc!=0 ){
       
   646           rc = SQLITE_INTERRUPT;
       
   647           goto vdbe_error_halt;
       
   648         }
       
   649         nProgressOps = 0;
       
   650       }
       
   651       nProgressOps++;
       
   652     }
       
   653 #endif
       
   654 
       
   655     /* Do common setup processing for any opcode that is marked
       
   656     ** with the "out2-prerelease" tag.  Such opcodes have a single
       
   657     ** output which is specified by the P2 parameter.  The P2 register
       
   658     ** is initialized to a NULL.
       
   659     */
       
   660     opProperty = opcodeProperty[pOp->opcode];
       
   661     if( (opProperty & OPFLG_OUT2_PRERELEASE)!=0 ){
       
   662       assert( pOp->p2>0 );
       
   663       assert( pOp->p2<=p->nMem );
       
   664       pOut = &p->aMem[pOp->p2];
       
   665       sqlite3VdbeMemReleaseExternal(pOut);
       
   666       pOut->flags = MEM_Null;
       
   667     }else
       
   668  
       
   669     /* Do common setup for opcodes marked with one of the following
       
   670     ** combinations of properties.
       
   671     **
       
   672     **           in1
       
   673     **           in1 in2
       
   674     **           in1 in2 out3
       
   675     **           in1 in3
       
   676     **
       
   677     ** Variables pIn1, pIn2, and pIn3 are made to point to appropriate
       
   678     ** registers for inputs.  Variable pOut points to the output register.
       
   679     */
       
   680     if( (opProperty & OPFLG_IN1)!=0 ){
       
   681       assert( pOp->p1>0 );
       
   682       assert( pOp->p1<=p->nMem );
       
   683       pIn1 = &p->aMem[pOp->p1];
       
   684       REGISTER_TRACE(pOp->p1, pIn1);
       
   685       if( (opProperty & OPFLG_IN2)!=0 ){
       
   686         assert( pOp->p2>0 );
       
   687         assert( pOp->p2<=p->nMem );
       
   688         pIn2 = &p->aMem[pOp->p2];
       
   689         REGISTER_TRACE(pOp->p2, pIn2);
       
   690         if( (opProperty & OPFLG_OUT3)!=0 ){
       
   691           assert( pOp->p3>0 );
       
   692           assert( pOp->p3<=p->nMem );
       
   693           pOut = &p->aMem[pOp->p3];
       
   694         }
       
   695       }else if( (opProperty & OPFLG_IN3)!=0 ){
       
   696         assert( pOp->p3>0 );
       
   697         assert( pOp->p3<=p->nMem );
       
   698         pIn3 = &p->aMem[pOp->p3];
       
   699         REGISTER_TRACE(pOp->p3, pIn3);
       
   700       }
       
   701     }else if( (opProperty & OPFLG_IN2)!=0 ){
       
   702       assert( pOp->p2>0 );
       
   703       assert( pOp->p2<=p->nMem );
       
   704       pIn2 = &p->aMem[pOp->p2];
       
   705       REGISTER_TRACE(pOp->p2, pIn2);
       
   706     }else if( (opProperty & OPFLG_IN3)!=0 ){
       
   707       assert( pOp->p3>0 );
       
   708       assert( pOp->p3<=p->nMem );
       
   709       pIn3 = &p->aMem[pOp->p3];
       
   710       REGISTER_TRACE(pOp->p3, pIn3);
       
   711     }
       
   712 
       
   713     switch( pOp->opcode ){
       
   714 
       
   715 /*****************************************************************************
       
   716 ** What follows is a massive switch statement where each case implements a
       
   717 ** separate instruction in the virtual machine.  If we follow the usual
       
   718 ** indentation conventions, each case should be indented by 6 spaces.  But
       
   719 ** that is a lot of wasted space on the left margin.  So the code within
       
   720 ** the switch statement will break with convention and be flush-left. Another
       
   721 ** big comment (similar to this one) will mark the point in the code where
       
   722 ** we transition back to normal indentation.
       
   723 **
       
   724 ** The formatting of each case is important.  The makefile for SQLite
       
   725 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
       
   726 ** file looking for lines that begin with "case OP_".  The opcodes.h files
       
   727 ** will be filled with #defines that give unique integer values to each
       
   728 ** opcode and the opcodes.c file is filled with an array of strings where
       
   729 ** each string is the symbolic name for the corresponding opcode.  If the
       
   730 ** case statement is followed by a comment of the form "/# same as ... #/"
       
   731 ** that comment is used to determine the particular value of the opcode.
       
   732 **
       
   733 ** Other keywords in the comment that follows each case are used to
       
   734 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
       
   735 ** Keywords include: in1, in2, in3, out2_prerelease, out2, out3.  See
       
   736 ** the mkopcodeh.awk script for additional information.
       
   737 **
       
   738 ** Documentation about VDBE opcodes is generated by scanning this file
       
   739 ** for lines of that contain "Opcode:".  That line and all subsequent
       
   740 ** comment lines are used in the generation of the opcode.html documentation
       
   741 ** file.
       
   742 **
       
   743 ** SUMMARY:
       
   744 **
       
   745 **     Formatting is important to scripts that scan this file.
       
   746 **     Do not deviate from the formatting style currently in use.
       
   747 **
       
   748 *****************************************************************************/
       
   749 
       
   750 /* Opcode:  Goto * P2 * * *
       
   751 **
       
   752 ** An unconditional jump to address P2.
       
   753 ** The next instruction executed will be 
       
   754 ** the one at index P2 from the beginning of
       
   755 ** the program.
       
   756 */
       
   757 case OP_Goto: {             /* jump */
       
   758   CHECK_FOR_INTERRUPT;
       
   759   pc = pOp->p2 - 1;
       
   760   break;
       
   761 }
       
   762 
       
   763 /* Opcode:  Gosub P1 P2 * * *
       
   764 **
       
   765 ** Write the current address onto register P1
       
   766 ** and then jump to address P2.
       
   767 */
       
   768 case OP_Gosub: {            /* jump */
       
   769   assert( pOp->p1>0 );
       
   770   assert( pOp->p1<=p->nMem );
       
   771   pIn1 = &p->aMem[pOp->p1];
       
   772   assert( (pIn1->flags & MEM_Dyn)==0 );
       
   773   pIn1->flags = MEM_Int;
       
   774   pIn1->u.i = pc;
       
   775   REGISTER_TRACE(pOp->p1, pIn1);
       
   776   pc = pOp->p2 - 1;
       
   777   break;
       
   778 }
       
   779 
       
   780 /* Opcode:  Return P1 * * * *
       
   781 **
       
   782 ** Jump to the next instruction after the address in register P1.
       
   783 */
       
   784 case OP_Return: {           /* in1 */
       
   785   assert( pIn1->flags & MEM_Int );
       
   786   pc = pIn1->u.i;
       
   787   break;
       
   788 }
       
   789 
       
   790 /* Opcode:  Yield P1 * * * *
       
   791 **
       
   792 ** Swap the program counter with the value in register P1.
       
   793 */
       
   794 case OP_Yield: {
       
   795   int pcDest;
       
   796   assert( pOp->p1>0 );
       
   797   assert( pOp->p1<=p->nMem );
       
   798   pIn1 = &p->aMem[pOp->p1];
       
   799   assert( (pIn1->flags & MEM_Dyn)==0 );
       
   800   pIn1->flags = MEM_Int;
       
   801   pcDest = pIn1->u.i;
       
   802   pIn1->u.i = pc;
       
   803   REGISTER_TRACE(pOp->p1, pIn1);
       
   804   pc = pcDest;
       
   805   break;
       
   806 }
       
   807 
       
   808 
       
   809 /* Opcode:  Halt P1 P2 * P4 *
       
   810 **
       
   811 ** Exit immediately.  All open cursors, Fifos, etc are closed
       
   812 ** automatically.
       
   813 **
       
   814 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
       
   815 ** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
       
   816 ** For errors, it can be some other value.  If P1!=0 then P2 will determine
       
   817 ** whether or not to rollback the current transaction.  Do not rollback
       
   818 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
       
   819 ** then back out all changes that have occurred during this execution of the
       
   820 ** VDBE, but do not rollback the transaction. 
       
   821 **
       
   822 ** If P4 is not null then it is an error message string.
       
   823 **
       
   824 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
       
   825 ** every program.  So a jump past the last instruction of the program
       
   826 ** is the same as executing Halt.
       
   827 */
       
   828 case OP_Halt: {
       
   829   p->rc = pOp->p1;
       
   830   p->pc = pc;
       
   831   p->errorAction = pOp->p2;
       
   832   if( pOp->p4.z ){
       
   833     sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z);
       
   834   }
       
   835   rc = sqlite3VdbeHalt(p);
       
   836   assert( rc==SQLITE_BUSY || rc==SQLITE_OK );
       
   837   if( rc==SQLITE_BUSY ){
       
   838     p->rc = rc = SQLITE_BUSY;
       
   839   }else{
       
   840     rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
       
   841   }
       
   842   goto vdbe_return;
       
   843 }
       
   844 
       
   845 /* Opcode: Integer P1 P2 * * *
       
   846 **
       
   847 ** The 32-bit integer value P1 is written into register P2.
       
   848 */
       
   849 case OP_Integer: {         /* out2-prerelease */
       
   850   pOut->flags = MEM_Int;
       
   851   pOut->u.i = pOp->p1;
       
   852   break;
       
   853 }
       
   854 
       
   855 /* Opcode: Int64 * P2 * P4 *
       
   856 **
       
   857 ** P4 is a pointer to a 64-bit integer value.
       
   858 ** Write that value into register P2.
       
   859 */
       
   860 case OP_Int64: {           /* out2-prerelease */
       
   861   assert( pOp->p4.pI64!=0 );
       
   862   pOut->flags = MEM_Int;
       
   863   pOut->u.i = *pOp->p4.pI64;
       
   864   break;
       
   865 }
       
   866 
       
   867 /* Opcode: Real * P2 * P4 *
       
   868 **
       
   869 ** P4 is a pointer to a 64-bit floating point value.
       
   870 ** Write that value into register P2.
       
   871 */
       
   872 case OP_Real: {            /* same as TK_FLOAT, out2-prerelease */
       
   873   pOut->flags = MEM_Real;
       
   874   assert( !sqlite3IsNaN(*pOp->p4.pReal) );
       
   875   pOut->r = *pOp->p4.pReal;
       
   876   break;
       
   877 }
       
   878 
       
   879 /* Opcode: String8 * P2 * P4 *
       
   880 **
       
   881 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed 
       
   882 ** into an OP_String before it is executed for the first time.
       
   883 */
       
   884 case OP_String8: {         /* same as TK_STRING, out2-prerelease */
       
   885   assert( pOp->p4.z!=0 );
       
   886   pOp->opcode = OP_String;
       
   887   pOp->p1 = strlen(pOp->p4.z);
       
   888 
       
   889 #ifndef SQLITE_OMIT_UTF16
       
   890   if( encoding!=SQLITE_UTF8 ){
       
   891     sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
       
   892     if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
       
   893     if( SQLITE_OK!=sqlite3VdbeMemMakeWriteable(pOut) ) goto no_mem;
       
   894     pOut->zMalloc = 0;
       
   895     pOut->flags |= MEM_Static;
       
   896     pOut->flags &= ~MEM_Dyn;
       
   897     if( pOp->p4type==P4_DYNAMIC ){
       
   898       sqlite3DbFree(db, pOp->p4.z);
       
   899     }
       
   900     pOp->p4type = P4_DYNAMIC;
       
   901     pOp->p4.z = pOut->z;
       
   902     pOp->p1 = pOut->n;
       
   903     if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
       
   904       goto too_big;
       
   905     }
       
   906     UPDATE_MAX_BLOBSIZE(pOut);
       
   907     break;
       
   908   }
       
   909 #endif
       
   910   if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
       
   911     goto too_big;
       
   912   }
       
   913   /* Fall through to the next case, OP_String */
       
   914 }
       
   915   
       
   916 /* Opcode: String P1 P2 * P4 *
       
   917 **
       
   918 ** The string value P4 of length P1 (bytes) is stored in register P2.
       
   919 */
       
   920 case OP_String: {          /* out2-prerelease */
       
   921   assert( pOp->p4.z!=0 );
       
   922   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
       
   923   pOut->z = pOp->p4.z;
       
   924   pOut->n = pOp->p1;
       
   925   pOut->enc = encoding;
       
   926   UPDATE_MAX_BLOBSIZE(pOut);
       
   927   break;
       
   928 }
       
   929 
       
   930 /* Opcode: Null * P2 * * *
       
   931 **
       
   932 ** Write a NULL into register P2.
       
   933 */
       
   934 case OP_Null: {           /* out2-prerelease */
       
   935   break;
       
   936 }
       
   937 
       
   938 
       
   939 #ifndef SQLITE_OMIT_BLOB_LITERAL
       
   940 /* Opcode: Blob P1 P2 * P4
       
   941 **
       
   942 ** P4 points to a blob of data P1 bytes long.  Store this
       
   943 ** blob in register P2. This instruction is not coded directly
       
   944 ** by the compiler. Instead, the compiler layer specifies
       
   945 ** an OP_HexBlob opcode, with the hex string representation of
       
   946 ** the blob as P4. This opcode is transformed to an OP_Blob
       
   947 ** the first time it is executed.
       
   948 */
       
   949 case OP_Blob: {                /* out2-prerelease */
       
   950   assert( pOp->p1 <= SQLITE_MAX_LENGTH );
       
   951   sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
       
   952   pOut->enc = encoding;
       
   953   UPDATE_MAX_BLOBSIZE(pOut);
       
   954   break;
       
   955 }
       
   956 #endif /* SQLITE_OMIT_BLOB_LITERAL */
       
   957 
       
   958 /* Opcode: Variable P1 P2 * * *
       
   959 **
       
   960 ** The value of variable P1 is written into register P2. A variable is
       
   961 ** an unknown in the original SQL string as handed to sqlite3_compile().
       
   962 ** Any occurrence of the '?' character in the original SQL is considered
       
   963 ** a variable.  Variables in the SQL string are number from left to
       
   964 ** right beginning with 1.  The values of variables are set using the
       
   965 ** sqlite3_bind() API.
       
   966 */
       
   967 case OP_Variable: {           /* out2-prerelease */
       
   968   int j = pOp->p1 - 1;
       
   969   Mem *pVar;
       
   970   assert( j>=0 && j<p->nVar );
       
   971 
       
   972   pVar = &p->aVar[j];
       
   973   if( sqlite3VdbeMemTooBig(pVar) ){
       
   974     goto too_big;
       
   975   }
       
   976   sqlite3VdbeMemShallowCopy(pOut, &p->aVar[j], MEM_Static);
       
   977   UPDATE_MAX_BLOBSIZE(pOut);
       
   978   break;
       
   979 }
       
   980 
       
   981 /* Opcode: Move P1 P2 P3 * *
       
   982 **
       
   983 ** Move the values in register P1..P1+P3-1 over into
       
   984 ** registers P2..P2+P3-1.  Registers P1..P1+P1-1 are
       
   985 ** left holding a NULL.  It is an error for register ranges
       
   986 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap.
       
   987 */
       
   988 case OP_Move: {
       
   989   char *zMalloc;
       
   990   int n = pOp->p3;
       
   991   int p1 = pOp->p1;
       
   992   int p2 = pOp->p2;
       
   993   assert( n>0 );
       
   994   assert( p1>0 );
       
   995   assert( p1+n<p->nMem );
       
   996   pIn1 = &p->aMem[p1];
       
   997   assert( p2>0 );
       
   998   assert( p2+n<p->nMem );
       
   999   pOut = &p->aMem[p2];
       
  1000   assert( p1+n<=p2 || p2+n<=p1 );
       
  1001   while( n-- ){
       
  1002     zMalloc = pOut->zMalloc;
       
  1003     pOut->zMalloc = 0;
       
  1004     sqlite3VdbeMemMove(pOut, pIn1);
       
  1005     pIn1->zMalloc = zMalloc;
       
  1006     REGISTER_TRACE(p2++, pOut);
       
  1007     pIn1++;
       
  1008     pOut++;
       
  1009   }
       
  1010   break;
       
  1011 }
       
  1012 
       
  1013 /* Opcode: Copy P1 P2 * * *
       
  1014 **
       
  1015 ** Make a copy of register P1 into register P2.
       
  1016 **
       
  1017 ** This instruction makes a deep copy of the value.  A duplicate
       
  1018 ** is made of any string or blob constant.  See also OP_SCopy.
       
  1019 */
       
  1020 case OP_Copy: {
       
  1021   assert( pOp->p1>0 );
       
  1022   assert( pOp->p1<=p->nMem );
       
  1023   pIn1 = &p->aMem[pOp->p1];
       
  1024   assert( pOp->p2>0 );
       
  1025   assert( pOp->p2<=p->nMem );
       
  1026   pOut = &p->aMem[pOp->p2];
       
  1027   assert( pOut!=pIn1 );
       
  1028   sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
       
  1029   Deephemeralize(pOut);
       
  1030   REGISTER_TRACE(pOp->p2, pOut);
       
  1031   break;
       
  1032 }
       
  1033 
       
  1034 /* Opcode: SCopy P1 P2 * * *
       
  1035 **
       
  1036 ** Make a shallow copy of register P1 into register P2.
       
  1037 **
       
  1038 ** This instruction makes a shallow copy of the value.  If the value
       
  1039 ** is a string or blob, then the copy is only a pointer to the
       
  1040 ** original and hence if the original changes so will the copy.
       
  1041 ** Worse, if the original is deallocated, the copy becomes invalid.
       
  1042 ** Thus the program must guarantee that the original will not change
       
  1043 ** during the lifetime of the copy.  Use OP_Copy to make a complete
       
  1044 ** copy.
       
  1045 */
       
  1046 case OP_SCopy: {
       
  1047   assert( pOp->p1>0 );
       
  1048   assert( pOp->p1<=p->nMem );
       
  1049   pIn1 = &p->aMem[pOp->p1];
       
  1050   REGISTER_TRACE(pOp->p1, pIn1);
       
  1051   assert( pOp->p2>0 );
       
  1052   assert( pOp->p2<=p->nMem );
       
  1053   pOut = &p->aMem[pOp->p2];
       
  1054   assert( pOut!=pIn1 );
       
  1055   sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
       
  1056   REGISTER_TRACE(pOp->p2, pOut);
       
  1057   break;
       
  1058 }
       
  1059 
       
  1060 /* Opcode: ResultRow P1 P2 * * *
       
  1061 **
       
  1062 ** The registers P1 through P1+P2-1 contain a single row of
       
  1063 ** results. This opcode causes the sqlite3_step() call to terminate
       
  1064 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
       
  1065 ** structure to provide access to the top P1 values as the result
       
  1066 ** row.
       
  1067 */
       
  1068 case OP_ResultRow: {
       
  1069   Mem *pMem;
       
  1070   int i;
       
  1071   assert( p->nResColumn==pOp->p2 );
       
  1072   assert( pOp->p1>0 );
       
  1073   assert( pOp->p1+pOp->p2<=p->nMem );
       
  1074 
       
  1075   /* Invalidate all ephemeral cursor row caches */
       
  1076   p->cacheCtr = (p->cacheCtr + 2)|1;
       
  1077 
       
  1078   /* Make sure the results of the current row are \000 terminated
       
  1079   ** and have an assigned type.  The results are de-ephemeralized as
       
  1080   ** as side effect.
       
  1081   */
       
  1082   pMem = p->pResultSet = &p->aMem[pOp->p1];
       
  1083   for(i=0; i<pOp->p2; i++){
       
  1084     sqlite3VdbeMemNulTerminate(&pMem[i]);
       
  1085     storeTypeInfo(&pMem[i], encoding);
       
  1086     REGISTER_TRACE(pOp->p1+i, &pMem[i]);
       
  1087   }
       
  1088   if( db->mallocFailed ) goto no_mem;
       
  1089 
       
  1090   /* Return SQLITE_ROW
       
  1091   */
       
  1092   p->nCallback++;
       
  1093   p->pc = pc + 1;
       
  1094   rc = SQLITE_ROW;
       
  1095   goto vdbe_return;
       
  1096 }
       
  1097 
       
  1098 /* Opcode: Concat P1 P2 P3 * *
       
  1099 **
       
  1100 ** Add the text in register P1 onto the end of the text in
       
  1101 ** register P2 and store the result in register P3.
       
  1102 ** If either the P1 or P2 text are NULL then store NULL in P3.
       
  1103 **
       
  1104 **   P3 = P2 || P1
       
  1105 **
       
  1106 ** It is illegal for P1 and P3 to be the same register. Sometimes,
       
  1107 ** if P3 is the same register as P2, the implementation is able
       
  1108 ** to avoid a memcpy().
       
  1109 */
       
  1110 case OP_Concat: {           /* same as TK_CONCAT, in1, in2, out3 */
       
  1111   i64 nByte;
       
  1112 
       
  1113   assert( pIn1!=pOut );
       
  1114   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
       
  1115     sqlite3VdbeMemSetNull(pOut);
       
  1116     break;
       
  1117   }
       
  1118   ExpandBlob(pIn1);
       
  1119   Stringify(pIn1, encoding);
       
  1120   ExpandBlob(pIn2);
       
  1121   Stringify(pIn2, encoding);
       
  1122   nByte = pIn1->n + pIn2->n;
       
  1123   if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
       
  1124     goto too_big;
       
  1125   }
       
  1126   MemSetTypeFlag(pOut, MEM_Str);
       
  1127   if( sqlite3VdbeMemGrow(pOut, nByte+2, pOut==pIn2) ){
       
  1128     goto no_mem;
       
  1129   }
       
  1130   if( pOut!=pIn2 ){
       
  1131     memcpy(pOut->z, pIn2->z, pIn2->n);
       
  1132   }
       
  1133   memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
       
  1134   pOut->z[nByte] = 0;
       
  1135   pOut->z[nByte+1] = 0;
       
  1136   pOut->flags |= MEM_Term;
       
  1137   pOut->n = nByte;
       
  1138   pOut->enc = encoding;
       
  1139   UPDATE_MAX_BLOBSIZE(pOut);
       
  1140   break;
       
  1141 }
       
  1142 
       
  1143 /* Opcode: Add P1 P2 P3 * *
       
  1144 **
       
  1145 ** Add the value in register P1 to the value in register P2
       
  1146 ** and store the result in register P3.
       
  1147 ** If either input is NULL, the result is NULL.
       
  1148 */
       
  1149 /* Opcode: Multiply P1 P2 P3 * *
       
  1150 **
       
  1151 **
       
  1152 ** Multiply the value in register P1 by the value in register P2
       
  1153 ** and store the result in register P3.
       
  1154 ** If either input is NULL, the result is NULL.
       
  1155 */
       
  1156 /* Opcode: Subtract P1 P2 P3 * *
       
  1157 **
       
  1158 ** Subtract the value in register P1 from the value in register P2
       
  1159 ** and store the result in register P3.
       
  1160 ** If either input is NULL, the result is NULL.
       
  1161 */
       
  1162 /* Opcode: Divide P1 P2 P3 * *
       
  1163 **
       
  1164 ** Divide the value in register P1 by the value in register P2
       
  1165 ** and store the result in register P3.  If the value in register P2
       
  1166 ** is zero, then the result is NULL.
       
  1167 ** If either input is NULL, the result is NULL.
       
  1168 */
       
  1169 /* Opcode: Remainder P1 P2 P3 * *
       
  1170 **
       
  1171 ** Compute the remainder after integer division of the value in
       
  1172 ** register P1 by the value in register P2 and store the result in P3. 
       
  1173 ** If the value in register P2 is zero the result is NULL.
       
  1174 ** If either operand is NULL, the result is NULL.
       
  1175 */
       
  1176 case OP_Add:                   /* same as TK_PLUS, in1, in2, out3 */
       
  1177 case OP_Subtract:              /* same as TK_MINUS, in1, in2, out3 */
       
  1178 case OP_Multiply:              /* same as TK_STAR, in1, in2, out3 */
       
  1179 case OP_Divide:                /* same as TK_SLASH, in1, in2, out3 */
       
  1180 case OP_Remainder: {           /* same as TK_REM, in1, in2, out3 */
       
  1181   int flags;
       
  1182   applyNumericAffinity(pIn1);
       
  1183   applyNumericAffinity(pIn2);
       
  1184   flags = pIn1->flags | pIn2->flags;
       
  1185   if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
       
  1186   if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){
       
  1187     i64 a, b;
       
  1188     a = pIn1->u.i;
       
  1189     b = pIn2->u.i;
       
  1190     switch( pOp->opcode ){
       
  1191       case OP_Add:         b += a;       break;
       
  1192       case OP_Subtract:    b -= a;       break;
       
  1193       case OP_Multiply:    b *= a;       break;
       
  1194       case OP_Divide: {
       
  1195         if( a==0 ) goto arithmetic_result_is_null;
       
  1196         /* Dividing the largest possible negative 64-bit integer (1<<63) by 
       
  1197         ** -1 returns an integer too large to store in a 64-bit data-type. On
       
  1198         ** some architectures, the value overflows to (1<<63). On others,
       
  1199         ** a SIGFPE is issued. The following statement normalizes this
       
  1200         ** behavior so that all architectures behave as if integer 
       
  1201         ** overflow occurred.
       
  1202         */
       
  1203         if( a==-1 && b==SMALLEST_INT64 ) a = 1;
       
  1204         b /= a;
       
  1205         break;
       
  1206       }
       
  1207       default: {
       
  1208         if( a==0 ) goto arithmetic_result_is_null;
       
  1209         if( a==-1 ) a = 1;
       
  1210         b %= a;
       
  1211         break;
       
  1212       }
       
  1213     }
       
  1214     pOut->u.i = b;
       
  1215     MemSetTypeFlag(pOut, MEM_Int);
       
  1216   }else{
       
  1217     double a, b;
       
  1218     a = sqlite3VdbeRealValue(pIn1);
       
  1219     b = sqlite3VdbeRealValue(pIn2);
       
  1220     switch( pOp->opcode ){
       
  1221       case OP_Add:         b += a;       break;
       
  1222       case OP_Subtract:    b -= a;       break;
       
  1223       case OP_Multiply:    b *= a;       break;
       
  1224       case OP_Divide: {
       
  1225         if( a==0.0 ) goto arithmetic_result_is_null;
       
  1226         b /= a;
       
  1227         break;
       
  1228       }
       
  1229       default: {
       
  1230         i64 ia = (i64)a;
       
  1231         i64 ib = (i64)b;
       
  1232         if( ia==0 ) goto arithmetic_result_is_null;
       
  1233         if( ia==-1 ) ia = 1;
       
  1234         b = ib % ia;
       
  1235         break;
       
  1236       }
       
  1237     }
       
  1238     if( sqlite3IsNaN(b) ){
       
  1239       goto arithmetic_result_is_null;
       
  1240     }
       
  1241     pOut->r = b;
       
  1242     MemSetTypeFlag(pOut, MEM_Real);
       
  1243     if( (flags & MEM_Real)==0 ){
       
  1244       sqlite3VdbeIntegerAffinity(pOut);
       
  1245     }
       
  1246   }
       
  1247   break;
       
  1248 
       
  1249 arithmetic_result_is_null:
       
  1250   sqlite3VdbeMemSetNull(pOut);
       
  1251   break;
       
  1252 }
       
  1253 
       
  1254 /* Opcode: CollSeq * * P4
       
  1255 **
       
  1256 ** P4 is a pointer to a CollSeq struct. If the next call to a user function
       
  1257 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
       
  1258 ** be returned. This is used by the built-in min(), max() and nullif()
       
  1259 ** functions.
       
  1260 **
       
  1261 ** The interface used by the implementation of the aforementioned functions
       
  1262 ** to retrieve the collation sequence set by this opcode is not available
       
  1263 ** publicly, only to user functions defined in func.c.
       
  1264 */
       
  1265 case OP_CollSeq: {
       
  1266   assert( pOp->p4type==P4_COLLSEQ );
       
  1267   break;
       
  1268 }
       
  1269 
       
  1270 /* Opcode: Function P1 P2 P3 P4 P5
       
  1271 **
       
  1272 ** Invoke a user function (P4 is a pointer to a Function structure that
       
  1273 ** defines the function) with P5 arguments taken from register P2 and
       
  1274 ** successors.  The result of the function is stored in register P3.
       
  1275 ** Register P3 must not be one of the function inputs.
       
  1276 **
       
  1277 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 
       
  1278 ** function was determined to be constant at compile time. If the first
       
  1279 ** argument was constant then bit 0 of P1 is set. This is used to determine
       
  1280 ** whether meta data associated with a user function argument using the
       
  1281 ** sqlite3_set_auxdata() API may be safely retained until the next
       
  1282 ** invocation of this opcode.
       
  1283 **
       
  1284 ** See also: AggStep and AggFinal
       
  1285 */
       
  1286 case OP_Function: {
       
  1287   int i;
       
  1288   Mem *pArg;
       
  1289   sqlite3_context ctx;
       
  1290   sqlite3_value **apVal;
       
  1291   int n = pOp->p5;
       
  1292 
       
  1293   apVal = p->apArg;
       
  1294   assert( apVal || n==0 );
       
  1295 
       
  1296   assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem) );
       
  1297   assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
       
  1298   pArg = &p->aMem[pOp->p2];
       
  1299   for(i=0; i<n; i++, pArg++){
       
  1300     apVal[i] = pArg;
       
  1301     storeTypeInfo(pArg, encoding);
       
  1302     REGISTER_TRACE(pOp->p2, pArg);
       
  1303   }
       
  1304 
       
  1305   assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC );
       
  1306   if( pOp->p4type==P4_FUNCDEF ){
       
  1307     ctx.pFunc = pOp->p4.pFunc;
       
  1308     ctx.pVdbeFunc = 0;
       
  1309   }else{
       
  1310     ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc;
       
  1311     ctx.pFunc = ctx.pVdbeFunc->pFunc;
       
  1312   }
       
  1313 
       
  1314   assert( pOp->p3>0 && pOp->p3<=p->nMem );
       
  1315   pOut = &p->aMem[pOp->p3];
       
  1316   ctx.s.flags = MEM_Null;
       
  1317   ctx.s.db = db;
       
  1318   ctx.s.xDel = 0;
       
  1319   ctx.s.zMalloc = 0;
       
  1320 
       
  1321   /* The output cell may already have a buffer allocated. Move
       
  1322   ** the pointer to ctx.s so in case the user-function can use
       
  1323   ** the already allocated buffer instead of allocating a new one.
       
  1324   */
       
  1325   sqlite3VdbeMemMove(&ctx.s, pOut);
       
  1326   MemSetTypeFlag(&ctx.s, MEM_Null);
       
  1327 
       
  1328   ctx.isError = 0;
       
  1329   if( ctx.pFunc->needCollSeq ){
       
  1330     assert( pOp>p->aOp );
       
  1331     assert( pOp[-1].p4type==P4_COLLSEQ );
       
  1332     assert( pOp[-1].opcode==OP_CollSeq );
       
  1333     ctx.pColl = pOp[-1].p4.pColl;
       
  1334   }
       
  1335   if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
       
  1336   (*ctx.pFunc->xFunc)(&ctx, n, apVal);
       
  1337   if( sqlite3SafetyOn(db) ){
       
  1338     sqlite3VdbeMemRelease(&ctx.s);
       
  1339     goto abort_due_to_misuse;
       
  1340   }
       
  1341   if( db->mallocFailed ){
       
  1342     /* Even though a malloc() has failed, the implementation of the
       
  1343     ** user function may have called an sqlite3_result_XXX() function
       
  1344     ** to return a value. The following call releases any resources
       
  1345     ** associated with such a value.
       
  1346     **
       
  1347     ** Note: Maybe MemRelease() should be called if sqlite3SafetyOn()
       
  1348     ** fails also (the if(...) statement above). But if people are
       
  1349     ** misusing sqlite, they have bigger problems than a leaked value.
       
  1350     */
       
  1351     sqlite3VdbeMemRelease(&ctx.s);
       
  1352     goto no_mem;
       
  1353   }
       
  1354 
       
  1355   /* If any auxiliary data functions have been called by this user function,
       
  1356   ** immediately call the destructor for any non-static values.
       
  1357   */
       
  1358   if( ctx.pVdbeFunc ){
       
  1359     sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
       
  1360     pOp->p4.pVdbeFunc = ctx.pVdbeFunc;
       
  1361     pOp->p4type = P4_VDBEFUNC;
       
  1362   }
       
  1363 
       
  1364   /* If the function returned an error, throw an exception */
       
  1365   if( ctx.isError ){
       
  1366     sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
       
  1367     rc = ctx.isError;
       
  1368   }
       
  1369 
       
  1370   /* Copy the result of the function into register P3 */
       
  1371   sqlite3VdbeChangeEncoding(&ctx.s, encoding);
       
  1372   sqlite3VdbeMemMove(pOut, &ctx.s);
       
  1373   if( sqlite3VdbeMemTooBig(pOut) ){
       
  1374     goto too_big;
       
  1375   }
       
  1376   REGISTER_TRACE(pOp->p3, pOut);
       
  1377   UPDATE_MAX_BLOBSIZE(pOut);
       
  1378   break;
       
  1379 }
       
  1380 
       
  1381 /* Opcode: BitAnd P1 P2 P3 * *
       
  1382 **
       
  1383 ** Take the bit-wise AND of the values in register P1 and P2 and
       
  1384 ** store the result in register P3.
       
  1385 ** If either input is NULL, the result is NULL.
       
  1386 */
       
  1387 /* Opcode: BitOr P1 P2 P3 * *
       
  1388 **
       
  1389 ** Take the bit-wise OR of the values in register P1 and P2 and
       
  1390 ** store the result in register P3.
       
  1391 ** If either input is NULL, the result is NULL.
       
  1392 */
       
  1393 /* Opcode: ShiftLeft P1 P2 P3 * *
       
  1394 **
       
  1395 ** Shift the integer value in register P2 to the left by the
       
  1396 ** number of bits specified by the integer in regiser P1.
       
  1397 ** Store the result in register P3.
       
  1398 ** If either input is NULL, the result is NULL.
       
  1399 */
       
  1400 /* Opcode: ShiftRight P1 P2 P3 * *
       
  1401 **
       
  1402 ** Shift the integer value in register P2 to the right by the
       
  1403 ** number of bits specified by the integer in register P1.
       
  1404 ** Store the result in register P3.
       
  1405 ** If either input is NULL, the result is NULL.
       
  1406 */
       
  1407 case OP_BitAnd:                 /* same as TK_BITAND, in1, in2, out3 */
       
  1408 case OP_BitOr:                  /* same as TK_BITOR, in1, in2, out3 */
       
  1409 case OP_ShiftLeft:              /* same as TK_LSHIFT, in1, in2, out3 */
       
  1410 case OP_ShiftRight: {           /* same as TK_RSHIFT, in1, in2, out3 */
       
  1411   i64 a, b;
       
  1412 
       
  1413   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
       
  1414     sqlite3VdbeMemSetNull(pOut);
       
  1415     break;
       
  1416   }
       
  1417   a = sqlite3VdbeIntValue(pIn2);
       
  1418   b = sqlite3VdbeIntValue(pIn1);
       
  1419   switch( pOp->opcode ){
       
  1420     case OP_BitAnd:      a &= b;     break;
       
  1421     case OP_BitOr:       a |= b;     break;
       
  1422     case OP_ShiftLeft:   a <<= b;    break;
       
  1423     default:  assert( pOp->opcode==OP_ShiftRight );
       
  1424                          a >>= b;    break;
       
  1425   }
       
  1426   pOut->u.i = a;
       
  1427   MemSetTypeFlag(pOut, MEM_Int);
       
  1428   break;
       
  1429 }
       
  1430 
       
  1431 /* Opcode: AddImm  P1 P2 * * *
       
  1432 ** 
       
  1433 ** Add the constant P2 to the value in register P1.
       
  1434 ** The result is always an integer.
       
  1435 **
       
  1436 ** To force any register to be an integer, just add 0.
       
  1437 */
       
  1438 case OP_AddImm: {            /* in1 */
       
  1439   sqlite3VdbeMemIntegerify(pIn1);
       
  1440   pIn1->u.i += pOp->p2;
       
  1441   break;
       
  1442 }
       
  1443 
       
  1444 /* Opcode: ForceInt P1 P2 P3 * *
       
  1445 **
       
  1446 ** Convert value in register P1 into an integer.  If the value 
       
  1447 ** in P1 is not numeric (meaning that is is a NULL or a string that
       
  1448 ** does not look like an integer or floating point number) then
       
  1449 ** jump to P2.  If the value in P1 is numeric then
       
  1450 ** convert it into the least integer that is greater than or equal to its
       
  1451 ** current value if P3==0, or to the least integer that is strictly
       
  1452 ** greater than its current value if P3==1.
       
  1453 */
       
  1454 case OP_ForceInt: {            /* jump, in1 */
       
  1455   i64 v;
       
  1456   applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
       
  1457   if( (pIn1->flags & (MEM_Int|MEM_Real))==0 ){
       
  1458     pc = pOp->p2 - 1;
       
  1459     break;
       
  1460   }
       
  1461   if( pIn1->flags & MEM_Int ){
       
  1462     v = pIn1->u.i + (pOp->p3!=0);
       
  1463   }else{
       
  1464     assert( pIn1->flags & MEM_Real );
       
  1465     v = (sqlite3_int64)pIn1->r;
       
  1466     if( pIn1->r>(double)v ) v++;
       
  1467     if( pOp->p3 && pIn1->r==(double)v ) v++;
       
  1468   }
       
  1469   pIn1->u.i = v;
       
  1470   MemSetTypeFlag(pIn1, MEM_Int);
       
  1471   break;
       
  1472 }
       
  1473 
       
  1474 /* Opcode: MustBeInt P1 P2 * * *
       
  1475 ** 
       
  1476 ** Force the value in register P1 to be an integer.  If the value
       
  1477 ** in P1 is not an integer and cannot be converted into an integer
       
  1478 ** without data loss, then jump immediately to P2, or if P2==0
       
  1479 ** raise an SQLITE_MISMATCH exception.
       
  1480 */
       
  1481 case OP_MustBeInt: {            /* jump, in1 */
       
  1482   applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
       
  1483   if( (pIn1->flags & MEM_Int)==0 ){
       
  1484     if( pOp->p2==0 ){
       
  1485       rc = SQLITE_MISMATCH;
       
  1486       goto abort_due_to_error;
       
  1487     }else{
       
  1488       pc = pOp->p2 - 1;
       
  1489     }
       
  1490   }else{
       
  1491     MemSetTypeFlag(pIn1, MEM_Int);
       
  1492   }
       
  1493   break;
       
  1494 }
       
  1495 
       
  1496 /* Opcode: RealAffinity P1 * * * *
       
  1497 **
       
  1498 ** If register P1 holds an integer convert it to a real value.
       
  1499 **
       
  1500 ** This opcode is used when extracting information from a column that
       
  1501 ** has REAL affinity.  Such column values may still be stored as
       
  1502 ** integers, for space efficiency, but after extraction we want them
       
  1503 ** to have only a real value.
       
  1504 */
       
  1505 case OP_RealAffinity: {                  /* in1 */
       
  1506   if( pIn1->flags & MEM_Int ){
       
  1507     sqlite3VdbeMemRealify(pIn1);
       
  1508   }
       
  1509   break;
       
  1510 }
       
  1511 
       
  1512 #ifndef SQLITE_OMIT_CAST
       
  1513 /* Opcode: ToText P1 * * * *
       
  1514 **
       
  1515 ** Force the value in register P1 to be text.
       
  1516 ** If the value is numeric, convert it to a string using the
       
  1517 ** equivalent of printf().  Blob values are unchanged and
       
  1518 ** are afterwards simply interpreted as text.
       
  1519 **
       
  1520 ** A NULL value is not changed by this routine.  It remains NULL.
       
  1521 */
       
  1522 case OP_ToText: {                  /* same as TK_TO_TEXT, in1 */
       
  1523   if( pIn1->flags & MEM_Null ) break;
       
  1524   assert( MEM_Str==(MEM_Blob>>3) );
       
  1525   pIn1->flags |= (pIn1->flags&MEM_Blob)>>3;
       
  1526   applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
       
  1527   rc = ExpandBlob(pIn1);
       
  1528   assert( pIn1->flags & MEM_Str || db->mallocFailed );
       
  1529   pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob);
       
  1530   UPDATE_MAX_BLOBSIZE(pIn1);
       
  1531   break;
       
  1532 }
       
  1533 
       
  1534 /* Opcode: ToBlob P1 * * * *
       
  1535 **
       
  1536 ** Force the value in register P1 to be a BLOB.
       
  1537 ** If the value is numeric, convert it to a string first.
       
  1538 ** Strings are simply reinterpreted as blobs with no change
       
  1539 ** to the underlying data.
       
  1540 **
       
  1541 ** A NULL value is not changed by this routine.  It remains NULL.
       
  1542 */
       
  1543 case OP_ToBlob: {                  /* same as TK_TO_BLOB, in1 */
       
  1544   if( pIn1->flags & MEM_Null ) break;
       
  1545   if( (pIn1->flags & MEM_Blob)==0 ){
       
  1546     applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
       
  1547     assert( pIn1->flags & MEM_Str || db->mallocFailed );
       
  1548   }
       
  1549   MemSetTypeFlag(pIn1, MEM_Blob);
       
  1550   UPDATE_MAX_BLOBSIZE(pIn1);
       
  1551   break;
       
  1552 }
       
  1553 
       
  1554 /* Opcode: ToNumeric P1 * * * *
       
  1555 **
       
  1556 ** Force the value in register P1 to be numeric (either an
       
  1557 ** integer or a floating-point number.)
       
  1558 ** If the value is text or blob, try to convert it to an using the
       
  1559 ** equivalent of atoi() or atof() and store 0 if no such conversion 
       
  1560 ** is possible.
       
  1561 **
       
  1562 ** A NULL value is not changed by this routine.  It remains NULL.
       
  1563 */
       
  1564 case OP_ToNumeric: {                  /* same as TK_TO_NUMERIC, in1 */
       
  1565   if( (pIn1->flags & (MEM_Null|MEM_Int|MEM_Real))==0 ){
       
  1566     sqlite3VdbeMemNumerify(pIn1);
       
  1567   }
       
  1568   break;
       
  1569 }
       
  1570 #endif /* SQLITE_OMIT_CAST */
       
  1571 
       
  1572 /* Opcode: ToInt P1 * * * *
       
  1573 **
       
  1574 ** Force the value in register P1 be an integer.  If
       
  1575 ** The value is currently a real number, drop its fractional part.
       
  1576 ** If the value is text or blob, try to convert it to an integer using the
       
  1577 ** equivalent of atoi() and store 0 if no such conversion is possible.
       
  1578 **
       
  1579 ** A NULL value is not changed by this routine.  It remains NULL.
       
  1580 */
       
  1581 case OP_ToInt: {                  /* same as TK_TO_INT, in1 */
       
  1582   if( (pIn1->flags & MEM_Null)==0 ){
       
  1583     sqlite3VdbeMemIntegerify(pIn1);
       
  1584   }
       
  1585   break;
       
  1586 }
       
  1587 
       
  1588 #ifndef SQLITE_OMIT_CAST
       
  1589 /* Opcode: ToReal P1 * * * *
       
  1590 **
       
  1591 ** Force the value in register P1 to be a floating point number.
       
  1592 ** If The value is currently an integer, convert it.
       
  1593 ** If the value is text or blob, try to convert it to an integer using the
       
  1594 ** equivalent of atoi() and store 0.0 if no such conversion is possible.
       
  1595 **
       
  1596 ** A NULL value is not changed by this routine.  It remains NULL.
       
  1597 */
       
  1598 case OP_ToReal: {                  /* same as TK_TO_REAL, in1 */
       
  1599   if( (pIn1->flags & MEM_Null)==0 ){
       
  1600     sqlite3VdbeMemRealify(pIn1);
       
  1601   }
       
  1602   break;
       
  1603 }
       
  1604 #endif /* SQLITE_OMIT_CAST */
       
  1605 
       
  1606 /* Opcode: Lt P1 P2 P3 P4 P5
       
  1607 **
       
  1608 ** Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then
       
  1609 ** jump to address P2.  
       
  1610 **
       
  1611 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
       
  1612 ** reg(P3) is NULL then take the jump.  If the SQLITE_JUMPIFNULL 
       
  1613 ** bit is clear then fall thru if either operand is NULL.
       
  1614 **
       
  1615 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
       
  1616 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 
       
  1617 ** to coerce both inputs according to this affinity before the
       
  1618 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
       
  1619 ** affinity is used. Note that the affinity conversions are stored
       
  1620 ** back into the input registers P1 and P3.  So this opcode can cause
       
  1621 ** persistent changes to registers P1 and P3.
       
  1622 **
       
  1623 ** Once any conversions have taken place, and neither value is NULL, 
       
  1624 ** the values are compared. If both values are blobs then memcmp() is
       
  1625 ** used to determine the results of the comparison.  If both values
       
  1626 ** are text, then the appropriate collating function specified in
       
  1627 ** P4 is  used to do the comparison.  If P4 is not specified then
       
  1628 ** memcmp() is used to compare text string.  If both values are
       
  1629 ** numeric, then a numeric comparison is used. If the two values
       
  1630 ** are of different types, then numbers are considered less than
       
  1631 ** strings and strings are considered less than blobs.
       
  1632 **
       
  1633 ** If the SQLITE_STOREP2 bit of P5 is set, then do not jump.  Instead,
       
  1634 ** store a boolean result (either 0, or 1, or NULL) in register P2.
       
  1635 */
       
  1636 /* Opcode: Ne P1 P2 P3 P4 P5
       
  1637 **
       
  1638 ** This works just like the Lt opcode except that the jump is taken if
       
  1639 ** the operands in registers P1 and P3 are not equal.  See the Lt opcode for
       
  1640 ** additional information.
       
  1641 */
       
  1642 /* Opcode: Eq P1 P2 P3 P4 P5
       
  1643 **
       
  1644 ** This works just like the Lt opcode except that the jump is taken if
       
  1645 ** the operands in registers P1 and P3 are equal.
       
  1646 ** See the Lt opcode for additional information.
       
  1647 */
       
  1648 /* Opcode: Le P1 P2 P3 P4 P5
       
  1649 **
       
  1650 ** This works just like the Lt opcode except that the jump is taken if
       
  1651 ** the content of register P3 is less than or equal to the content of
       
  1652 ** register P1.  See the Lt opcode for additional information.
       
  1653 */
       
  1654 /* Opcode: Gt P1 P2 P3 P4 P5
       
  1655 **
       
  1656 ** This works just like the Lt opcode except that the jump is taken if
       
  1657 ** the content of register P3 is greater than the content of
       
  1658 ** register P1.  See the Lt opcode for additional information.
       
  1659 */
       
  1660 /* Opcode: Ge P1 P2 P3 P4 P5
       
  1661 **
       
  1662 ** This works just like the Lt opcode except that the jump is taken if
       
  1663 ** the content of register P3 is greater than or equal to the content of
       
  1664 ** register P1.  See the Lt opcode for additional information.
       
  1665 */
       
  1666 case OP_Eq:               /* same as TK_EQ, jump, in1, in3 */
       
  1667 case OP_Ne:               /* same as TK_NE, jump, in1, in3 */
       
  1668 case OP_Lt:               /* same as TK_LT, jump, in1, in3 */
       
  1669 case OP_Le:               /* same as TK_LE, jump, in1, in3 */
       
  1670 case OP_Gt:               /* same as TK_GT, jump, in1, in3 */
       
  1671 case OP_Ge: {             /* same as TK_GE, jump, in1, in3 */
       
  1672   int flags;
       
  1673   int res;
       
  1674   char affinity;
       
  1675 
       
  1676   flags = pIn1->flags|pIn3->flags;
       
  1677 
       
  1678   if( flags&MEM_Null ){
       
  1679     /* If either operand is NULL then the result is always NULL.
       
  1680     ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
       
  1681     */
       
  1682     if( pOp->p5 & SQLITE_STOREP2 ){
       
  1683       pOut = &p->aMem[pOp->p2];
       
  1684       MemSetTypeFlag(pOut, MEM_Null);
       
  1685       REGISTER_TRACE(pOp->p2, pOut);
       
  1686     }else if( pOp->p5 & SQLITE_JUMPIFNULL ){
       
  1687       pc = pOp->p2-1;
       
  1688     }
       
  1689     break;
       
  1690   }
       
  1691 
       
  1692   affinity = pOp->p5 & SQLITE_AFF_MASK;
       
  1693   if( affinity ){
       
  1694     applyAffinity(pIn1, affinity, encoding);
       
  1695     applyAffinity(pIn3, affinity, encoding);
       
  1696   }
       
  1697 
       
  1698   assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
       
  1699   ExpandBlob(pIn1);
       
  1700   ExpandBlob(pIn3);
       
  1701   res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
       
  1702   switch( pOp->opcode ){
       
  1703     case OP_Eq:    res = res==0;     break;
       
  1704     case OP_Ne:    res = res!=0;     break;
       
  1705     case OP_Lt:    res = res<0;      break;
       
  1706     case OP_Le:    res = res<=0;     break;
       
  1707     case OP_Gt:    res = res>0;      break;
       
  1708     default:       res = res>=0;     break;
       
  1709   }
       
  1710 
       
  1711   if( pOp->p5 & SQLITE_STOREP2 ){
       
  1712     pOut = &p->aMem[pOp->p2];
       
  1713     MemSetTypeFlag(pOut, MEM_Int);
       
  1714     pOut->u.i = res;
       
  1715     REGISTER_TRACE(pOp->p2, pOut);
       
  1716   }else if( res ){
       
  1717     pc = pOp->p2-1;
       
  1718   }
       
  1719   break;
       
  1720 }
       
  1721 
       
  1722 /* Opcode: Permutation * * * P4 *
       
  1723 **
       
  1724 ** Set the permuation used by the OP_Compare operator to be the array
       
  1725 ** of integers in P4.
       
  1726 **
       
  1727 ** The permutation is only valid until the next OP_Permutation, OP_Compare,
       
  1728 ** OP_Halt, or OP_ResultRow.  Typically the OP_Permutation should occur
       
  1729 ** immediately prior to the OP_Compare.
       
  1730 */
       
  1731 case OP_Permutation: {
       
  1732   assert( pOp->p4type==P4_INTARRAY );
       
  1733   assert( pOp->p4.ai );
       
  1734   aPermute = pOp->p4.ai;
       
  1735   break;
       
  1736 }
       
  1737 
       
  1738 /* Opcode: Compare P1 P2 P3 P4 *
       
  1739 **
       
  1740 ** Compare to vectors of registers in reg(P1)..reg(P1+P3-1) (all this
       
  1741 ** one "A") and in reg(P2)..reg(P2+P3-1) ("B").  Save the result of
       
  1742 ** the comparison for use by the next OP_Jump instruct.
       
  1743 **
       
  1744 ** P4 is a KeyInfo structure that defines collating sequences and sort
       
  1745 ** orders for the comparison.  The permutation applies to registers
       
  1746 ** only.  The KeyInfo elements are used sequentially.
       
  1747 **
       
  1748 ** The comparison is a sort comparison, so NULLs compare equal,
       
  1749 ** NULLs are less than numbers, numbers are less than strings,
       
  1750 ** and strings are less than blobs.
       
  1751 */
       
  1752 case OP_Compare: {
       
  1753   int n = pOp->p3;
       
  1754   int i, p1, p2;
       
  1755   const KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
       
  1756   assert( n>0 );
       
  1757   assert( pKeyInfo!=0 );
       
  1758   p1 = pOp->p1;
       
  1759   assert( p1>0 && p1+n-1<p->nMem );
       
  1760   p2 = pOp->p2;
       
  1761   assert( p2>0 && p2+n-1<p->nMem );
       
  1762   for(i=0; i<n; i++){
       
  1763     int idx = aPermute ? aPermute[i] : i;
       
  1764     CollSeq *pColl;    /* Collating sequence to use on this term */
       
  1765     int bRev;          /* True for DESCENDING sort order */
       
  1766     REGISTER_TRACE(p1+idx, &p->aMem[p1+idx]);
       
  1767     REGISTER_TRACE(p2+idx, &p->aMem[p2+idx]);
       
  1768     assert( i<pKeyInfo->nField );
       
  1769     pColl = pKeyInfo->aColl[i];
       
  1770     bRev = pKeyInfo->aSortOrder[i];
       
  1771     iCompare = sqlite3MemCompare(&p->aMem[p1+idx], &p->aMem[p2+idx], pColl);
       
  1772     if( iCompare ){
       
  1773       if( bRev ) iCompare = -iCompare;
       
  1774       break;
       
  1775     }
       
  1776   }
       
  1777   aPermute = 0;
       
  1778   break;
       
  1779 }
       
  1780 
       
  1781 /* Opcode: Jump P1 P2 P3 * *
       
  1782 **
       
  1783 ** Jump to the instruction at address P1, P2, or P3 depending on whether
       
  1784 ** in the most recent OP_Compare instruction the P1 vector was less than
       
  1785 ** equal to, or greater than the P2 vector, respectively.
       
  1786 */
       
  1787 case OP_Jump: {             /* jump */
       
  1788   if( iCompare<0 ){
       
  1789     pc = pOp->p1 - 1;
       
  1790   }else if( iCompare==0 ){
       
  1791     pc = pOp->p2 - 1;
       
  1792   }else{
       
  1793     pc = pOp->p3 - 1;
       
  1794   }
       
  1795   break;
       
  1796 }
       
  1797 
       
  1798 /* Opcode: And P1 P2 P3 * *
       
  1799 **
       
  1800 ** Take the logical AND of the values in registers P1 and P2 and
       
  1801 ** write the result into register P3.
       
  1802 **
       
  1803 ** If either P1 or P2 is 0 (false) then the result is 0 even if
       
  1804 ** the other input is NULL.  A NULL and true or two NULLs give
       
  1805 ** a NULL output.
       
  1806 */
       
  1807 /* Opcode: Or P1 P2 P3 * *
       
  1808 **
       
  1809 ** Take the logical OR of the values in register P1 and P2 and
       
  1810 ** store the answer in register P3.
       
  1811 **
       
  1812 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
       
  1813 ** even if the other input is NULL.  A NULL and false or two NULLs
       
  1814 ** give a NULL output.
       
  1815 */
       
  1816 case OP_And:              /* same as TK_AND, in1, in2, out3 */
       
  1817 case OP_Or: {             /* same as TK_OR, in1, in2, out3 */
       
  1818   int v1, v2;    /* 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
       
  1819 
       
  1820   if( pIn1->flags & MEM_Null ){
       
  1821     v1 = 2;
       
  1822   }else{
       
  1823     v1 = sqlite3VdbeIntValue(pIn1)!=0;
       
  1824   }
       
  1825   if( pIn2->flags & MEM_Null ){
       
  1826     v2 = 2;
       
  1827   }else{
       
  1828     v2 = sqlite3VdbeIntValue(pIn2)!=0;
       
  1829   }
       
  1830   if( pOp->opcode==OP_And ){
       
  1831     static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
       
  1832     v1 = and_logic[v1*3+v2];
       
  1833   }else{
       
  1834     static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
       
  1835     v1 = or_logic[v1*3+v2];
       
  1836   }
       
  1837   if( v1==2 ){
       
  1838     MemSetTypeFlag(pOut, MEM_Null);
       
  1839   }else{
       
  1840     pOut->u.i = v1;
       
  1841     MemSetTypeFlag(pOut, MEM_Int);
       
  1842   }
       
  1843   break;
       
  1844 }
       
  1845 
       
  1846 /* Opcode: Not P1 * * * *
       
  1847 **
       
  1848 ** Interpret the value in register P1 as a boolean value.  Replace it
       
  1849 ** with its complement.  If the value in register P1 is NULL its value
       
  1850 ** is unchanged.
       
  1851 */
       
  1852 case OP_Not: {                /* same as TK_NOT, in1 */
       
  1853   if( pIn1->flags & MEM_Null ) break;  /* Do nothing to NULLs */
       
  1854   sqlite3VdbeMemIntegerify(pIn1);
       
  1855   pIn1->u.i = !pIn1->u.i;
       
  1856   assert( pIn1->flags&MEM_Int );
       
  1857   break;
       
  1858 }
       
  1859 
       
  1860 /* Opcode: BitNot P1 * * * *
       
  1861 **
       
  1862 ** Interpret the content of register P1 as an integer.  Replace it
       
  1863 ** with its ones-complement.  If the value is originally NULL, leave
       
  1864 ** it unchanged.
       
  1865 */
       
  1866 case OP_BitNot: {             /* same as TK_BITNOT, in1 */
       
  1867   if( pIn1->flags & MEM_Null ) break;  /* Do nothing to NULLs */
       
  1868   sqlite3VdbeMemIntegerify(pIn1);
       
  1869   pIn1->u.i = ~pIn1->u.i;
       
  1870   assert( pIn1->flags&MEM_Int );
       
  1871   break;
       
  1872 }
       
  1873 
       
  1874 /* Opcode: If P1 P2 P3 * *
       
  1875 **
       
  1876 ** Jump to P2 if the value in register P1 is true.  The value is
       
  1877 ** is considered true if it is numeric and non-zero.  If the value
       
  1878 ** in P1 is NULL then take the jump if P3 is true.
       
  1879 */
       
  1880 /* Opcode: IfNot P1 P2 P3 * *
       
  1881 **
       
  1882 ** Jump to P2 if the value in register P1 is False.  The value is
       
  1883 ** is considered true if it has a numeric value of zero.  If the value
       
  1884 ** in P1 is NULL then take the jump if P3 is true.
       
  1885 */
       
  1886 case OP_If:                 /* jump, in1 */
       
  1887 case OP_IfNot: {            /* jump, in1 */
       
  1888   int c;
       
  1889   if( pIn1->flags & MEM_Null ){
       
  1890     c = pOp->p3;
       
  1891   }else{
       
  1892 #ifdef SQLITE_OMIT_FLOATING_POINT
       
  1893     c = sqlite3VdbeIntValue(pIn1);
       
  1894 #else
       
  1895     c = sqlite3VdbeRealValue(pIn1)!=0.0;
       
  1896 #endif
       
  1897     if( pOp->opcode==OP_IfNot ) c = !c;
       
  1898   }
       
  1899   if( c ){
       
  1900     pc = pOp->p2-1;
       
  1901   }
       
  1902   break;
       
  1903 }
       
  1904 
       
  1905 /* Opcode: IsNull P1 P2 P3 * *
       
  1906 **
       
  1907 ** Jump to P2 if the value in register P1 is NULL.  If P3 is greater
       
  1908 ** than zero, then check all values reg(P1), reg(P1+1), 
       
  1909 ** reg(P1+2), ..., reg(P1+P3-1).
       
  1910 */
       
  1911 case OP_IsNull: {            /* same as TK_ISNULL, jump, in1 */
       
  1912   int n = pOp->p3;
       
  1913   assert( pOp->p3==0 || pOp->p1>0 );
       
  1914   do{
       
  1915     if( (pIn1->flags & MEM_Null)!=0 ){
       
  1916       pc = pOp->p2 - 1;
       
  1917       break;
       
  1918     }
       
  1919     pIn1++;
       
  1920   }while( --n > 0 );
       
  1921   break;
       
  1922 }
       
  1923 
       
  1924 /* Opcode: NotNull P1 P2 * * *
       
  1925 **
       
  1926 ** Jump to P2 if the value in register P1 is not NULL.  
       
  1927 */
       
  1928 case OP_NotNull: {            /* same as TK_NOTNULL, jump, in1 */
       
  1929   if( (pIn1->flags & MEM_Null)==0 ){
       
  1930     pc = pOp->p2 - 1;
       
  1931   }
       
  1932   break;
       
  1933 }
       
  1934 
       
  1935 /* Opcode: SetNumColumns * P2 * * *
       
  1936 **
       
  1937 ** This opcode sets the number of columns for the cursor opened by the
       
  1938 ** following instruction to P2.
       
  1939 **
       
  1940 ** An OP_SetNumColumns is only useful if it occurs immediately before 
       
  1941 ** one of the following opcodes:
       
  1942 **
       
  1943 **     OpenRead
       
  1944 **     OpenWrite
       
  1945 **     OpenPseudo
       
  1946 **
       
  1947 ** If the OP_Column opcode is to be executed on a cursor, then
       
  1948 ** this opcode must be present immediately before the opcode that
       
  1949 ** opens the cursor.
       
  1950 */
       
  1951 case OP_SetNumColumns: {
       
  1952   break;
       
  1953 }
       
  1954 
       
  1955 /* Opcode: Column P1 P2 P3 P4 *
       
  1956 **
       
  1957 ** Interpret the data that cursor P1 points to as a structure built using
       
  1958 ** the MakeRecord instruction.  (See the MakeRecord opcode for additional
       
  1959 ** information about the format of the data.)  Extract the P2-th column
       
  1960 ** from this record.  If there are less that (P2+1) 
       
  1961 ** values in the record, extract a NULL.
       
  1962 **
       
  1963 ** The value extracted is stored in register P3.
       
  1964 **
       
  1965 ** If the KeyAsData opcode has previously executed on this cursor, then the
       
  1966 ** field might be extracted from the key rather than the data.
       
  1967 **
       
  1968 ** If the column contains fewer than P2 fields, then extract a NULL.  Or,
       
  1969 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
       
  1970 ** the result.
       
  1971 */
       
  1972 case OP_Column: {
       
  1973   u32 payloadSize;   /* Number of bytes in the record */
       
  1974   int p1 = pOp->p1;  /* P1 value of the opcode */
       
  1975   int p2 = pOp->p2;  /* column number to retrieve */
       
  1976   Cursor *pC = 0;    /* The VDBE cursor */
       
  1977   char *zRec;        /* Pointer to complete record-data */
       
  1978   BtCursor *pCrsr;   /* The BTree cursor */
       
  1979   u32 *aType;        /* aType[i] holds the numeric type of the i-th column */
       
  1980   u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
       
  1981   u32 nField;        /* number of fields in the record */
       
  1982   int len;           /* The length of the serialized data for the column */
       
  1983   int i;             /* Loop counter */
       
  1984   char *zData;       /* Part of the record being decoded */
       
  1985   Mem *pDest;        /* Where to write the extracted value */
       
  1986   Mem sMem;          /* For storing the record being decoded */
       
  1987 
       
  1988   sMem.flags = 0;
       
  1989   sMem.db = 0;
       
  1990   sMem.zMalloc = 0;
       
  1991   assert( p1<p->nCursor );
       
  1992   assert( pOp->p3>0 && pOp->p3<=p->nMem );
       
  1993   pDest = &p->aMem[pOp->p3];
       
  1994   MemSetTypeFlag(pDest, MEM_Null);
       
  1995 
       
  1996   /* This block sets the variable payloadSize to be the total number of
       
  1997   ** bytes in the record.
       
  1998   **
       
  1999   ** zRec is set to be the complete text of the record if it is available.
       
  2000   ** The complete record text is always available for pseudo-tables
       
  2001   ** If the record is stored in a cursor, the complete record text
       
  2002   ** might be available in the  pC->aRow cache.  Or it might not be.
       
  2003   ** If the data is unavailable,  zRec is set to NULL.
       
  2004   **
       
  2005   ** We also compute the number of columns in the record.  For cursors,
       
  2006   ** the number of columns is stored in the Cursor.nField element.
       
  2007   */
       
  2008   pC = p->apCsr[p1];
       
  2009   assert( pC!=0 );
       
  2010 #ifndef SQLITE_OMIT_VIRTUALTABLE
       
  2011   assert( pC->pVtabCursor==0 );
       
  2012 #endif
       
  2013   if( pC->pCursor!=0 ){
       
  2014     /* The record is stored in a B-Tree */
       
  2015     rc = sqlite3VdbeCursorMoveto(pC);
       
  2016     if( rc ) goto abort_due_to_error;
       
  2017     zRec = 0;
       
  2018     pCrsr = pC->pCursor;
       
  2019     if( pC->nullRow ){
       
  2020       payloadSize = 0;
       
  2021     }else if( pC->cacheStatus==p->cacheCtr ){
       
  2022       payloadSize = pC->payloadSize;
       
  2023       zRec = (char*)pC->aRow;
       
  2024     }else if( pC->isIndex ){
       
  2025       i64 payloadSize64;
       
  2026       sqlite3BtreeKeySize(pCrsr, &payloadSize64);
       
  2027       payloadSize = payloadSize64;
       
  2028     }else{
       
  2029       sqlite3BtreeDataSize(pCrsr, &payloadSize);
       
  2030     }
       
  2031     nField = pC->nField;
       
  2032   }else{
       
  2033     assert( pC->pseudoTable );
       
  2034     /* The record is the sole entry of a pseudo-table */
       
  2035     payloadSize = pC->nData;
       
  2036     zRec = pC->pData;
       
  2037     pC->cacheStatus = CACHE_STALE;
       
  2038     assert( payloadSize==0 || zRec!=0 );
       
  2039     nField = pC->nField;
       
  2040     pCrsr = 0;
       
  2041   }
       
  2042 
       
  2043   /* If payloadSize is 0, then just store a NULL */
       
  2044   if( payloadSize==0 ){
       
  2045     assert( pDest->flags&MEM_Null );
       
  2046     goto op_column_out;
       
  2047   }
       
  2048   if( payloadSize>db->aLimit[SQLITE_LIMIT_LENGTH] ){
       
  2049     goto too_big;
       
  2050   }
       
  2051 
       
  2052   assert( p2<nField );
       
  2053 
       
  2054   /* Read and parse the table header.  Store the results of the parse
       
  2055   ** into the record header cache fields of the cursor.
       
  2056   */
       
  2057   aType = pC->aType;
       
  2058   if( pC->cacheStatus==p->cacheCtr ){
       
  2059     aOffset = pC->aOffset;
       
  2060   }else{
       
  2061     u8 *zIdx;        /* Index into header */
       
  2062     u8 *zEndHdr;     /* Pointer to first byte after the header */
       
  2063     u32 offset;      /* Offset into the data */
       
  2064     int szHdrSz;     /* Size of the header size field at start of record */
       
  2065     int avail;       /* Number of bytes of available data */
       
  2066 
       
  2067     assert(aType);
       
  2068     pC->aOffset = aOffset = &aType[nField];
       
  2069     pC->payloadSize = payloadSize;
       
  2070     pC->cacheStatus = p->cacheCtr;
       
  2071 
       
  2072     /* Figure out how many bytes are in the header */
       
  2073     if( zRec ){
       
  2074       zData = zRec;
       
  2075     }else{
       
  2076       if( pC->isIndex ){
       
  2077         zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
       
  2078       }else{
       
  2079         zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
       
  2080       }
       
  2081       /* If KeyFetch()/DataFetch() managed to get the entire payload,
       
  2082       ** save the payload in the pC->aRow cache.  That will save us from
       
  2083       ** having to make additional calls to fetch the content portion of
       
  2084       ** the record.
       
  2085       */
       
  2086       if( avail>=payloadSize ){
       
  2087         zRec = zData;
       
  2088         pC->aRow = (u8*)zData;
       
  2089       }else{
       
  2090         pC->aRow = 0;
       
  2091       }
       
  2092     }
       
  2093     /* The following assert is true in all cases accept when
       
  2094     ** the database file has been corrupted externally.
       
  2095     **    assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
       
  2096     szHdrSz = getVarint32((u8*)zData, offset);
       
  2097 
       
  2098     /* The KeyFetch() or DataFetch() above are fast and will get the entire
       
  2099     ** record header in most cases.  But they will fail to get the complete
       
  2100     ** record header if the record header does not fit on a single page
       
  2101     ** in the B-Tree.  When that happens, use sqlite3VdbeMemFromBtree() to
       
  2102     ** acquire the complete header text.
       
  2103     */
       
  2104     if( !zRec && avail<offset ){
       
  2105       sMem.flags = 0;
       
  2106       sMem.db = 0;
       
  2107       rc = sqlite3VdbeMemFromBtree(pCrsr, 0, offset, pC->isIndex, &sMem);
       
  2108       if( rc!=SQLITE_OK ){
       
  2109         goto op_column_out;
       
  2110       }
       
  2111       zData = sMem.z;
       
  2112     }
       
  2113     zEndHdr = (u8 *)&zData[offset];
       
  2114     zIdx = (u8 *)&zData[szHdrSz];
       
  2115 
       
  2116     /* Scan the header and use it to fill in the aType[] and aOffset[]
       
  2117     ** arrays.  aType[i] will contain the type integer for the i-th
       
  2118     ** column and aOffset[i] will contain the offset from the beginning
       
  2119     ** of the record to the start of the data for the i-th column
       
  2120     */
       
  2121     for(i=0; i<nField; i++){
       
  2122       if( zIdx<zEndHdr ){
       
  2123         aOffset[i] = offset;
       
  2124         zIdx += getVarint32(zIdx, aType[i]);
       
  2125         offset += sqlite3VdbeSerialTypeLen(aType[i]);
       
  2126       }else{
       
  2127         /* If i is less that nField, then there are less fields in this
       
  2128         ** record than SetNumColumns indicated there are columns in the
       
  2129         ** table. Set the offset for any extra columns not present in
       
  2130         ** the record to 0. This tells code below to store a NULL
       
  2131         ** instead of deserializing a value from the record.
       
  2132         */
       
  2133         aOffset[i] = 0;
       
  2134       }
       
  2135     }
       
  2136     sqlite3VdbeMemRelease(&sMem);
       
  2137     sMem.flags = MEM_Null;
       
  2138 
       
  2139     /* If we have read more header data than was contained in the header,
       
  2140     ** or if the end of the last field appears to be past the end of the
       
  2141     ** record, or if the end of the last field appears to be before the end
       
  2142     ** of the record (when all fields present), then we must be dealing 
       
  2143     ** with a corrupt database.
       
  2144     */
       
  2145     if( zIdx>zEndHdr || offset>payloadSize || (zIdx==zEndHdr && offset!=payloadSize) ){
       
  2146       rc = SQLITE_CORRUPT_BKPT;
       
  2147       goto op_column_out;
       
  2148     }
       
  2149   }
       
  2150 
       
  2151   /* Get the column information. If aOffset[p2] is non-zero, then 
       
  2152   ** deserialize the value from the record. If aOffset[p2] is zero,
       
  2153   ** then there are not enough fields in the record to satisfy the
       
  2154   ** request.  In this case, set the value NULL or to P4 if P4 is
       
  2155   ** a pointer to a Mem object.
       
  2156   */
       
  2157   if( aOffset[p2] ){
       
  2158     assert( rc==SQLITE_OK );
       
  2159     if( zRec ){
       
  2160       sqlite3VdbeMemReleaseExternal(pDest);
       
  2161       sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest);
       
  2162     }else{
       
  2163       len = sqlite3VdbeSerialTypeLen(aType[p2]);
       
  2164       sqlite3VdbeMemMove(&sMem, pDest);
       
  2165       rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem);
       
  2166       if( rc!=SQLITE_OK ){
       
  2167         goto op_column_out;
       
  2168       }
       
  2169       zData = sMem.z;
       
  2170       sqlite3VdbeSerialGet((u8*)zData, aType[p2], pDest);
       
  2171     }
       
  2172     pDest->enc = encoding;
       
  2173   }else{
       
  2174     if( pOp->p4type==P4_MEM ){
       
  2175       sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
       
  2176     }else{
       
  2177       assert( pDest->flags&MEM_Null );
       
  2178     }
       
  2179   }
       
  2180 
       
  2181   /* If we dynamically allocated space to hold the data (in the
       
  2182   ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
       
  2183   ** dynamically allocated space over to the pDest structure.
       
  2184   ** This prevents a memory copy.
       
  2185   */
       
  2186   if( sMem.zMalloc ){
       
  2187     assert( sMem.z==sMem.zMalloc );
       
  2188     assert( !(pDest->flags & MEM_Dyn) );
       
  2189     assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z );
       
  2190     pDest->flags &= ~(MEM_Ephem|MEM_Static);
       
  2191     pDest->flags |= MEM_Term;
       
  2192     pDest->z = sMem.z;
       
  2193     pDest->zMalloc = sMem.zMalloc;
       
  2194   }
       
  2195 
       
  2196   rc = sqlite3VdbeMemMakeWriteable(pDest);
       
  2197 
       
  2198 op_column_out:
       
  2199   UPDATE_MAX_BLOBSIZE(pDest);
       
  2200   REGISTER_TRACE(pOp->p3, pDest);
       
  2201   break;
       
  2202 }
       
  2203 
       
  2204 /* Opcode: Affinity P1 P2 * P4 *
       
  2205 **
       
  2206 ** Apply affinities to a range of P2 registers starting with P1.
       
  2207 **
       
  2208 ** P4 is a string that is P2 characters long. The nth character of the
       
  2209 ** string indicates the column affinity that should be used for the nth
       
  2210 ** memory cell in the range.
       
  2211 */
       
  2212 case OP_Affinity: {
       
  2213   char *zAffinity = pOp->p4.z;
       
  2214   Mem *pData0 = &p->aMem[pOp->p1];
       
  2215   Mem *pLast = &pData0[pOp->p2-1];
       
  2216   Mem *pRec;
       
  2217 
       
  2218   for(pRec=pData0; pRec<=pLast; pRec++){
       
  2219     ExpandBlob(pRec);
       
  2220     applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
       
  2221   }
       
  2222   break;
       
  2223 }
       
  2224 
       
  2225 /* Opcode: MakeRecord P1 P2 P3 P4 *
       
  2226 **
       
  2227 ** Convert P2 registers beginning with P1 into a single entry
       
  2228 ** suitable for use as a data record in a database table or as a key
       
  2229 ** in an index.  The details of the format are irrelevant as long as
       
  2230 ** the OP_Column opcode can decode the record later.
       
  2231 ** Refer to source code comments for the details of the record
       
  2232 ** format.
       
  2233 **
       
  2234 ** P4 may be a string that is P2 characters long.  The nth character of the
       
  2235 ** string indicates the column affinity that should be used for the nth
       
  2236 ** field of the index key.
       
  2237 **
       
  2238 ** The mapping from character to affinity is given by the SQLITE_AFF_
       
  2239 ** macros defined in sqliteInt.h.
       
  2240 **
       
  2241 ** If P4 is NULL then all index fields have the affinity NONE.
       
  2242 */
       
  2243 case OP_MakeRecord: {
       
  2244   /* Assuming the record contains N fields, the record format looks
       
  2245   ** like this:
       
  2246   **
       
  2247   ** ------------------------------------------------------------------------
       
  2248   ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 
       
  2249   ** ------------------------------------------------------------------------
       
  2250   **
       
  2251   ** Data(0) is taken from register P1.  Data(1) comes from register P1+1
       
  2252   ** and so froth.
       
  2253   **
       
  2254   ** Each type field is a varint representing the serial type of the 
       
  2255   ** corresponding data element (see sqlite3VdbeSerialType()). The
       
  2256   ** hdr-size field is also a varint which is the offset from the beginning
       
  2257   ** of the record to data0.
       
  2258   */
       
  2259   u8 *zNewRecord;        /* A buffer to hold the data for the new record */
       
  2260   Mem *pRec;             /* The new record */
       
  2261   u64 nData = 0;         /* Number of bytes of data space */
       
  2262   int nHdr = 0;          /* Number of bytes of header space */
       
  2263   u64 nByte = 0;         /* Data space required for this record */
       
  2264   int nZero = 0;         /* Number of zero bytes at the end of the record */
       
  2265   int nVarint;           /* Number of bytes in a varint */
       
  2266   u32 serial_type;       /* Type field */
       
  2267   Mem *pData0;           /* First field to be combined into the record */
       
  2268   Mem *pLast;            /* Last field of the record */
       
  2269   int nField;            /* Number of fields in the record */
       
  2270   char *zAffinity;       /* The affinity string for the record */
       
  2271   int file_format;       /* File format to use for encoding */
       
  2272   int i;                 /* Space used in zNewRecord[] */
       
  2273 
       
  2274   nField = pOp->p1;
       
  2275   zAffinity = pOp->p4.z;
       
  2276   assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem );
       
  2277   pData0 = &p->aMem[nField];
       
  2278   nField = pOp->p2;
       
  2279   pLast = &pData0[nField-1];
       
  2280   file_format = p->minWriteFileFormat;
       
  2281 
       
  2282   /* Loop through the elements that will make up the record to figure
       
  2283   ** out how much space is required for the new record.
       
  2284   */
       
  2285   for(pRec=pData0; pRec<=pLast; pRec++){
       
  2286     int len;
       
  2287     if( zAffinity ){
       
  2288       applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
       
  2289     }
       
  2290     if( pRec->flags&MEM_Zero && pRec->n>0 ){
       
  2291       sqlite3VdbeMemExpandBlob(pRec);
       
  2292     }
       
  2293     serial_type = sqlite3VdbeSerialType(pRec, file_format);
       
  2294     len = sqlite3VdbeSerialTypeLen(serial_type);
       
  2295     nData += len;
       
  2296     nHdr += sqlite3VarintLen(serial_type);
       
  2297     if( pRec->flags & MEM_Zero ){
       
  2298       /* Only pure zero-filled BLOBs can be input to this Opcode.
       
  2299       ** We do not allow blobs with a prefix and a zero-filled tail. */
       
  2300       nZero += pRec->u.i;
       
  2301     }else if( len ){
       
  2302       nZero = 0;
       
  2303     }
       
  2304   }
       
  2305 
       
  2306   /* Add the initial header varint and total the size */
       
  2307   nHdr += nVarint = sqlite3VarintLen(nHdr);
       
  2308   if( nVarint<sqlite3VarintLen(nHdr) ){
       
  2309     nHdr++;
       
  2310   }
       
  2311   nByte = nHdr+nData-nZero;
       
  2312   if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
       
  2313     goto too_big;
       
  2314   }
       
  2315 
       
  2316   /* Make sure the output register has a buffer large enough to store 
       
  2317   ** the new record. The output register (pOp->p3) is not allowed to
       
  2318   ** be one of the input registers (because the following call to
       
  2319   ** sqlite3VdbeMemGrow() could clobber the value before it is used).
       
  2320   */
       
  2321   assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
       
  2322   pOut = &p->aMem[pOp->p3];
       
  2323   if( sqlite3VdbeMemGrow(pOut, nByte, 0) ){
       
  2324     goto no_mem;
       
  2325   }
       
  2326   zNewRecord = (u8 *)pOut->z;
       
  2327 
       
  2328   /* Write the record */
       
  2329   i = putVarint32(zNewRecord, nHdr);
       
  2330   for(pRec=pData0; pRec<=pLast; pRec++){
       
  2331     serial_type = sqlite3VdbeSerialType(pRec, file_format);
       
  2332     i += putVarint32(&zNewRecord[i], serial_type);      /* serial type */
       
  2333   }
       
  2334   for(pRec=pData0; pRec<=pLast; pRec++){  /* serial data */
       
  2335     i += sqlite3VdbeSerialPut(&zNewRecord[i], nByte-i, pRec, file_format);
       
  2336   }
       
  2337   assert( i==nByte );
       
  2338 
       
  2339   assert( pOp->p3>0 && pOp->p3<=p->nMem );
       
  2340   pOut->n = nByte;
       
  2341   pOut->flags = MEM_Blob | MEM_Dyn;
       
  2342   pOut->xDel = 0;
       
  2343   if( nZero ){
       
  2344     pOut->u.i = nZero;
       
  2345     pOut->flags |= MEM_Zero;
       
  2346   }
       
  2347   pOut->enc = SQLITE_UTF8;  /* In case the blob is ever converted to text */
       
  2348   REGISTER_TRACE(pOp->p3, pOut);
       
  2349   UPDATE_MAX_BLOBSIZE(pOut);
       
  2350   break;
       
  2351 }
       
  2352 
       
  2353 /* Opcode: Statement P1 * * * *
       
  2354 **
       
  2355 ** Begin an individual statement transaction which is part of a larger
       
  2356 ** transaction.  This is needed so that the statement
       
  2357 ** can be rolled back after an error without having to roll back the
       
  2358 ** entire transaction.  The statement transaction will automatically
       
  2359 ** commit when the VDBE halts.
       
  2360 **
       
  2361 ** If the database connection is currently in autocommit mode (that 
       
  2362 ** is to say, if it is in between BEGIN and COMMIT)
       
  2363 ** and if there are no other active statements on the same database
       
  2364 ** connection, then this operation is a no-op.  No statement transaction
       
  2365 ** is needed since any error can use the normal ROLLBACK process to
       
  2366 ** undo changes.
       
  2367 **
       
  2368 ** If a statement transaction is started, then a statement journal file
       
  2369 ** will be allocated and initialized.
       
  2370 **
       
  2371 ** The statement is begun on the database file with index P1.  The main
       
  2372 ** database file has an index of 0 and the file used for temporary tables
       
  2373 ** has an index of 1.
       
  2374 */
       
  2375 case OP_Statement: {
       
  2376   if( db->autoCommit==0 || db->activeVdbeCnt>1 ){
       
  2377     int i = pOp->p1;
       
  2378     Btree *pBt;
       
  2379     assert( i>=0 && i<db->nDb );
       
  2380     assert( db->aDb[i].pBt!=0 );
       
  2381     pBt = db->aDb[i].pBt;
       
  2382     assert( sqlite3BtreeIsInTrans(pBt) );
       
  2383     assert( (p->btreeMask & (1<<i))!=0 );
       
  2384     if( !sqlite3BtreeIsInStmt(pBt) ){
       
  2385       rc = sqlite3BtreeBeginStmt(pBt);
       
  2386       p->openedStatement = 1;
       
  2387     }
       
  2388   }
       
  2389   break;
       
  2390 }
       
  2391 
       
  2392 /* Opcode: AutoCommit P1 P2 * * *
       
  2393 **
       
  2394 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
       
  2395 ** back any currently active btree transactions. If there are any active
       
  2396 ** VMs (apart from this one), then the COMMIT or ROLLBACK statement fails.
       
  2397 **
       
  2398 ** This instruction causes the VM to halt.
       
  2399 */
       
  2400 case OP_AutoCommit: {
       
  2401   u8 i = pOp->p1;
       
  2402   u8 rollback = pOp->p2;
       
  2403 
       
  2404   assert( i==1 || i==0 );
       
  2405   assert( i==1 || rollback==0 );
       
  2406 
       
  2407   assert( db->activeVdbeCnt>0 );  /* At least this one VM is active */
       
  2408 
       
  2409   if( db->activeVdbeCnt>1 && i && !db->autoCommit ){
       
  2410     /* If this instruction implements a COMMIT or ROLLBACK, other VMs are
       
  2411     ** still running, and a transaction is active, return an error indicating
       
  2412     ** that the other VMs must complete first. 
       
  2413     */
       
  2414     sqlite3SetString(&p->zErrMsg, db, "cannot %s transaction - "
       
  2415         "SQL statements in progress",
       
  2416         rollback ? "rollback" : "commit");
       
  2417     rc = SQLITE_ERROR;
       
  2418   }else if( i!=db->autoCommit ){
       
  2419     if( pOp->p2 ){
       
  2420       assert( i==1 );
       
  2421       sqlite3RollbackAll(db);
       
  2422       db->autoCommit = 1;
       
  2423     }else{
       
  2424       db->autoCommit = i;
       
  2425       if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
       
  2426         p->pc = pc;
       
  2427         db->autoCommit = 1-i;
       
  2428         p->rc = rc = SQLITE_BUSY;
       
  2429         goto vdbe_return;
       
  2430       }
       
  2431     }
       
  2432     if( p->rc==SQLITE_OK ){
       
  2433       rc = SQLITE_DONE;
       
  2434     }else{
       
  2435       rc = SQLITE_ERROR;
       
  2436     }
       
  2437     goto vdbe_return;
       
  2438   }else{
       
  2439     sqlite3SetString(&p->zErrMsg, db,
       
  2440         (!i)?"cannot start a transaction within a transaction":(
       
  2441         (rollback)?"cannot rollback - no transaction is active":
       
  2442                    "cannot commit - no transaction is active"));
       
  2443          
       
  2444     rc = SQLITE_ERROR;
       
  2445   }
       
  2446   break;
       
  2447 }
       
  2448 
       
  2449 /* Opcode: Transaction P1 P2 * * *
       
  2450 **
       
  2451 ** Begin a transaction.  The transaction ends when a Commit or Rollback
       
  2452 ** opcode is encountered.  Depending on the ON CONFLICT setting, the
       
  2453 ** transaction might also be rolled back if an error is encountered.
       
  2454 **
       
  2455 ** P1 is the index of the database file on which the transaction is
       
  2456 ** started.  Index 0 is the main database file and index 1 is the
       
  2457 ** file used for temporary tables.  Indices of 2 or more are used for
       
  2458 ** attached databases.
       
  2459 **
       
  2460 ** If P2 is non-zero, then a write-transaction is started.  A RESERVED lock is
       
  2461 ** obtained on the database file when a write-transaction is started.  No
       
  2462 ** other process can start another write transaction while this transaction is
       
  2463 ** underway.  Starting a write transaction also creates a rollback journal. A
       
  2464 ** write transaction must be started before any changes can be made to the
       
  2465 ** database.  If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
       
  2466 ** on the file.
       
  2467 **
       
  2468 ** If P2 is zero, then a read-lock is obtained on the database file.
       
  2469 */
       
  2470 case OP_Transaction: {
       
  2471   int i = pOp->p1;
       
  2472   Btree *pBt;
       
  2473 
       
  2474   assert( i>=0 && i<db->nDb );
       
  2475   assert( (p->btreeMask & (1<<i))!=0 );
       
  2476   pBt = db->aDb[i].pBt;
       
  2477 
       
  2478   if( pBt ){
       
  2479     rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
       
  2480     if( rc==SQLITE_BUSY ){
       
  2481       p->pc = pc;
       
  2482       p->rc = rc = SQLITE_BUSY;
       
  2483       goto vdbe_return;
       
  2484     }
       
  2485     if( rc!=SQLITE_OK && rc!=SQLITE_READONLY /* && rc!=SQLITE_BUSY */ ){
       
  2486       goto abort_due_to_error;
       
  2487     }
       
  2488   }
       
  2489   break;
       
  2490 }
       
  2491 
       
  2492 /* Opcode: ReadCookie P1 P2 P3 * *
       
  2493 **
       
  2494 ** Read cookie number P3 from database P1 and write it into register P2.
       
  2495 ** P3==0 is the schema version.  P3==1 is the database format.
       
  2496 ** P3==2 is the recommended pager cache size, and so forth.  P1==0 is
       
  2497 ** the main database file and P1==1 is the database file used to store
       
  2498 ** temporary tables.
       
  2499 **
       
  2500 ** If P1 is negative, then this is a request to read the size of a
       
  2501 ** databases free-list. P3 must be set to 1 in this case. The actual
       
  2502 ** database accessed is ((P1+1)*-1). For example, a P1 parameter of -1
       
  2503 ** corresponds to database 0 ("main"), a P1 of -2 is database 1 ("temp").
       
  2504 **
       
  2505 ** There must be a read-lock on the database (either a transaction
       
  2506 ** must be started or there must be an open cursor) before
       
  2507 ** executing this instruction.
       
  2508 */
       
  2509 case OP_ReadCookie: {               /* out2-prerelease */
       
  2510   int iMeta;
       
  2511   int iDb = pOp->p1;
       
  2512   int iCookie = pOp->p3;
       
  2513 
       
  2514   assert( pOp->p3<SQLITE_N_BTREE_META );
       
  2515   if( iDb<0 ){
       
  2516     iDb = (-1*(iDb+1));
       
  2517     iCookie *= -1;
       
  2518   }
       
  2519   assert( iDb>=0 && iDb<db->nDb );
       
  2520   assert( db->aDb[iDb].pBt!=0 );
       
  2521   assert( (p->btreeMask & (1<<iDb))!=0 );
       
  2522   /* The indexing of meta values at the schema layer is off by one from
       
  2523   ** the indexing in the btree layer.  The btree considers meta[0] to
       
  2524   ** be the number of free pages in the database (a read-only value)
       
  2525   ** and meta[1] to be the schema cookie.  The schema layer considers
       
  2526   ** meta[1] to be the schema cookie.  So we have to shift the index
       
  2527   ** by one in the following statement.
       
  2528   */
       
  2529   rc = sqlite3BtreeGetMeta(db->aDb[iDb].pBt, 1 + iCookie, (u32 *)&iMeta);
       
  2530   pOut->u.i = iMeta;
       
  2531   MemSetTypeFlag(pOut, MEM_Int);
       
  2532   break;
       
  2533 }
       
  2534 
       
  2535 /* Opcode: SetCookie P1 P2 P3 * *
       
  2536 **
       
  2537 ** Write the content of register P3 (interpreted as an integer)
       
  2538 ** into cookie number P2 of database P1.
       
  2539 ** P2==0 is the schema version.  P2==1 is the database format.
       
  2540 ** P2==2 is the recommended pager cache size, and so forth.  P1==0 is
       
  2541 ** the main database file and P1==1 is the database file used to store
       
  2542 ** temporary tables.
       
  2543 **
       
  2544 ** A transaction must be started before executing this opcode.
       
  2545 */
       
  2546 case OP_SetCookie: {       /* in3 */
       
  2547   Db *pDb;
       
  2548   assert( pOp->p2<SQLITE_N_BTREE_META );
       
  2549   assert( pOp->p1>=0 && pOp->p1<db->nDb );
       
  2550   assert( (p->btreeMask & (1<<pOp->p1))!=0 );
       
  2551   pDb = &db->aDb[pOp->p1];
       
  2552   assert( pDb->pBt!=0 );
       
  2553   sqlite3VdbeMemIntegerify(pIn3);
       
  2554   /* See note about index shifting on OP_ReadCookie */
       
  2555   rc = sqlite3BtreeUpdateMeta(pDb->pBt, 1+pOp->p2, (int)pIn3->u.i);
       
  2556   if( pOp->p2==0 ){
       
  2557     /* When the schema cookie changes, record the new cookie internally */
       
  2558     pDb->pSchema->schema_cookie = pIn3->u.i;
       
  2559     db->flags |= SQLITE_InternChanges;
       
  2560   }else if( pOp->p2==1 ){
       
  2561     /* Record changes in the file format */
       
  2562     pDb->pSchema->file_format = pIn3->u.i;
       
  2563   }
       
  2564   if( pOp->p1==1 ){
       
  2565     /* Invalidate all prepared statements whenever the TEMP database
       
  2566     ** schema is changed.  Ticket #1644 */
       
  2567     sqlite3ExpirePreparedStatements(db);
       
  2568   }
       
  2569   break;
       
  2570 }
       
  2571 
       
  2572 /* Opcode: VerifyCookie P1 P2 *
       
  2573 **
       
  2574 ** Check the value of global database parameter number 0 (the
       
  2575 ** schema version) and make sure it is equal to P2.  
       
  2576 ** P1 is the database number which is 0 for the main database file
       
  2577 ** and 1 for the file holding temporary tables and some higher number
       
  2578 ** for auxiliary databases.
       
  2579 **
       
  2580 ** The cookie changes its value whenever the database schema changes.
       
  2581 ** This operation is used to detect when that the cookie has changed
       
  2582 ** and that the current process needs to reread the schema.
       
  2583 **
       
  2584 ** Either a transaction needs to have been started or an OP_Open needs
       
  2585 ** to be executed (to establish a read lock) before this opcode is
       
  2586 ** invoked.
       
  2587 */
       
  2588 case OP_VerifyCookie: {
       
  2589   int iMeta;
       
  2590   Btree *pBt;
       
  2591   assert( pOp->p1>=0 && pOp->p1<db->nDb );
       
  2592   assert( (p->btreeMask & (1<<pOp->p1))!=0 );
       
  2593   pBt = db->aDb[pOp->p1].pBt;
       
  2594   if( pBt ){
       
  2595     rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&iMeta);
       
  2596   }else{
       
  2597     rc = SQLITE_OK;
       
  2598     iMeta = 0;
       
  2599   }
       
  2600   if( rc==SQLITE_OK && iMeta!=pOp->p2 ){
       
  2601     sqlite3DbFree(db, p->zErrMsg);
       
  2602     p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
       
  2603     /* If the schema-cookie from the database file matches the cookie 
       
  2604     ** stored with the in-memory representation of the schema, do
       
  2605     ** not reload the schema from the database file.
       
  2606     **
       
  2607     ** If virtual-tables are in use, this is not just an optimization.
       
  2608     ** Often, v-tables store their data in other SQLite tables, which
       
  2609     ** are queried from within xNext() and other v-table methods using
       
  2610     ** prepared queries. If such a query is out-of-date, we do not want to
       
  2611     ** discard the database schema, as the user code implementing the
       
  2612     ** v-table would have to be ready for the sqlite3_vtab structure itself
       
  2613     ** to be invalidated whenever sqlite3_step() is called from within 
       
  2614     ** a v-table method.
       
  2615     */
       
  2616     if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
       
  2617       sqlite3ResetInternalSchema(db, pOp->p1);
       
  2618     }
       
  2619 
       
  2620     sqlite3ExpirePreparedStatements(db);
       
  2621     rc = SQLITE_SCHEMA;
       
  2622   }
       
  2623   break;
       
  2624 }
       
  2625 
       
  2626 /* Opcode: OpenRead P1 P2 P3 P4 P5
       
  2627 **
       
  2628 ** Open a read-only cursor for the database table whose root page is
       
  2629 ** P2 in a database file.  The database file is determined by P3. 
       
  2630 ** P3==0 means the main database, P3==1 means the database used for 
       
  2631 ** temporary tables, and P3>1 means used the corresponding attached
       
  2632 ** database.  Give the new cursor an identifier of P1.  The P1
       
  2633 ** values need not be contiguous but all P1 values should be small integers.
       
  2634 ** It is an error for P1 to be negative.
       
  2635 **
       
  2636 ** If P5!=0 then use the content of register P2 as the root page, not
       
  2637 ** the value of P2 itself.
       
  2638 **
       
  2639 ** There will be a read lock on the database whenever there is an
       
  2640 ** open cursor.  If the database was unlocked prior to this instruction
       
  2641 ** then a read lock is acquired as part of this instruction.  A read
       
  2642 ** lock allows other processes to read the database but prohibits
       
  2643 ** any other process from modifying the database.  The read lock is
       
  2644 ** released when all cursors are closed.  If this instruction attempts
       
  2645 ** to get a read lock but fails, the script terminates with an
       
  2646 ** SQLITE_BUSY error code.
       
  2647 **
       
  2648 ** The P4 value is a pointer to a KeyInfo structure that defines the
       
  2649 ** content and collating sequence of indices.  P4 is NULL for cursors
       
  2650 ** that are not pointing to indices.
       
  2651 **
       
  2652 ** See also OpenWrite.
       
  2653 */
       
  2654 /* Opcode: OpenWrite P1 P2 P3 P4 P5
       
  2655 **
       
  2656 ** Open a read/write cursor named P1 on the table or index whose root
       
  2657 ** page is P2.  Or if P5!=0 use the content of register P2 to find the
       
  2658 ** root page.
       
  2659 **
       
  2660 ** The P4 value is a pointer to a KeyInfo structure that defines the
       
  2661 ** content and collating sequence of indices.  P4 is NULL for cursors
       
  2662 ** that are not pointing to indices.
       
  2663 **
       
  2664 ** This instruction works just like OpenRead except that it opens the cursor
       
  2665 ** in read/write mode.  For a given table, there can be one or more read-only
       
  2666 ** cursors or a single read/write cursor but not both.
       
  2667 **
       
  2668 ** See also OpenRead.
       
  2669 */
       
  2670 case OP_OpenRead:
       
  2671 case OP_OpenWrite: {
       
  2672   int i = pOp->p1;
       
  2673   int p2 = pOp->p2;
       
  2674   int iDb = pOp->p3;
       
  2675   int wrFlag;
       
  2676   Btree *pX;
       
  2677   Cursor *pCur;
       
  2678   Db *pDb;
       
  2679   
       
  2680   assert( iDb>=0 && iDb<db->nDb );
       
  2681   assert( (p->btreeMask & (1<<iDb))!=0 );
       
  2682   pDb = &db->aDb[iDb];
       
  2683   pX = pDb->pBt;
       
  2684   assert( pX!=0 );
       
  2685   if( pOp->opcode==OP_OpenWrite ){
       
  2686     wrFlag = 1;
       
  2687     if( pDb->pSchema->file_format < p->minWriteFileFormat ){
       
  2688       p->minWriteFileFormat = pDb->pSchema->file_format;
       
  2689     }
       
  2690   }else{
       
  2691     wrFlag = 0;
       
  2692   }
       
  2693   if( pOp->p5 ){
       
  2694     assert( p2>0 );
       
  2695     assert( p2<=p->nMem );
       
  2696     pIn2 = &p->aMem[p2];
       
  2697     sqlite3VdbeMemIntegerify(pIn2);
       
  2698     p2 = pIn2->u.i;
       
  2699     assert( p2>=2 );
       
  2700   }
       
  2701   assert( i>=0 );
       
  2702   pCur = allocateCursor(p, i, &pOp[-1], iDb, 1);
       
  2703   if( pCur==0 ) goto no_mem;
       
  2704   pCur->nullRow = 1;
       
  2705   rc = sqlite3BtreeCursor(pX, p2, wrFlag, pOp->p4.p, pCur->pCursor);
       
  2706   if( pOp->p4type==P4_KEYINFO ){
       
  2707     pCur->pKeyInfo = pOp->p4.pKeyInfo;
       
  2708     pCur->pIncrKey = &pCur->pKeyInfo->incrKey;
       
  2709     pCur->pKeyInfo->enc = ENC(p->db);
       
  2710   }else{
       
  2711     pCur->pKeyInfo = 0;
       
  2712     pCur->pIncrKey = &pCur->bogusIncrKey;
       
  2713   }
       
  2714   switch( rc ){
       
  2715     case SQLITE_BUSY: {
       
  2716       p->pc = pc;
       
  2717       p->rc = rc = SQLITE_BUSY;
       
  2718       goto vdbe_return;
       
  2719     }
       
  2720     case SQLITE_OK: {
       
  2721       int flags = sqlite3BtreeFlags(pCur->pCursor);
       
  2722       /* Sanity checking.  Only the lower four bits of the flags byte should
       
  2723       ** be used.  Bit 3 (mask 0x08) is unpredictable.  The lower 3 bits
       
  2724       ** (mask 0x07) should be either 5 (intkey+leafdata for tables) or
       
  2725       ** 2 (zerodata for indices).  If these conditions are not met it can
       
  2726       ** only mean that we are dealing with a corrupt database file
       
  2727       */
       
  2728       if( (flags & 0xf0)!=0 || ((flags & 0x07)!=5 && (flags & 0x07)!=2) ){
       
  2729         rc = SQLITE_CORRUPT_BKPT;
       
  2730         goto abort_due_to_error;
       
  2731       }
       
  2732       pCur->isTable = (flags & BTREE_INTKEY)!=0;
       
  2733       pCur->isIndex = (flags & BTREE_ZERODATA)!=0;
       
  2734       /* If P4==0 it means we are expected to open a table.  If P4!=0 then
       
  2735       ** we expect to be opening an index.  If this is not what happened,
       
  2736       ** then the database is corrupt
       
  2737       */
       
  2738       if( (pCur->isTable && pOp->p4type==P4_KEYINFO)
       
  2739        || (pCur->isIndex && pOp->p4type!=P4_KEYINFO) ){
       
  2740         rc = SQLITE_CORRUPT_BKPT;
       
  2741         goto abort_due_to_error;
       
  2742       }
       
  2743       break;
       
  2744     }
       
  2745     case SQLITE_EMPTY: {
       
  2746       pCur->isTable = pOp->p4type!=P4_KEYINFO;
       
  2747       pCur->isIndex = !pCur->isTable;
       
  2748       pCur->pCursor = 0;
       
  2749       rc = SQLITE_OK;
       
  2750       break;
       
  2751     }
       
  2752     default: {
       
  2753       goto abort_due_to_error;
       
  2754     }
       
  2755   }
       
  2756   break;
       
  2757 }
       
  2758 
       
  2759 /* Opcode: OpenEphemeral P1 P2 * P4 *
       
  2760 **
       
  2761 ** Open a new cursor P1 to a transient table.
       
  2762 ** The cursor is always opened read/write even if 
       
  2763 ** the main database is read-only.  The transient or virtual
       
  2764 ** table is deleted automatically when the cursor is closed.
       
  2765 **
       
  2766 ** P2 is the number of columns in the virtual table.
       
  2767 ** The cursor points to a BTree table if P4==0 and to a BTree index
       
  2768 ** if P4 is not 0.  If P4 is not NULL, it points to a KeyInfo structure
       
  2769 ** that defines the format of keys in the index.
       
  2770 **
       
  2771 ** This opcode was once called OpenTemp.  But that created
       
  2772 ** confusion because the term "temp table", might refer either
       
  2773 ** to a TEMP table at the SQL level, or to a table opened by
       
  2774 ** this opcode.  Then this opcode was call OpenVirtual.  But
       
  2775 ** that created confusion with the whole virtual-table idea.
       
  2776 */
       
  2777 case OP_OpenEphemeral: {
       
  2778   int i = pOp->p1;
       
  2779   Cursor *pCx;
       
  2780   static const int openFlags = 
       
  2781       SQLITE_OPEN_READWRITE |
       
  2782       SQLITE_OPEN_CREATE |
       
  2783       SQLITE_OPEN_EXCLUSIVE |
       
  2784       SQLITE_OPEN_DELETEONCLOSE |
       
  2785       SQLITE_OPEN_TRANSIENT_DB;
       
  2786 
       
  2787   assert( i>=0 );
       
  2788   pCx = allocateCursor(p, i, pOp, -1, 1);
       
  2789   if( pCx==0 ) goto no_mem;
       
  2790   pCx->nullRow = 1;
       
  2791   rc = sqlite3BtreeFactory(db, 0, 1, SQLITE_DEFAULT_TEMP_CACHE_SIZE, openFlags,
       
  2792                            &pCx->pBt);
       
  2793   if( rc==SQLITE_OK ){
       
  2794     rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
       
  2795   }
       
  2796   if( rc==SQLITE_OK ){
       
  2797     /* If a transient index is required, create it by calling
       
  2798     ** sqlite3BtreeCreateTable() with the BTREE_ZERODATA flag before
       
  2799     ** opening it. If a transient table is required, just use the
       
  2800     ** automatically created table with root-page 1 (an INTKEY table).
       
  2801     */
       
  2802     if( pOp->p4.pKeyInfo ){
       
  2803       int pgno;
       
  2804       assert( pOp->p4type==P4_KEYINFO );
       
  2805       rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_ZERODATA); 
       
  2806       if( rc==SQLITE_OK ){
       
  2807         assert( pgno==MASTER_ROOT+1 );
       
  2808         rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, 
       
  2809                                 (KeyInfo*)pOp->p4.z, pCx->pCursor);
       
  2810         pCx->pKeyInfo = pOp->p4.pKeyInfo;
       
  2811         pCx->pKeyInfo->enc = ENC(p->db);
       
  2812         pCx->pIncrKey = &pCx->pKeyInfo->incrKey;
       
  2813       }
       
  2814       pCx->isTable = 0;
       
  2815     }else{
       
  2816       rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
       
  2817       pCx->isTable = 1;
       
  2818       pCx->pIncrKey = &pCx->bogusIncrKey;
       
  2819     }
       
  2820   }
       
  2821   pCx->isIndex = !pCx->isTable;
       
  2822   break;
       
  2823 }
       
  2824 
       
  2825 /* Opcode: OpenPseudo P1 P2 * * *
       
  2826 **
       
  2827 ** Open a new cursor that points to a fake table that contains a single
       
  2828 ** row of data.  Any attempt to write a second row of data causes the
       
  2829 ** first row to be deleted.  All data is deleted when the cursor is
       
  2830 ** closed.
       
  2831 **
       
  2832 ** A pseudo-table created by this opcode is useful for holding the
       
  2833 ** NEW or OLD tables in a trigger.  Also used to hold the a single
       
  2834 ** row output from the sorter so that the row can be decomposed into
       
  2835 ** individual columns using the OP_Column opcode.
       
  2836 **
       
  2837 ** When OP_Insert is executed to insert a row in to the pseudo table,
       
  2838 ** the pseudo-table cursor may or may not make it's own copy of the
       
  2839 ** original row data. If P2 is 0, then the pseudo-table will copy the
       
  2840 ** original row data. Otherwise, a pointer to the original memory cell
       
  2841 ** is stored. In this case, the vdbe program must ensure that the 
       
  2842 ** memory cell containing the row data is not overwritten until the
       
  2843 ** pseudo table is closed (or a new row is inserted into it).
       
  2844 */
       
  2845 case OP_OpenPseudo: {
       
  2846   int i = pOp->p1;
       
  2847   Cursor *pCx;
       
  2848   assert( i>=0 );
       
  2849   pCx = allocateCursor(p, i, &pOp[-1], -1, 0);
       
  2850   if( pCx==0 ) goto no_mem;
       
  2851   pCx->nullRow = 1;
       
  2852   pCx->pseudoTable = 1;
       
  2853   pCx->ephemPseudoTable = pOp->p2;
       
  2854   pCx->pIncrKey = &pCx->bogusIncrKey;
       
  2855   pCx->isTable = 1;
       
  2856   pCx->isIndex = 0;
       
  2857   break;
       
  2858 }
       
  2859 
       
  2860 /* Opcode: Close P1 * * * *
       
  2861 **
       
  2862 ** Close a cursor previously opened as P1.  If P1 is not
       
  2863 ** currently open, this instruction is a no-op.
       
  2864 */
       
  2865 case OP_Close: {
       
  2866   int i = pOp->p1;
       
  2867   assert( i>=0 && i<p->nCursor );
       
  2868   sqlite3VdbeFreeCursor(p, p->apCsr[i]);
       
  2869   p->apCsr[i] = 0;
       
  2870   break;
       
  2871 }
       
  2872 
       
  2873 /* Opcode: MoveGe P1 P2 P3 P4 *
       
  2874 **
       
  2875 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 
       
  2876 ** use the integer value in register P3 as a key. If cursor P1 refers 
       
  2877 ** to an SQL index, then P3 is the first in an array of P4 registers 
       
  2878 ** that are used as an unpacked index key. 
       
  2879 **
       
  2880 ** Reposition cursor P1 so that  it points to the smallest entry that 
       
  2881 ** is greater than or equal to the key value. If there are no records 
       
  2882 ** greater than or equal to the key and P2 is not zero, then jump to P2.
       
  2883 **
       
  2884 ** A special feature of this opcode (and different from the
       
  2885 ** related OP_MoveGt, OP_MoveLt, and OP_MoveLe) is that if P2 is
       
  2886 ** zero and P1 is an SQL table (a b-tree with integer keys) then
       
  2887 ** the seek is deferred until it is actually needed.  It might be
       
  2888 ** the case that the cursor is never accessed.  By deferring the
       
  2889 ** seek, we avoid unnecessary seeks.
       
  2890 **
       
  2891 ** See also: Found, NotFound, Distinct, MoveLt, MoveGt, MoveLe
       
  2892 */
       
  2893 /* Opcode: MoveGt P1 P2 P3 P4 *
       
  2894 **
       
  2895 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 
       
  2896 ** use the integer value in register P3 as a key. If cursor P1 refers 
       
  2897 ** to an SQL index, then P3 is the first in an array of P4 registers 
       
  2898 ** that are used as an unpacked index key. 
       
  2899 **
       
  2900 ** Reposition cursor P1 so that  it points to the smallest entry that 
       
  2901 ** is greater than the key value. If there are no records greater than 
       
  2902 ** the key and P2 is not zero, then jump to P2.
       
  2903 **
       
  2904 ** See also: Found, NotFound, Distinct, MoveLt, MoveGe, MoveLe
       
  2905 */
       
  2906 /* Opcode: MoveLt P1 P2 P3 P4 * 
       
  2907 **
       
  2908 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 
       
  2909 ** use the integer value in register P3 as a key. If cursor P1 refers 
       
  2910 ** to an SQL index, then P3 is the first in an array of P4 registers 
       
  2911 ** that are used as an unpacked index key. 
       
  2912 **
       
  2913 ** Reposition cursor P1 so that  it points to the largest entry that 
       
  2914 ** is less than the key value. If there are no records less than 
       
  2915 ** the key and P2 is not zero, then jump to P2.
       
  2916 **
       
  2917 ** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLe
       
  2918 */
       
  2919 /* Opcode: MoveLe P1 P2 P3 P4 *
       
  2920 **
       
  2921 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 
       
  2922 ** use the integer value in register P3 as a key. If cursor P1 refers 
       
  2923 ** to an SQL index, then P3 is the first in an array of P4 registers 
       
  2924 ** that are used as an unpacked index key. 
       
  2925 **
       
  2926 ** Reposition cursor P1 so that it points to the largest entry that 
       
  2927 ** is less than or equal to the key value. If there are no records 
       
  2928 ** less than or equal to the key and P2 is not zero, then jump to P2.
       
  2929 **
       
  2930 ** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLt
       
  2931 */
       
  2932 case OP_MoveLt:         /* jump, in3 */
       
  2933 case OP_MoveLe:         /* jump, in3 */
       
  2934 case OP_MoveGe:         /* jump, in3 */
       
  2935 case OP_MoveGt: {       /* jump, in3 */
       
  2936   int i = pOp->p1;
       
  2937   Cursor *pC;
       
  2938 
       
  2939   assert( i>=0 && i<p->nCursor );
       
  2940   pC = p->apCsr[i];
       
  2941   assert( pC!=0 );
       
  2942   if( pC->pCursor!=0 ){
       
  2943     int res, oc;
       
  2944     oc = pOp->opcode;
       
  2945     pC->nullRow = 0;
       
  2946     *pC->pIncrKey = oc==OP_MoveGt || oc==OP_MoveLe;
       
  2947     if( pC->isTable ){
       
  2948       i64 iKey = sqlite3VdbeIntValue(pIn3);
       
  2949       if( pOp->p2==0 ){
       
  2950         assert( pOp->opcode==OP_MoveGe );
       
  2951         pC->movetoTarget = iKey;
       
  2952         pC->rowidIsValid = 0;
       
  2953         pC->deferredMoveto = 1;
       
  2954         break;
       
  2955       }
       
  2956       rc = sqlite3BtreeMoveto(pC->pCursor, 0, 0, (u64)iKey, 0, &res);
       
  2957       if( rc!=SQLITE_OK ){
       
  2958         goto abort_due_to_error;
       
  2959       }
       
  2960       pC->lastRowid = iKey;
       
  2961       pC->rowidIsValid = res==0;
       
  2962     }else{
       
  2963       UnpackedRecord r;
       
  2964       int nField = pOp->p4.i;
       
  2965       assert( pOp->p4type==P4_INT32 );
       
  2966       assert( nField>0 );
       
  2967       r.pKeyInfo = pC->pKeyInfo;
       
  2968       r.nField = nField;
       
  2969       r.needFree = 0;
       
  2970       r.needDestroy = 0;
       
  2971       r.aMem = &p->aMem[pOp->p3];
       
  2972       rc = sqlite3BtreeMoveto(pC->pCursor, 0, &r, 0, 0, &res);
       
  2973       if( rc!=SQLITE_OK ){
       
  2974         goto abort_due_to_error;
       
  2975       }
       
  2976       pC->rowidIsValid = 0;
       
  2977     }
       
  2978     pC->deferredMoveto = 0;
       
  2979     pC->cacheStatus = CACHE_STALE;
       
  2980     *pC->pIncrKey = 0;
       
  2981 #ifdef SQLITE_TEST
       
  2982     sqlite3_search_count++;
       
  2983 #endif
       
  2984     if( oc==OP_MoveGe || oc==OP_MoveGt ){
       
  2985       if( res<0 ){
       
  2986         rc = sqlite3BtreeNext(pC->pCursor, &res);
       
  2987         if( rc!=SQLITE_OK ) goto abort_due_to_error;
       
  2988         pC->rowidIsValid = 0;
       
  2989       }else{
       
  2990         res = 0;
       
  2991       }
       
  2992     }else{
       
  2993       assert( oc==OP_MoveLt || oc==OP_MoveLe );
       
  2994       if( res>=0 ){
       
  2995         rc = sqlite3BtreePrevious(pC->pCursor, &res);
       
  2996         if( rc!=SQLITE_OK ) goto abort_due_to_error;
       
  2997         pC->rowidIsValid = 0;
       
  2998       }else{
       
  2999         /* res might be negative because the table is empty.  Check to
       
  3000         ** see if this is the case.
       
  3001         */
       
  3002         res = sqlite3BtreeEof(pC->pCursor);
       
  3003       }
       
  3004     }
       
  3005     assert( pOp->p2>0 );
       
  3006     if( res ){
       
  3007       pc = pOp->p2 - 1;
       
  3008     }
       
  3009   }else if( !pC->pseudoTable ){
       
  3010     /* This happens when attempting to open the sqlite3_master table
       
  3011     ** for read access returns SQLITE_EMPTY. In this case always
       
  3012     ** take the jump (since there are no records in the table).
       
  3013     */
       
  3014     pc = pOp->p2 - 1;
       
  3015   }
       
  3016   break;
       
  3017 }
       
  3018 
       
  3019 /* Opcode: Found P1 P2 P3 * *
       
  3020 **
       
  3021 ** Register P3 holds a blob constructed by MakeRecord.  P1 is an index.
       
  3022 ** If an entry that matches the value in register p3 exists in P1 then
       
  3023 ** jump to P2.  If the P3 value does not match any entry in P1
       
  3024 ** then fall thru.  The P1 cursor is left pointing at the matching entry
       
  3025 ** if it exists.
       
  3026 **
       
  3027 ** This instruction is used to implement the IN operator where the
       
  3028 ** left-hand side is a SELECT statement.  P1 may be a true index, or it
       
  3029 ** may be a temporary index that holds the results of the SELECT
       
  3030 ** statement.   This instruction is also used to implement the
       
  3031 ** DISTINCT keyword in SELECT statements.
       
  3032 **
       
  3033 ** This instruction checks if index P1 contains a record for which 
       
  3034 ** the first N serialized values exactly match the N serialized values
       
  3035 ** in the record in register P3, where N is the total number of values in
       
  3036 ** the P3 record (the P3 record is a prefix of the P1 record). 
       
  3037 **
       
  3038 ** See also: NotFound, MoveTo, IsUnique, NotExists
       
  3039 */
       
  3040 /* Opcode: NotFound P1 P2 P3 * *
       
  3041 **
       
  3042 ** Register P3 holds a blob constructed by MakeRecord.  P1 is
       
  3043 ** an index.  If no entry exists in P1 that matches the blob then jump
       
  3044 ** to P2.  If an entry does existing, fall through.  The cursor is left
       
  3045 ** pointing to the entry that matches.
       
  3046 **
       
  3047 ** See also: Found, MoveTo, NotExists, IsUnique
       
  3048 */
       
  3049 case OP_NotFound:       /* jump, in3 */
       
  3050 case OP_Found: {        /* jump, in3 */
       
  3051   int i = pOp->p1;
       
  3052   int alreadyExists = 0;
       
  3053   Cursor *pC;
       
  3054   assert( i>=0 && i<p->nCursor );
       
  3055   assert( p->apCsr[i]!=0 );
       
  3056   if( (pC = p->apCsr[i])->pCursor!=0 ){
       
  3057     int res;
       
  3058     assert( pC->isTable==0 );
       
  3059     assert( pIn3->flags & MEM_Blob );
       
  3060     if( pOp->opcode==OP_Found ){
       
  3061       pC->pKeyInfo->prefixIsEqual = 1;
       
  3062     }
       
  3063     rc = sqlite3BtreeMoveto(pC->pCursor, pIn3->z, 0, pIn3->n, 0, &res);
       
  3064     pC->pKeyInfo->prefixIsEqual = 0;
       
  3065     if( rc!=SQLITE_OK ){
       
  3066       break;
       
  3067     }
       
  3068     alreadyExists = (res==0);
       
  3069     pC->deferredMoveto = 0;
       
  3070     pC->cacheStatus = CACHE_STALE;
       
  3071   }
       
  3072   if( pOp->opcode==OP_Found ){
       
  3073     if( alreadyExists ) pc = pOp->p2 - 1;
       
  3074   }else{
       
  3075     if( !alreadyExists ) pc = pOp->p2 - 1;
       
  3076   }
       
  3077   break;
       
  3078 }
       
  3079 
       
  3080 /* Opcode: IsUnique P1 P2 P3 P4 *
       
  3081 **
       
  3082 ** The P3 register contains an integer record number.  Call this
       
  3083 ** record number R.  The P4 register contains an index key created
       
  3084 ** using MakeIdxRec.  Call it K.
       
  3085 **
       
  3086 ** P1 is an index.  So it has no data and its key consists of a
       
  3087 ** record generated by OP_MakeRecord where the last field is the 
       
  3088 ** rowid of the entry that the index refers to.
       
  3089 ** 
       
  3090 ** This instruction asks if there is an entry in P1 where the
       
  3091 ** fields matches K but the rowid is different from R.
       
  3092 ** If there is no such entry, then there is an immediate
       
  3093 ** jump to P2.  If any entry does exist where the index string
       
  3094 ** matches K but the record number is not R, then the record
       
  3095 ** number for that entry is written into P3 and control
       
  3096 ** falls through to the next instruction.
       
  3097 **
       
  3098 ** See also: NotFound, NotExists, Found
       
  3099 */
       
  3100 case OP_IsUnique: {        /* jump, in3 */
       
  3101   int i = pOp->p1;
       
  3102   Cursor *pCx;
       
  3103   BtCursor *pCrsr;
       
  3104   Mem *pK;
       
  3105   i64 R;
       
  3106 
       
  3107   /* Pop the value R off the top of the stack
       
  3108   */
       
  3109   assert( pOp->p4type==P4_INT32 );
       
  3110   assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem );
       
  3111   pK = &p->aMem[pOp->p4.i];
       
  3112   sqlite3VdbeMemIntegerify(pIn3);
       
  3113   R = pIn3->u.i;
       
  3114   assert( i>=0 && i<p->nCursor );
       
  3115   pCx = p->apCsr[i];
       
  3116   assert( pCx!=0 );
       
  3117   pCrsr = pCx->pCursor;
       
  3118   if( pCrsr!=0 ){
       
  3119     int res;
       
  3120     i64 v;         /* The record number on the P1 entry that matches K */
       
  3121     char *zKey;    /* The value of K */
       
  3122     int nKey;      /* Number of bytes in K */
       
  3123     int len;       /* Number of bytes in K without the rowid at the end */
       
  3124     int szRowid;   /* Size of the rowid column at the end of zKey */
       
  3125 
       
  3126     /* Make sure K is a string and make zKey point to K
       
  3127     */
       
  3128     assert( pK->flags & MEM_Blob );
       
  3129     zKey = pK->z;
       
  3130     nKey = pK->n;
       
  3131 
       
  3132     /* sqlite3VdbeIdxRowidLen() only returns other than SQLITE_OK when the
       
  3133     ** record passed as an argument corrupt. Since the record in this case
       
  3134     ** has just been created by an OP_MakeRecord instruction, and not loaded
       
  3135     ** from the database file, it is not possible for it to be corrupt.
       
  3136     ** Therefore, assert(rc==SQLITE_OK).
       
  3137     */
       
  3138     rc = sqlite3VdbeIdxRowidLen((u8*)zKey, nKey, &szRowid);
       
  3139     assert(rc==SQLITE_OK);
       
  3140     len = nKey-szRowid;
       
  3141 
       
  3142     /* Search for an entry in P1 where all but the last four bytes match K.
       
  3143     ** If there is no such entry, jump immediately to P2.
       
  3144     */
       
  3145     assert( pCx->deferredMoveto==0 );
       
  3146     pCx->cacheStatus = CACHE_STALE;
       
  3147     rc = sqlite3BtreeMoveto(pCrsr, zKey, 0, len, 0, &res);
       
  3148     if( rc!=SQLITE_OK ){
       
  3149       goto abort_due_to_error;
       
  3150     }
       
  3151     if( res<0 ){
       
  3152       rc = sqlite3BtreeNext(pCrsr, &res);
       
  3153       if( res ){
       
  3154         pc = pOp->p2 - 1;
       
  3155         break;
       
  3156       }
       
  3157     }
       
  3158     rc = sqlite3VdbeIdxKeyCompare(pCx, 0, len, (u8*)zKey, &res); 
       
  3159     if( rc!=SQLITE_OK ) goto abort_due_to_error;
       
  3160     if( res>0 ){
       
  3161       pc = pOp->p2 - 1;
       
  3162       break;
       
  3163     }
       
  3164 
       
  3165     /* At this point, pCrsr is pointing to an entry in P1 where all but
       
  3166     ** the final entry (the rowid) matches K.  Check to see if the
       
  3167     ** final rowid column is different from R.  If it equals R then jump
       
  3168     ** immediately to P2.
       
  3169     */
       
  3170     rc = sqlite3VdbeIdxRowid(pCrsr, &v);
       
  3171     if( rc!=SQLITE_OK ){
       
  3172       goto abort_due_to_error;
       
  3173     }
       
  3174     if( v==R ){
       
  3175       pc = pOp->p2 - 1;
       
  3176       break;
       
  3177     }
       
  3178 
       
  3179     /* The final varint of the key is different from R.  Store it back
       
  3180     ** into register R3.  (The record number of an entry that violates
       
  3181     ** a UNIQUE constraint.)
       
  3182     */
       
  3183     pIn3->u.i = v;
       
  3184     assert( pIn3->flags&MEM_Int );
       
  3185   }
       
  3186   break;
       
  3187 }
       
  3188 
       
  3189 /* Opcode: NotExists P1 P2 P3 * *
       
  3190 **
       
  3191 ** Use the content of register P3 as a integer key.  If a record 
       
  3192 ** with that key does not exist in table of P1, then jump to P2. 
       
  3193 ** If the record does exist, then fall thru.  The cursor is left 
       
  3194 ** pointing to the record if it exists.
       
  3195 **
       
  3196 ** The difference between this operation and NotFound is that this
       
  3197 ** operation assumes the key is an integer and that P1 is a table whereas
       
  3198 ** NotFound assumes key is a blob constructed from MakeRecord and
       
  3199 ** P1 is an index.
       
  3200 **
       
  3201 ** See also: Found, MoveTo, NotFound, IsUnique
       
  3202 */
       
  3203 case OP_NotExists: {        /* jump, in3 */
       
  3204   int i = pOp->p1;
       
  3205   Cursor *pC;
       
  3206   BtCursor *pCrsr;
       
  3207   assert( i>=0 && i<p->nCursor );
       
  3208   assert( p->apCsr[i]!=0 );
       
  3209   if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
       
  3210     int res;
       
  3211     u64 iKey;
       
  3212     assert( pIn3->flags & MEM_Int );
       
  3213     assert( p->apCsr[i]->isTable );
       
  3214     iKey = intToKey(pIn3->u.i);
       
  3215     rc = sqlite3BtreeMoveto(pCrsr, 0, 0, iKey, 0,&res);
       
  3216     pC->lastRowid = pIn3->u.i;
       
  3217     pC->rowidIsValid = res==0;
       
  3218     pC->nullRow = 0;
       
  3219     pC->cacheStatus = CACHE_STALE;
       
  3220     /* res might be uninitialized if rc!=SQLITE_OK.  But if rc!=SQLITE_OK
       
  3221     ** processing is about to abort so we really do not care whether or not
       
  3222     ** the following jump is taken.  (In other words, do not stress over
       
  3223     ** the error that valgrind sometimes shows on the next statement when
       
  3224     ** running ioerr.test and similar failure-recovery test scripts.) */
       
  3225     if( res!=0 ){
       
  3226       pc = pOp->p2 - 1;
       
  3227       assert( pC->rowidIsValid==0 );
       
  3228     }
       
  3229   }else if( !pC->pseudoTable ){
       
  3230     /* This happens when an attempt to open a read cursor on the 
       
  3231     ** sqlite_master table returns SQLITE_EMPTY.
       
  3232     */
       
  3233     assert( pC->isTable );
       
  3234     pc = pOp->p2 - 1;
       
  3235     assert( pC->rowidIsValid==0 );
       
  3236   }
       
  3237   break;
       
  3238 }
       
  3239 
       
  3240 /* Opcode: Sequence P1 P2 * * *
       
  3241 **
       
  3242 ** Find the next available sequence number for cursor P1.
       
  3243 ** Write the sequence number into register P2.
       
  3244 ** The sequence number on the cursor is incremented after this
       
  3245 ** instruction.  
       
  3246 */
       
  3247 case OP_Sequence: {           /* out2-prerelease */
       
  3248   int i = pOp->p1;
       
  3249   assert( i>=0 && i<p->nCursor );
       
  3250   assert( p->apCsr[i]!=0 );
       
  3251   pOut->u.i = p->apCsr[i]->seqCount++;
       
  3252   MemSetTypeFlag(pOut, MEM_Int);
       
  3253   break;
       
  3254 }
       
  3255 
       
  3256 
       
  3257 /* Opcode: NewRowid P1 P2 P3 * *
       
  3258 **
       
  3259 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
       
  3260 ** The record number is not previously used as a key in the database
       
  3261 ** table that cursor P1 points to.  The new record number is written
       
  3262 ** written to register P2.
       
  3263 **
       
  3264 ** If P3>0 then P3 is a register that holds the largest previously
       
  3265 ** generated record number.  No new record numbers are allowed to be less
       
  3266 ** than this value.  When this value reaches its maximum, a SQLITE_FULL
       
  3267 ** error is generated.  The P3 register is updated with the generated
       
  3268 ** record number.  This P3 mechanism is used to help implement the
       
  3269 ** AUTOINCREMENT feature.
       
  3270 */
       
  3271 case OP_NewRowid: {           /* out2-prerelease */
       
  3272   int i = pOp->p1;
       
  3273   i64 v = 0;
       
  3274   Cursor *pC;
       
  3275   assert( i>=0 && i<p->nCursor );
       
  3276   assert( p->apCsr[i]!=0 );
       
  3277   if( (pC = p->apCsr[i])->pCursor==0 ){
       
  3278     /* The zero initialization above is all that is needed */
       
  3279   }else{
       
  3280     /* The next rowid or record number (different terms for the same
       
  3281     ** thing) is obtained in a two-step algorithm.
       
  3282     **
       
  3283     ** First we attempt to find the largest existing rowid and add one
       
  3284     ** to that.  But if the largest existing rowid is already the maximum
       
  3285     ** positive integer, we have to fall through to the second
       
  3286     ** probabilistic algorithm
       
  3287     **
       
  3288     ** The second algorithm is to select a rowid at random and see if
       
  3289     ** it already exists in the table.  If it does not exist, we have
       
  3290     ** succeeded.  If the random rowid does exist, we select a new one
       
  3291     ** and try again, up to 1000 times.
       
  3292     **
       
  3293     ** For a table with less than 2 billion entries, the probability
       
  3294     ** of not finding a unused rowid is about 1.0e-300.  This is a 
       
  3295     ** non-zero probability, but it is still vanishingly small and should
       
  3296     ** never cause a problem.  You are much, much more likely to have a
       
  3297     ** hardware failure than for this algorithm to fail.
       
  3298     **
       
  3299     ** The analysis in the previous paragraph assumes that you have a good
       
  3300     ** source of random numbers.  Is a library function like lrand48()
       
  3301     ** good enough?  Maybe. Maybe not. It's hard to know whether there
       
  3302     ** might be subtle bugs is some implementations of lrand48() that
       
  3303     ** could cause problems. To avoid uncertainty, SQLite uses its own 
       
  3304     ** random number generator based on the RC4 algorithm.
       
  3305     **
       
  3306     ** To promote locality of reference for repetitive inserts, the
       
  3307     ** first few attempts at choosing a random rowid pick values just a little
       
  3308     ** larger than the previous rowid.  This has been shown experimentally
       
  3309     ** to double the speed of the COPY operation.
       
  3310     */
       
  3311     int res, rx=SQLITE_OK, cnt;
       
  3312     i64 x;
       
  3313     cnt = 0;
       
  3314     if( (sqlite3BtreeFlags(pC->pCursor)&(BTREE_INTKEY|BTREE_ZERODATA)) !=
       
  3315           BTREE_INTKEY ){
       
  3316       rc = SQLITE_CORRUPT_BKPT;
       
  3317       goto abort_due_to_error;
       
  3318     }
       
  3319     assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_INTKEY)!=0 );
       
  3320     assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_ZERODATA)==0 );
       
  3321 
       
  3322 #ifdef SQLITE_32BIT_ROWID
       
  3323 #   define MAX_ROWID 0x7fffffff
       
  3324 #else
       
  3325     /* Some compilers complain about constants of the form 0x7fffffffffffffff.
       
  3326     ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
       
  3327     ** to provide the constant while making all compilers happy.
       
  3328     */
       
  3329 #   define MAX_ROWID  ( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
       
  3330 #endif
       
  3331 
       
  3332     if( !pC->useRandomRowid ){
       
  3333       if( pC->nextRowidValid ){
       
  3334         v = pC->nextRowid;
       
  3335       }else{
       
  3336         rc = sqlite3BtreeLast(pC->pCursor, &res);
       
  3337         if( rc!=SQLITE_OK ){
       
  3338           goto abort_due_to_error;
       
  3339         }
       
  3340         if( res ){
       
  3341           v = 1;
       
  3342         }else{
       
  3343           sqlite3BtreeKeySize(pC->pCursor, &v);
       
  3344           v = keyToInt(v);
       
  3345           if( v==MAX_ROWID ){
       
  3346             pC->useRandomRowid = 1;
       
  3347           }else{
       
  3348             v++;
       
  3349           }
       
  3350         }
       
  3351       }
       
  3352 
       
  3353 #ifndef SQLITE_OMIT_AUTOINCREMENT
       
  3354       if( pOp->p3 ){
       
  3355         Mem *pMem;
       
  3356         assert( pOp->p3>0 && pOp->p3<=p->nMem ); /* P3 is a valid memory cell */
       
  3357         pMem = &p->aMem[pOp->p3];
       
  3358 	REGISTER_TRACE(pOp->p3, pMem);
       
  3359         sqlite3VdbeMemIntegerify(pMem);
       
  3360         assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
       
  3361         if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
       
  3362           rc = SQLITE_FULL;
       
  3363           goto abort_due_to_error;
       
  3364         }
       
  3365         if( v<pMem->u.i+1 ){
       
  3366           v = pMem->u.i + 1;
       
  3367         }
       
  3368         pMem->u.i = v;
       
  3369       }
       
  3370 #endif
       
  3371 
       
  3372       if( v<MAX_ROWID ){
       
  3373         pC->nextRowidValid = 1;
       
  3374         pC->nextRowid = v+1;
       
  3375       }else{
       
  3376         pC->nextRowidValid = 0;
       
  3377       }
       
  3378     }
       
  3379     if( pC->useRandomRowid ){
       
  3380       assert( pOp->p3==0 );  /* SQLITE_FULL must have occurred prior to this */
       
  3381       v = db->priorNewRowid;
       
  3382       cnt = 0;
       
  3383       do{
       
  3384         if( cnt==0 && (v&0xffffff)==v ){
       
  3385           v++;
       
  3386         }else{
       
  3387           sqlite3_randomness(sizeof(v), &v);
       
  3388           if( cnt<5 ) v &= 0xffffff;
       
  3389         }
       
  3390         if( v==0 ) continue;
       
  3391         x = intToKey(v);
       
  3392         rx = sqlite3BtreeMoveto(pC->pCursor, 0, 0, (u64)x, 0, &res);
       
  3393         cnt++;
       
  3394       }while( cnt<100 && rx==SQLITE_OK && res==0 );
       
  3395       db->priorNewRowid = v;
       
  3396       if( rx==SQLITE_OK && res==0 ){
       
  3397         rc = SQLITE_FULL;
       
  3398         goto abort_due_to_error;
       
  3399       }
       
  3400     }
       
  3401     pC->rowidIsValid = 0;
       
  3402     pC->deferredMoveto = 0;
       
  3403     pC->cacheStatus = CACHE_STALE;
       
  3404   }
       
  3405   MemSetTypeFlag(pOut, MEM_Int);
       
  3406   pOut->u.i = v;
       
  3407   break;
       
  3408 }
       
  3409 
       
  3410 /* Opcode: Insert P1 P2 P3 P4 P5
       
  3411 **
       
  3412 ** Write an entry into the table of cursor P1.  A new entry is
       
  3413 ** created if it doesn't already exist or the data for an existing
       
  3414 ** entry is overwritten.  The data is the value stored register
       
  3415 ** number P2. The key is stored in register P3. The key must
       
  3416 ** be an integer.
       
  3417 **
       
  3418 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
       
  3419 ** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P5 is set,
       
  3420 ** then rowid is stored for subsequent return by the
       
  3421 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
       
  3422 **
       
  3423 ** Parameter P4 may point to a string containing the table-name, or
       
  3424 ** may be NULL. If it is not NULL, then the update-hook 
       
  3425 ** (sqlite3.xUpdateCallback) is invoked following a successful insert.
       
  3426 **
       
  3427 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
       
  3428 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
       
  3429 ** and register P2 becomes ephemeral.  If the cursor is changed, the
       
  3430 ** value of register P2 will then change.  Make sure this does not
       
  3431 ** cause any problems.)
       
  3432 **
       
  3433 ** This instruction only works on tables.  The equivalent instruction
       
  3434 ** for indices is OP_IdxInsert.
       
  3435 */
       
  3436 case OP_Insert: {
       
  3437   Mem *pData = &p->aMem[pOp->p2];
       
  3438   Mem *pKey = &p->aMem[pOp->p3];
       
  3439 
       
  3440   i64 iKey;   /* The integer ROWID or key for the record to be inserted */
       
  3441   int i = pOp->p1;
       
  3442   Cursor *pC;
       
  3443   assert( i>=0 && i<p->nCursor );
       
  3444   pC = p->apCsr[i];
       
  3445   assert( pC!=0 );
       
  3446   assert( pC->pCursor!=0 || pC->pseudoTable );
       
  3447   assert( pKey->flags & MEM_Int );
       
  3448   assert( pC->isTable );
       
  3449   REGISTER_TRACE(pOp->p2, pData);
       
  3450   REGISTER_TRACE(pOp->p3, pKey);
       
  3451 
       
  3452   iKey = intToKey(pKey->u.i);
       
  3453   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
       
  3454   if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = pKey->u.i;
       
  3455   if( pC->nextRowidValid && pKey->u.i>=pC->nextRowid ){
       
  3456     pC->nextRowidValid = 0;
       
  3457   }
       
  3458   if( pData->flags & MEM_Null ){
       
  3459     pData->z = 0;
       
  3460     pData->n = 0;
       
  3461   }else{
       
  3462     assert( pData->flags & (MEM_Blob|MEM_Str) );
       
  3463   }
       
  3464   if( pC->pseudoTable ){
       
  3465     if( !pC->ephemPseudoTable ){
       
  3466       sqlite3DbFree(db, pC->pData);
       
  3467     }
       
  3468     pC->iKey = iKey;
       
  3469     pC->nData = pData->n;
       
  3470     if( pData->z==pData->zMalloc || pC->ephemPseudoTable ){
       
  3471       pC->pData = pData->z;
       
  3472       if( !pC->ephemPseudoTable ){
       
  3473         pData->flags &= ~MEM_Dyn;
       
  3474         pData->flags |= MEM_Ephem;
       
  3475         pData->zMalloc = 0;
       
  3476       }
       
  3477     }else{
       
  3478       pC->pData = sqlite3Malloc( pC->nData+2 );
       
  3479       if( !pC->pData ) goto no_mem;
       
  3480       memcpy(pC->pData, pData->z, pC->nData);
       
  3481       pC->pData[pC->nData] = 0;
       
  3482       pC->pData[pC->nData+1] = 0;
       
  3483     }
       
  3484     pC->nullRow = 0;
       
  3485   }else{
       
  3486     int nZero;
       
  3487     if( pData->flags & MEM_Zero ){
       
  3488       nZero = pData->u.i;
       
  3489     }else{
       
  3490       nZero = 0;
       
  3491     }
       
  3492     rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
       
  3493                             pData->z, pData->n, nZero,
       
  3494                             pOp->p5 & OPFLAG_APPEND);
       
  3495   }
       
  3496   
       
  3497   pC->rowidIsValid = 0;
       
  3498   pC->deferredMoveto = 0;
       
  3499   pC->cacheStatus = CACHE_STALE;
       
  3500 
       
  3501   /* Invoke the update-hook if required. */
       
  3502   if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
       
  3503     const char *zDb = db->aDb[pC->iDb].zName;
       
  3504     const char *zTbl = pOp->p4.z;
       
  3505     int op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
       
  3506     assert( pC->isTable );
       
  3507     db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
       
  3508     assert( pC->iDb>=0 );
       
  3509   }
       
  3510   break;
       
  3511 }
       
  3512 
       
  3513 /* Opcode: Delete P1 P2 * P4 *
       
  3514 **
       
  3515 ** Delete the record at which the P1 cursor is currently pointing.
       
  3516 **
       
  3517 ** The cursor will be left pointing at either the next or the previous
       
  3518 ** record in the table. If it is left pointing at the next record, then
       
  3519 ** the next Next instruction will be a no-op.  Hence it is OK to delete
       
  3520 ** a record from within an Next loop.
       
  3521 **
       
  3522 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
       
  3523 ** incremented (otherwise not).
       
  3524 **
       
  3525 ** P1 must not be pseudo-table.  It has to be a real table with
       
  3526 ** multiple rows.
       
  3527 **
       
  3528 ** If P4 is not NULL, then it is the name of the table that P1 is
       
  3529 ** pointing to.  The update hook will be invoked, if it exists.
       
  3530 ** If P4 is not NULL then the P1 cursor must have been positioned
       
  3531 ** using OP_NotFound prior to invoking this opcode.
       
  3532 */
       
  3533 case OP_Delete: {
       
  3534   int i = pOp->p1;
       
  3535   i64 iKey;
       
  3536   Cursor *pC;
       
  3537 
       
  3538   assert( i>=0 && i<p->nCursor );
       
  3539   pC = p->apCsr[i];
       
  3540   assert( pC!=0 );
       
  3541   assert( pC->pCursor!=0 );  /* Only valid for real tables, no pseudotables */
       
  3542 
       
  3543   /* If the update-hook will be invoked, set iKey to the rowid of the
       
  3544   ** row being deleted.
       
  3545   */
       
  3546   if( db->xUpdateCallback && pOp->p4.z ){
       
  3547     assert( pC->isTable );
       
  3548     assert( pC->rowidIsValid );  /* lastRowid set by previous OP_NotFound */
       
  3549     iKey = pC->lastRowid;
       
  3550   }
       
  3551 
       
  3552   rc = sqlite3VdbeCursorMoveto(pC);
       
  3553   if( rc ) goto abort_due_to_error;
       
  3554   rc = sqlite3BtreeDelete(pC->pCursor);
       
  3555   pC->nextRowidValid = 0;
       
  3556   pC->cacheStatus = CACHE_STALE;
       
  3557 
       
  3558   /* Invoke the update-hook if required. */
       
  3559   if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
       
  3560     const char *zDb = db->aDb[pC->iDb].zName;
       
  3561     const char *zTbl = pOp->p4.z;
       
  3562     db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
       
  3563     assert( pC->iDb>=0 );
       
  3564   }
       
  3565   if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
       
  3566   break;
       
  3567 }
       
  3568 
       
  3569 /* Opcode: ResetCount P1 * *
       
  3570 **
       
  3571 ** This opcode resets the VMs internal change counter to 0. If P1 is true,
       
  3572 ** then the value of the change counter is copied to the database handle
       
  3573 ** change counter (returned by subsequent calls to sqlite3_changes())
       
  3574 ** before it is reset. This is used by trigger programs.
       
  3575 */
       
  3576 case OP_ResetCount: {
       
  3577   if( pOp->p1 ){
       
  3578     sqlite3VdbeSetChanges(db, p->nChange);
       
  3579   }
       
  3580   p->nChange = 0;
       
  3581   break;
       
  3582 }
       
  3583 
       
  3584 /* Opcode: RowData P1 P2 * * *
       
  3585 **
       
  3586 ** Write into register P2 the complete row data for cursor P1.
       
  3587 ** There is no interpretation of the data.  
       
  3588 ** It is just copied onto the P2 register exactly as 
       
  3589 ** it is found in the database file.
       
  3590 **
       
  3591 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
       
  3592 ** of a real table, not a pseudo-table.
       
  3593 */
       
  3594 /* Opcode: RowKey P1 P2 * * *
       
  3595 **
       
  3596 ** Write into register P2 the complete row key for cursor P1.
       
  3597 ** There is no interpretation of the data.  
       
  3598 ** The key is copied onto the P3 register exactly as 
       
  3599 ** it is found in the database file.
       
  3600 **
       
  3601 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
       
  3602 ** of a real table, not a pseudo-table.
       
  3603 */
       
  3604 case OP_RowKey:
       
  3605 case OP_RowData: {
       
  3606   int i = pOp->p1;
       
  3607   Cursor *pC;
       
  3608   BtCursor *pCrsr;
       
  3609   u32 n;
       
  3610 
       
  3611   pOut = &p->aMem[pOp->p2];
       
  3612 
       
  3613   /* Note that RowKey and RowData are really exactly the same instruction */
       
  3614   assert( i>=0 && i<p->nCursor );
       
  3615   pC = p->apCsr[i];
       
  3616   assert( pC->isTable || pOp->opcode==OP_RowKey );
       
  3617   assert( pC->isIndex || pOp->opcode==OP_RowData );
       
  3618   assert( pC!=0 );
       
  3619   assert( pC->nullRow==0 );
       
  3620   assert( pC->pseudoTable==0 );
       
  3621   assert( pC->pCursor!=0 );
       
  3622   pCrsr = pC->pCursor;
       
  3623   rc = sqlite3VdbeCursorMoveto(pC);
       
  3624   if( rc ) goto abort_due_to_error;
       
  3625   if( pC->isIndex ){
       
  3626     i64 n64;
       
  3627     assert( !pC->isTable );
       
  3628     sqlite3BtreeKeySize(pCrsr, &n64);
       
  3629     if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
       
  3630       goto too_big;
       
  3631     }
       
  3632     n = n64;
       
  3633   }else{
       
  3634     sqlite3BtreeDataSize(pCrsr, &n);
       
  3635     if( n>db->aLimit[SQLITE_LIMIT_LENGTH] ){
       
  3636       goto too_big;
       
  3637     }
       
  3638   }
       
  3639   if( sqlite3VdbeMemGrow(pOut, n, 0) ){
       
  3640     goto no_mem;
       
  3641   }
       
  3642   pOut->n = n;
       
  3643   MemSetTypeFlag(pOut, MEM_Blob);
       
  3644   if( pC->isIndex ){
       
  3645     rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
       
  3646   }else{
       
  3647     rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
       
  3648   }
       
  3649   pOut->enc = SQLITE_UTF8;  /* In case the blob is ever cast to text */
       
  3650   UPDATE_MAX_BLOBSIZE(pOut);
       
  3651   break;
       
  3652 }
       
  3653 
       
  3654 /* Opcode: Rowid P1 P2 * * *
       
  3655 **
       
  3656 ** Store in register P2 an integer which is the key of the table entry that
       
  3657 ** P1 is currently point to.
       
  3658 */
       
  3659 case OP_Rowid: {                 /* out2-prerelease */
       
  3660   int i = pOp->p1;
       
  3661   Cursor *pC;
       
  3662   i64 v;
       
  3663 
       
  3664   assert( i>=0 && i<p->nCursor );
       
  3665   pC = p->apCsr[i];
       
  3666   assert( pC!=0 );
       
  3667   rc = sqlite3VdbeCursorMoveto(pC);
       
  3668   if( rc ) goto abort_due_to_error;
       
  3669   if( pC->rowidIsValid ){
       
  3670     v = pC->lastRowid;
       
  3671   }else if( pC->pseudoTable ){
       
  3672     v = keyToInt(pC->iKey);
       
  3673   }else if( pC->nullRow ){
       
  3674     /* Leave the rowid set to a NULL */
       
  3675     break;
       
  3676   }else{
       
  3677     assert( pC->pCursor!=0 );
       
  3678     sqlite3BtreeKeySize(pC->pCursor, &v);
       
  3679     v = keyToInt(v);
       
  3680   }
       
  3681   pOut->u.i = v;
       
  3682   MemSetTypeFlag(pOut, MEM_Int);
       
  3683   break;
       
  3684 }
       
  3685 
       
  3686 /* Opcode: NullRow P1 * * * *
       
  3687 **
       
  3688 ** Move the cursor P1 to a null row.  Any OP_Column operations
       
  3689 ** that occur while the cursor is on the null row will always
       
  3690 ** write a NULL.
       
  3691 */
       
  3692 case OP_NullRow: {
       
  3693   int i = pOp->p1;
       
  3694   Cursor *pC;
       
  3695 
       
  3696   assert( i>=0 && i<p->nCursor );
       
  3697   pC = p->apCsr[i];
       
  3698   assert( pC!=0 );
       
  3699   pC->nullRow = 1;
       
  3700   pC->rowidIsValid = 0;
       
  3701   break;
       
  3702 }
       
  3703 
       
  3704 /* Opcode: Last P1 P2 * * *
       
  3705 **
       
  3706 ** The next use of the Rowid or Column or Next instruction for P1 
       
  3707 ** will refer to the last entry in the database table or index.
       
  3708 ** If the table or index is empty and P2>0, then jump immediately to P2.
       
  3709 ** If P2 is 0 or if the table or index is not empty, fall through
       
  3710 ** to the following instruction.
       
  3711 */
       
  3712 case OP_Last: {        /* jump */
       
  3713   int i = pOp->p1;
       
  3714   Cursor *pC;
       
  3715   BtCursor *pCrsr;
       
  3716   int res;
       
  3717 
       
  3718   assert( i>=0 && i<p->nCursor );
       
  3719   pC = p->apCsr[i];
       
  3720   assert( pC!=0 );
       
  3721   pCrsr = pC->pCursor;
       
  3722   assert( pCrsr!=0 );
       
  3723   rc = sqlite3BtreeLast(pCrsr, &res);
       
  3724   pC->nullRow = res;
       
  3725   pC->deferredMoveto = 0;
       
  3726   pC->cacheStatus = CACHE_STALE;
       
  3727   if( res && pOp->p2>0 ){
       
  3728     pc = pOp->p2 - 1;
       
  3729   }
       
  3730   break;
       
  3731 }
       
  3732 
       
  3733 
       
  3734 /* Opcode: Sort P1 P2 * * *
       
  3735 **
       
  3736 ** This opcode does exactly the same thing as OP_Rewind except that
       
  3737 ** it increments an undocumented global variable used for testing.
       
  3738 **
       
  3739 ** Sorting is accomplished by writing records into a sorting index,
       
  3740 ** then rewinding that index and playing it back from beginning to
       
  3741 ** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
       
  3742 ** rewinding so that the global variable will be incremented and
       
  3743 ** regression tests can determine whether or not the optimizer is
       
  3744 ** correctly optimizing out sorts.
       
  3745 */
       
  3746 case OP_Sort: {        /* jump */
       
  3747 #ifdef SQLITE_TEST
       
  3748   sqlite3_sort_count++;
       
  3749   sqlite3_search_count--;
       
  3750 #endif
       
  3751   /* Fall through into OP_Rewind */
       
  3752 }
       
  3753 /* Opcode: Rewind P1 P2 * * *
       
  3754 **
       
  3755 ** The next use of the Rowid or Column or Next instruction for P1 
       
  3756 ** will refer to the first entry in the database table or index.
       
  3757 ** If the table or index is empty and P2>0, then jump immediately to P2.
       
  3758 ** If P2 is 0 or if the table or index is not empty, fall through
       
  3759 ** to the following instruction.
       
  3760 */
       
  3761 case OP_Rewind: {        /* jump */
       
  3762   int i = pOp->p1;
       
  3763   Cursor *pC;
       
  3764   BtCursor *pCrsr;
       
  3765   int res;
       
  3766 
       
  3767   assert( i>=0 && i<p->nCursor );
       
  3768   pC = p->apCsr[i];
       
  3769   assert( pC!=0 );
       
  3770   if( (pCrsr = pC->pCursor)!=0 ){
       
  3771     rc = sqlite3BtreeFirst(pCrsr, &res);
       
  3772     pC->atFirst = res==0;
       
  3773     pC->deferredMoveto = 0;
       
  3774     pC->cacheStatus = CACHE_STALE;
       
  3775   }else{
       
  3776     res = 1;
       
  3777   }
       
  3778   pC->nullRow = res;
       
  3779   assert( pOp->p2>0 && pOp->p2<p->nOp );
       
  3780   if( res ){
       
  3781     pc = pOp->p2 - 1;
       
  3782   }
       
  3783   break;
       
  3784 }
       
  3785 
       
  3786 /* Opcode: Next P1 P2 * * *
       
  3787 **
       
  3788 ** Advance cursor P1 so that it points to the next key/data pair in its
       
  3789 ** table or index.  If there are no more key/value pairs then fall through
       
  3790 ** to the following instruction.  But if the cursor advance was successful,
       
  3791 ** jump immediately to P2.
       
  3792 **
       
  3793 ** The P1 cursor must be for a real table, not a pseudo-table.
       
  3794 **
       
  3795 ** See also: Prev
       
  3796 */
       
  3797 /* Opcode: Prev P1 P2 * * *
       
  3798 **
       
  3799 ** Back up cursor P1 so that it points to the previous key/data pair in its
       
  3800 ** table or index.  If there is no previous key/value pairs then fall through
       
  3801 ** to the following instruction.  But if the cursor backup was successful,
       
  3802 ** jump immediately to P2.
       
  3803 **
       
  3804 ** The P1 cursor must be for a real table, not a pseudo-table.
       
  3805 */
       
  3806 case OP_Prev:          /* jump */
       
  3807 case OP_Next: {        /* jump */
       
  3808   Cursor *pC;
       
  3809   BtCursor *pCrsr;
       
  3810   int res;
       
  3811 
       
  3812   CHECK_FOR_INTERRUPT;
       
  3813   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
       
  3814   pC = p->apCsr[pOp->p1];
       
  3815   if( pC==0 ){
       
  3816     break;  /* See ticket #2273 */
       
  3817   }
       
  3818   pCrsr = pC->pCursor;
       
  3819   assert( pCrsr );
       
  3820   res = 1;
       
  3821   assert( pC->deferredMoveto==0 );
       
  3822   rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(pCrsr, &res) :
       
  3823                               sqlite3BtreePrevious(pCrsr, &res);
       
  3824   pC->nullRow = res;
       
  3825   pC->cacheStatus = CACHE_STALE;
       
  3826   if( res==0 ){
       
  3827     pc = pOp->p2 - 1;
       
  3828 #ifdef SQLITE_TEST
       
  3829     sqlite3_search_count++;
       
  3830 #endif
       
  3831   }
       
  3832   pC->rowidIsValid = 0;
       
  3833   break;
       
  3834 }
       
  3835 
       
  3836 /* Opcode: IdxInsert P1 P2 P3 * *
       
  3837 **
       
  3838 ** Register P2 holds a SQL index key made using the
       
  3839 ** MakeIdxRec instructions.  This opcode writes that key
       
  3840 ** into the index P1.  Data for the entry is nil.
       
  3841 **
       
  3842 ** P3 is a flag that provides a hint to the b-tree layer that this
       
  3843 ** insert is likely to be an append.
       
  3844 **
       
  3845 ** This instruction only works for indices.  The equivalent instruction
       
  3846 ** for tables is OP_Insert.
       
  3847 */
       
  3848 case OP_IdxInsert: {        /* in2 */
       
  3849   int i = pOp->p1;
       
  3850   Cursor *pC;
       
  3851   BtCursor *pCrsr;
       
  3852   assert( i>=0 && i<p->nCursor );
       
  3853   assert( p->apCsr[i]!=0 );
       
  3854   assert( pIn2->flags & MEM_Blob );
       
  3855   if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
       
  3856     assert( pC->isTable==0 );
       
  3857     rc = ExpandBlob(pIn2);
       
  3858     if( rc==SQLITE_OK ){
       
  3859       int nKey = pIn2->n;
       
  3860       const char *zKey = pIn2->z;
       
  3861       rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3);
       
  3862       assert( pC->deferredMoveto==0 );
       
  3863       pC->cacheStatus = CACHE_STALE;
       
  3864     }
       
  3865   }
       
  3866   break;
       
  3867 }
       
  3868 
       
  3869 /* Opcode: IdxDeleteM P1 P2 P3 * *
       
  3870 **
       
  3871 ** The content of P3 registers starting at register P2 form
       
  3872 ** an unpacked index key. This opcode removes that entry from the 
       
  3873 ** index opened by cursor P1.
       
  3874 */
       
  3875 case OP_IdxDelete: {
       
  3876   int i = pOp->p1;
       
  3877   Cursor *pC;
       
  3878   BtCursor *pCrsr;
       
  3879   assert( pOp->p3>0 );
       
  3880   assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem );
       
  3881   assert( i>=0 && i<p->nCursor );
       
  3882   assert( p->apCsr[i]!=0 );
       
  3883   if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
       
  3884     int res;
       
  3885     UnpackedRecord r;
       
  3886     r.pKeyInfo = pC->pKeyInfo;
       
  3887     r.nField = pOp->p3;
       
  3888     r.needFree = 0;
       
  3889     r.needDestroy = 0;
       
  3890     r.aMem = &p->aMem[pOp->p2];
       
  3891     rc = sqlite3BtreeMoveto(pCrsr, 0, &r, 0, 0, &res);
       
  3892     if( rc==SQLITE_OK && res==0 ){
       
  3893       rc = sqlite3BtreeDelete(pCrsr);
       
  3894     }
       
  3895     assert( pC->deferredMoveto==0 );
       
  3896     pC->cacheStatus = CACHE_STALE;
       
  3897   }
       
  3898   break;
       
  3899 }
       
  3900 
       
  3901 /* Opcode: IdxRowid P1 P2 * * *
       
  3902 **
       
  3903 ** Write into register P2 an integer which is the last entry in the record at
       
  3904 ** the end of the index key pointed to by cursor P1.  This integer should be
       
  3905 ** the rowid of the table entry to which this index entry points.
       
  3906 **
       
  3907 ** See also: Rowid, MakeIdxRec.
       
  3908 */
       
  3909 case OP_IdxRowid: {              /* out2-prerelease */
       
  3910   int i = pOp->p1;
       
  3911   BtCursor *pCrsr;
       
  3912   Cursor *pC;
       
  3913 
       
  3914   assert( i>=0 && i<p->nCursor );
       
  3915   assert( p->apCsr[i]!=0 );
       
  3916   if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
       
  3917     i64 rowid;
       
  3918 
       
  3919     assert( pC->deferredMoveto==0 );
       
  3920     assert( pC->isTable==0 );
       
  3921     if( !pC->nullRow ){
       
  3922       rc = sqlite3VdbeIdxRowid(pCrsr, &rowid);
       
  3923       if( rc!=SQLITE_OK ){
       
  3924         goto abort_due_to_error;
       
  3925       }
       
  3926       MemSetTypeFlag(pOut, MEM_Int);
       
  3927       pOut->u.i = rowid;
       
  3928     }
       
  3929   }
       
  3930   break;
       
  3931 }
       
  3932 
       
  3933 /* Opcode: IdxGE P1 P2 P3 P4 P5
       
  3934 **
       
  3935 ** The P4 register values beginning with P3 form an unpacked index 
       
  3936 ** key that omits the ROWID.  Compare this key value against the index 
       
  3937 ** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
       
  3938 **
       
  3939 ** If the P1 index entry is greater than or equal to the key value
       
  3940 ** then jump to P2.  Otherwise fall through to the next instruction.
       
  3941 **
       
  3942 ** If P5 is non-zero then the key value is increased by an epsilon 
       
  3943 ** prior to the comparison.  This make the opcode work like IdxGT except
       
  3944 ** that if the key from register P3 is a prefix of the key in the cursor,
       
  3945 ** the result is false whereas it would be true with IdxGT.
       
  3946 */
       
  3947 /* Opcode: IdxLT P1 P2 P3 * P5
       
  3948 **
       
  3949 ** The P4 register values beginning with P3 form an unpacked index 
       
  3950 ** key that omits the ROWID.  Compare this key value against the index 
       
  3951 ** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
       
  3952 **
       
  3953 ** If the P1 index entry is less than the key value then jump to P2.
       
  3954 ** Otherwise fall through to the next instruction.
       
  3955 **
       
  3956 ** If P5 is non-zero then the key value is increased by an epsilon prior 
       
  3957 ** to the comparison.  This makes the opcode work like IdxLE.
       
  3958 */
       
  3959 case OP_IdxLT:          /* jump, in3 */
       
  3960 case OP_IdxGE: {        /* jump, in3 */
       
  3961   int i= pOp->p1;
       
  3962   Cursor *pC;
       
  3963 
       
  3964   assert( i>=0 && i<p->nCursor );
       
  3965   assert( p->apCsr[i]!=0 );
       
  3966   if( (pC = p->apCsr[i])->pCursor!=0 ){
       
  3967     int res;
       
  3968     UnpackedRecord r;
       
  3969     assert( pC->deferredMoveto==0 );
       
  3970     assert( pOp->p5==0 || pOp->p5==1 );
       
  3971     assert( pOp->p4type==P4_INT32 );
       
  3972     r.pKeyInfo = pC->pKeyInfo;
       
  3973     r.nField = pOp->p4.i;
       
  3974     r.needFree = 0;
       
  3975     r.needDestroy = 0;
       
  3976     r.aMem = &p->aMem[pOp->p3];
       
  3977     *pC->pIncrKey = pOp->p5;
       
  3978     rc = sqlite3VdbeIdxKeyCompare(pC, &r, 0, 0, &res);
       
  3979     *pC->pIncrKey = 0;
       
  3980     if( pOp->opcode==OP_IdxLT ){
       
  3981       res = -res;
       
  3982     }else{
       
  3983       assert( pOp->opcode==OP_IdxGE );
       
  3984       res++;
       
  3985     }
       
  3986     if( res>0 ){
       
  3987       pc = pOp->p2 - 1 ;
       
  3988     }
       
  3989   }
       
  3990   break;
       
  3991 }
       
  3992 
       
  3993 /* Opcode: Destroy P1 P2 P3 * *
       
  3994 **
       
  3995 ** Delete an entire database table or index whose root page in the database
       
  3996 ** file is given by P1.
       
  3997 **
       
  3998 ** The table being destroyed is in the main database file if P3==0.  If
       
  3999 ** P3==1 then the table to be clear is in the auxiliary database file
       
  4000 ** that is used to store tables create using CREATE TEMPORARY TABLE.
       
  4001 **
       
  4002 ** If AUTOVACUUM is enabled then it is possible that another root page
       
  4003 ** might be moved into the newly deleted root page in order to keep all
       
  4004 ** root pages contiguous at the beginning of the database.  The former
       
  4005 ** value of the root page that moved - its value before the move occurred -
       
  4006 ** is stored in register P2.  If no page 
       
  4007 ** movement was required (because the table being dropped was already 
       
  4008 ** the last one in the database) then a zero is stored in register P2.
       
  4009 ** If AUTOVACUUM is disabled then a zero is stored in register P2.
       
  4010 **
       
  4011 ** See also: Clear
       
  4012 */
       
  4013 case OP_Destroy: {     /* out2-prerelease */
       
  4014   int iMoved;
       
  4015   int iCnt;
       
  4016 #ifndef SQLITE_OMIT_VIRTUALTABLE
       
  4017   Vdbe *pVdbe;
       
  4018   iCnt = 0;
       
  4019   for(pVdbe=db->pVdbe; pVdbe; pVdbe=pVdbe->pNext){
       
  4020     if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){
       
  4021       iCnt++;
       
  4022     }
       
  4023   }
       
  4024 #else
       
  4025   iCnt = db->activeVdbeCnt;
       
  4026 #endif
       
  4027   if( iCnt>1 ){
       
  4028     rc = SQLITE_LOCKED;
       
  4029     p->errorAction = OE_Abort;
       
  4030   }else{
       
  4031     int iDb = pOp->p3;
       
  4032     assert( iCnt==1 );
       
  4033     assert( (p->btreeMask & (1<<iDb))!=0 );
       
  4034     rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
       
  4035     MemSetTypeFlag(pOut, MEM_Int);
       
  4036     pOut->u.i = iMoved;
       
  4037 #ifndef SQLITE_OMIT_AUTOVACUUM
       
  4038     if( rc==SQLITE_OK && iMoved!=0 ){
       
  4039       sqlite3RootPageMoved(&db->aDb[iDb], iMoved, pOp->p1);
       
  4040     }
       
  4041 #endif
       
  4042   }
       
  4043   break;
       
  4044 }
       
  4045 
       
  4046 /* Opcode: Clear P1 P2 *
       
  4047 **
       
  4048 ** Delete all contents of the database table or index whose root page
       
  4049 ** in the database file is given by P1.  But, unlike Destroy, do not
       
  4050 ** remove the table or index from the database file.
       
  4051 **
       
  4052 ** The table being clear is in the main database file if P2==0.  If
       
  4053 ** P2==1 then the table to be clear is in the auxiliary database file
       
  4054 ** that is used to store tables create using CREATE TEMPORARY TABLE.
       
  4055 **
       
  4056 ** See also: Destroy
       
  4057 */
       
  4058 case OP_Clear: {
       
  4059   assert( (p->btreeMask & (1<<pOp->p2))!=0 );
       
  4060   rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1);
       
  4061   break;
       
  4062 }
       
  4063 
       
  4064 /* Opcode: CreateTable P1 P2 * * *
       
  4065 **
       
  4066 ** Allocate a new table in the main database file if P1==0 or in the
       
  4067 ** auxiliary database file if P1==1 or in an attached database if
       
  4068 ** P1>1.  Write the root page number of the new table into
       
  4069 ** register P2
       
  4070 **
       
  4071 ** The difference between a table and an index is this:  A table must
       
  4072 ** have a 4-byte integer key and can have arbitrary data.  An index
       
  4073 ** has an arbitrary key but no data.
       
  4074 **
       
  4075 ** See also: CreateIndex
       
  4076 */
       
  4077 /* Opcode: CreateIndex P1 P2 * * *
       
  4078 **
       
  4079 ** Allocate a new index in the main database file if P1==0 or in the
       
  4080 ** auxiliary database file if P1==1 or in an attached database if
       
  4081 ** P1>1.  Write the root page number of the new table into
       
  4082 ** register P2.
       
  4083 **
       
  4084 ** See documentation on OP_CreateTable for additional information.
       
  4085 */
       
  4086 case OP_CreateIndex:            /* out2-prerelease */
       
  4087 case OP_CreateTable: {          /* out2-prerelease */
       
  4088   int pgno;
       
  4089   int flags;
       
  4090   Db *pDb;
       
  4091   assert( pOp->p1>=0 && pOp->p1<db->nDb );
       
  4092   assert( (p->btreeMask & (1<<pOp->p1))!=0 );
       
  4093   pDb = &db->aDb[pOp->p1];
       
  4094   assert( pDb->pBt!=0 );
       
  4095   if( pOp->opcode==OP_CreateTable ){
       
  4096     /* flags = BTREE_INTKEY; */
       
  4097     flags = BTREE_LEAFDATA|BTREE_INTKEY;
       
  4098   }else{
       
  4099     flags = BTREE_ZERODATA;
       
  4100   }
       
  4101   rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
       
  4102   if( rc==SQLITE_OK ){
       
  4103     pOut->u.i = pgno;
       
  4104     MemSetTypeFlag(pOut, MEM_Int);
       
  4105   }
       
  4106   break;
       
  4107 }
       
  4108 
       
  4109 /* Opcode: ParseSchema P1 P2 * P4 *
       
  4110 **
       
  4111 ** Read and parse all entries from the SQLITE_MASTER table of database P1
       
  4112 ** that match the WHERE clause P4.  P2 is the "force" flag.   Always do
       
  4113 ** the parsing if P2 is true.  If P2 is false, then this routine is a
       
  4114 ** no-op if the schema is not currently loaded.  In other words, if P2
       
  4115 ** is false, the SQLITE_MASTER table is only parsed if the rest of the
       
  4116 ** schema is already loaded into the symbol table.
       
  4117 **
       
  4118 ** This opcode invokes the parser to create a new virtual machine,
       
  4119 ** then runs the new virtual machine.  It is thus a re-entrant opcode.
       
  4120 */
       
  4121 case OP_ParseSchema: {
       
  4122   char *zSql;
       
  4123   int iDb = pOp->p1;
       
  4124   const char *zMaster;
       
  4125   InitData initData;
       
  4126 
       
  4127   assert( iDb>=0 && iDb<db->nDb );
       
  4128   if( !pOp->p2 && !DbHasProperty(db, iDb, DB_SchemaLoaded) ){
       
  4129     break;
       
  4130   }
       
  4131   zMaster = SCHEMA_TABLE(iDb);
       
  4132   initData.db = db;
       
  4133   initData.iDb = pOp->p1;
       
  4134   initData.pzErrMsg = &p->zErrMsg;
       
  4135   zSql = sqlite3MPrintf(db,
       
  4136      "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s",
       
  4137      db->aDb[iDb].zName, zMaster, pOp->p4.z);
       
  4138   if( zSql==0 ) goto no_mem;
       
  4139   (void)sqlite3SafetyOff(db);
       
  4140   assert( db->init.busy==0 );
       
  4141   db->init.busy = 1;
       
  4142   assert( !db->mallocFailed );
       
  4143   rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
       
  4144   if( rc==SQLITE_ABORT ) rc = initData.rc;
       
  4145   sqlite3DbFree(db, zSql);
       
  4146   db->init.busy = 0;
       
  4147   (void)sqlite3SafetyOn(db);
       
  4148   if( rc==SQLITE_NOMEM ){
       
  4149     goto no_mem;
       
  4150   }
       
  4151   break;  
       
  4152 }
       
  4153 
       
  4154 #if !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER)
       
  4155 /* Opcode: LoadAnalysis P1 * * * *
       
  4156 **
       
  4157 ** Read the sqlite_stat1 table for database P1 and load the content
       
  4158 ** of that table into the internal index hash table.  This will cause
       
  4159 ** the analysis to be used when preparing all subsequent queries.
       
  4160 */
       
  4161 case OP_LoadAnalysis: {
       
  4162   int iDb = pOp->p1;
       
  4163   assert( iDb>=0 && iDb<db->nDb );
       
  4164   rc = sqlite3AnalysisLoad(db, iDb);
       
  4165   break;  
       
  4166 }
       
  4167 #endif /* !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER)  */
       
  4168 
       
  4169 /* Opcode: DropTable P1 * * P4 *
       
  4170 **
       
  4171 ** Remove the internal (in-memory) data structures that describe
       
  4172 ** the table named P4 in database P1.  This is called after a table
       
  4173 ** is dropped in order to keep the internal representation of the
       
  4174 ** schema consistent with what is on disk.
       
  4175 */
       
  4176 case OP_DropTable: {
       
  4177   sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
       
  4178   break;
       
  4179 }
       
  4180 
       
  4181 /* Opcode: DropIndex P1 * * P4 *
       
  4182 **
       
  4183 ** Remove the internal (in-memory) data structures that describe
       
  4184 ** the index named P4 in database P1.  This is called after an index
       
  4185 ** is dropped in order to keep the internal representation of the
       
  4186 ** schema consistent with what is on disk.
       
  4187 */
       
  4188 case OP_DropIndex: {
       
  4189   sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
       
  4190   break;
       
  4191 }
       
  4192 
       
  4193 /* Opcode: DropTrigger P1 * * P4 *
       
  4194 **
       
  4195 ** Remove the internal (in-memory) data structures that describe
       
  4196 ** the trigger named P4 in database P1.  This is called after a trigger
       
  4197 ** is dropped in order to keep the internal representation of the
       
  4198 ** schema consistent with what is on disk.
       
  4199 */
       
  4200 case OP_DropTrigger: {
       
  4201   sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
       
  4202   break;
       
  4203 }
       
  4204 
       
  4205 
       
  4206 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
       
  4207 /* Opcode: IntegrityCk P1 P2 P3 * P5
       
  4208 **
       
  4209 ** Do an analysis of the currently open database.  Store in
       
  4210 ** register P1 the text of an error message describing any problems.
       
  4211 ** If no problems are found, store a NULL in register P1.
       
  4212 **
       
  4213 ** The register P3 contains the maximum number of allowed errors.
       
  4214 ** At most reg(P3) errors will be reported.
       
  4215 ** In other words, the analysis stops as soon as reg(P1) errors are 
       
  4216 ** seen.  Reg(P1) is updated with the number of errors remaining.
       
  4217 **
       
  4218 ** The root page numbers of all tables in the database are integer
       
  4219 ** stored in reg(P1), reg(P1+1), reg(P1+2), ....  There are P2 tables
       
  4220 ** total.
       
  4221 **
       
  4222 ** If P5 is not zero, the check is done on the auxiliary database
       
  4223 ** file, not the main database file.
       
  4224 **
       
  4225 ** This opcode is used to implement the integrity_check pragma.
       
  4226 */
       
  4227 case OP_IntegrityCk: {
       
  4228   int nRoot;      /* Number of tables to check.  (Number of root pages.) */
       
  4229   int *aRoot;     /* Array of rootpage numbers for tables to be checked */
       
  4230   int j;          /* Loop counter */
       
  4231   int nErr;       /* Number of errors reported */
       
  4232   char *z;        /* Text of the error report */
       
  4233   Mem *pnErr;     /* Register keeping track of errors remaining */
       
  4234   
       
  4235   nRoot = pOp->p2;
       
  4236   assert( nRoot>0 );
       
  4237   aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
       
  4238   if( aRoot==0 ) goto no_mem;
       
  4239   assert( pOp->p3>0 && pOp->p3<=p->nMem );
       
  4240   pnErr = &p->aMem[pOp->p3];
       
  4241   assert( (pnErr->flags & MEM_Int)!=0 );
       
  4242   assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
       
  4243   pIn1 = &p->aMem[pOp->p1];
       
  4244   for(j=0; j<nRoot; j++){
       
  4245     aRoot[j] = sqlite3VdbeIntValue(&pIn1[j]);
       
  4246   }
       
  4247   aRoot[j] = 0;
       
  4248   assert( pOp->p5<db->nDb );
       
  4249   assert( (p->btreeMask & (1<<pOp->p5))!=0 );
       
  4250   z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
       
  4251                                  pnErr->u.i, &nErr);
       
  4252   sqlite3DbFree(db, aRoot);
       
  4253   pnErr->u.i -= nErr;
       
  4254   sqlite3VdbeMemSetNull(pIn1);
       
  4255   if( nErr==0 ){
       
  4256     assert( z==0 );
       
  4257   }else if( z==0 ){
       
  4258     goto no_mem;
       
  4259   }else{
       
  4260     sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
       
  4261   }
       
  4262   UPDATE_MAX_BLOBSIZE(pIn1);
       
  4263   sqlite3VdbeChangeEncoding(pIn1, encoding);
       
  4264   break;
       
  4265 }
       
  4266 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
       
  4267 
       
  4268 /* Opcode: FifoWrite P1 * * * *
       
  4269 **
       
  4270 ** Write the integer from register P1 into the Fifo.
       
  4271 */
       
  4272 case OP_FifoWrite: {        /* in1 */
       
  4273   p->sFifo.db = db;
       
  4274   if( sqlite3VdbeFifoPush(&p->sFifo, sqlite3VdbeIntValue(pIn1))==SQLITE_NOMEM ){
       
  4275     goto no_mem;
       
  4276   }
       
  4277   break;
       
  4278 }
       
  4279 
       
  4280 /* Opcode: FifoRead P1 P2 * * *
       
  4281 **
       
  4282 ** Attempt to read a single integer from the Fifo.  Store that
       
  4283 ** integer in register P1.
       
  4284 ** 
       
  4285 ** If the Fifo is empty jump to P2.
       
  4286 */
       
  4287 case OP_FifoRead: {         /* jump */
       
  4288   CHECK_FOR_INTERRUPT;
       
  4289   assert( pOp->p1>0 && pOp->p1<=p->nMem );
       
  4290   pOut = &p->aMem[pOp->p1];
       
  4291   MemSetTypeFlag(pOut, MEM_Int);
       
  4292   if( sqlite3VdbeFifoPop(&p->sFifo, &pOut->u.i)==SQLITE_DONE ){
       
  4293     pc = pOp->p2 - 1;
       
  4294   }
       
  4295   break;
       
  4296 }
       
  4297 
       
  4298 #ifndef SQLITE_OMIT_TRIGGER
       
  4299 /* Opcode: ContextPush * * * 
       
  4300 **
       
  4301 ** Save the current Vdbe context such that it can be restored by a ContextPop
       
  4302 ** opcode. The context stores the last insert row id, the last statement change
       
  4303 ** count, and the current statement change count.
       
  4304 */
       
  4305 case OP_ContextPush: {
       
  4306   int i = p->contextStackTop++;
       
  4307   Context *pContext;
       
  4308 
       
  4309   assert( i>=0 );
       
  4310   /* FIX ME: This should be allocated as part of the vdbe at compile-time */
       
  4311   if( i>=p->contextStackDepth ){
       
  4312     p->contextStackDepth = i+1;
       
  4313     p->contextStack = sqlite3DbReallocOrFree(db, p->contextStack,
       
  4314                                           sizeof(Context)*(i+1));
       
  4315     if( p->contextStack==0 ) goto no_mem;
       
  4316   }
       
  4317   pContext = &p->contextStack[i];
       
  4318   pContext->lastRowid = db->lastRowid;
       
  4319   pContext->nChange = p->nChange;
       
  4320   pContext->sFifo = p->sFifo;
       
  4321   sqlite3VdbeFifoInit(&p->sFifo, db);
       
  4322   break;
       
  4323 }
       
  4324 
       
  4325 /* Opcode: ContextPop * * * 
       
  4326 **
       
  4327 ** Restore the Vdbe context to the state it was in when contextPush was last
       
  4328 ** executed. The context stores the last insert row id, the last statement
       
  4329 ** change count, and the current statement change count.
       
  4330 */
       
  4331 case OP_ContextPop: {
       
  4332   Context *pContext = &p->contextStack[--p->contextStackTop];
       
  4333   assert( p->contextStackTop>=0 );
       
  4334   db->lastRowid = pContext->lastRowid;
       
  4335   p->nChange = pContext->nChange;
       
  4336   sqlite3VdbeFifoClear(&p->sFifo);
       
  4337   p->sFifo = pContext->sFifo;
       
  4338   break;
       
  4339 }
       
  4340 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
       
  4341 
       
  4342 #ifndef SQLITE_OMIT_AUTOINCREMENT
       
  4343 /* Opcode: MemMax P1 P2 * * *
       
  4344 **
       
  4345 ** Set the value of register P1 to the maximum of its current value
       
  4346 ** and the value in register P2.
       
  4347 **
       
  4348 ** This instruction throws an error if the memory cell is not initially
       
  4349 ** an integer.
       
  4350 */
       
  4351 case OP_MemMax: {        /* in1, in2 */
       
  4352   sqlite3VdbeMemIntegerify(pIn1);
       
  4353   sqlite3VdbeMemIntegerify(pIn2);
       
  4354   if( pIn1->u.i<pIn2->u.i){
       
  4355     pIn1->u.i = pIn2->u.i;
       
  4356   }
       
  4357   break;
       
  4358 }
       
  4359 #endif /* SQLITE_OMIT_AUTOINCREMENT */
       
  4360 
       
  4361 /* Opcode: IfPos P1 P2 * * *
       
  4362 **
       
  4363 ** If the value of register P1 is 1 or greater, jump to P2.
       
  4364 **
       
  4365 ** It is illegal to use this instruction on a register that does
       
  4366 ** not contain an integer.  An assertion fault will result if you try.
       
  4367 */
       
  4368 case OP_IfPos: {        /* jump, in1 */
       
  4369   assert( pIn1->flags&MEM_Int );
       
  4370   if( pIn1->u.i>0 ){
       
  4371      pc = pOp->p2 - 1;
       
  4372   }
       
  4373   break;
       
  4374 }
       
  4375 
       
  4376 /* Opcode: IfNeg P1 P2 * * *
       
  4377 **
       
  4378 ** If the value of register P1 is less than zero, jump to P2. 
       
  4379 **
       
  4380 ** It is illegal to use this instruction on a register that does
       
  4381 ** not contain an integer.  An assertion fault will result if you try.
       
  4382 */
       
  4383 case OP_IfNeg: {        /* jump, in1 */
       
  4384   assert( pIn1->flags&MEM_Int );
       
  4385   if( pIn1->u.i<0 ){
       
  4386      pc = pOp->p2 - 1;
       
  4387   }
       
  4388   break;
       
  4389 }
       
  4390 
       
  4391 /* Opcode: IfZero P1 P2 * * *
       
  4392 **
       
  4393 ** If the value of register P1 is exactly 0, jump to P2. 
       
  4394 **
       
  4395 ** It is illegal to use this instruction on a register that does
       
  4396 ** not contain an integer.  An assertion fault will result if you try.
       
  4397 */
       
  4398 case OP_IfZero: {        /* jump, in1 */
       
  4399   assert( pIn1->flags&MEM_Int );
       
  4400   if( pIn1->u.i==0 ){
       
  4401      pc = pOp->p2 - 1;
       
  4402   }
       
  4403   break;
       
  4404 }
       
  4405 
       
  4406 /* Opcode: AggStep * P2 P3 P4 P5
       
  4407 **
       
  4408 ** Execute the step function for an aggregate.  The
       
  4409 ** function has P5 arguments.   P4 is a pointer to the FuncDef
       
  4410 ** structure that specifies the function.  Use register
       
  4411 ** P3 as the accumulator.
       
  4412 **
       
  4413 ** The P5 arguments are taken from register P2 and its
       
  4414 ** successors.
       
  4415 */
       
  4416 case OP_AggStep: {
       
  4417   int n = pOp->p5;
       
  4418   int i;
       
  4419   Mem *pMem, *pRec;
       
  4420   sqlite3_context ctx;
       
  4421   sqlite3_value **apVal;
       
  4422 
       
  4423   assert( n>=0 );
       
  4424   pRec = &p->aMem[pOp->p2];
       
  4425   apVal = p->apArg;
       
  4426   assert( apVal || n==0 );
       
  4427   for(i=0; i<n; i++, pRec++){
       
  4428     apVal[i] = pRec;
       
  4429     storeTypeInfo(pRec, encoding);
       
  4430   }
       
  4431   ctx.pFunc = pOp->p4.pFunc;
       
  4432   assert( pOp->p3>0 && pOp->p3<=p->nMem );
       
  4433   ctx.pMem = pMem = &p->aMem[pOp->p3];
       
  4434   pMem->n++;
       
  4435   ctx.s.flags = MEM_Null;
       
  4436   ctx.s.z = 0;
       
  4437   ctx.s.zMalloc = 0;
       
  4438   ctx.s.xDel = 0;
       
  4439   ctx.s.db = db;
       
  4440   ctx.isError = 0;
       
  4441   ctx.pColl = 0;
       
  4442   if( ctx.pFunc->needCollSeq ){
       
  4443     assert( pOp>p->aOp );
       
  4444     assert( pOp[-1].p4type==P4_COLLSEQ );
       
  4445     assert( pOp[-1].opcode==OP_CollSeq );
       
  4446     ctx.pColl = pOp[-1].p4.pColl;
       
  4447   }
       
  4448   (ctx.pFunc->xStep)(&ctx, n, apVal);
       
  4449   if( ctx.isError ){
       
  4450     sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
       
  4451     rc = ctx.isError;
       
  4452   }
       
  4453   sqlite3VdbeMemRelease(&ctx.s);
       
  4454   break;
       
  4455 }
       
  4456 
       
  4457 /* Opcode: AggFinal P1 P2 * P4 *
       
  4458 **
       
  4459 ** Execute the finalizer function for an aggregate.  P1 is
       
  4460 ** the memory location that is the accumulator for the aggregate.
       
  4461 **
       
  4462 ** P2 is the number of arguments that the step function takes and
       
  4463 ** P4 is a pointer to the FuncDef for this function.  The P2
       
  4464 ** argument is not used by this opcode.  It is only there to disambiguate
       
  4465 ** functions that can take varying numbers of arguments.  The
       
  4466 ** P4 argument is only needed for the degenerate case where
       
  4467 ** the step function was not previously called.
       
  4468 */
       
  4469 case OP_AggFinal: {
       
  4470   Mem *pMem;
       
  4471   assert( pOp->p1>0 && pOp->p1<=p->nMem );
       
  4472   pMem = &p->aMem[pOp->p1];
       
  4473   assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
       
  4474   rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
       
  4475   if( rc==SQLITE_ERROR ){
       
  4476     sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem));
       
  4477   }
       
  4478   sqlite3VdbeChangeEncoding(pMem, encoding);
       
  4479   UPDATE_MAX_BLOBSIZE(pMem);
       
  4480   if( sqlite3VdbeMemTooBig(pMem) ){
       
  4481     goto too_big;
       
  4482   }
       
  4483   break;
       
  4484 }
       
  4485 
       
  4486 
       
  4487 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
       
  4488 /* Opcode: Vacuum * * * * *
       
  4489 **
       
  4490 ** Vacuum the entire database.  This opcode will cause other virtual
       
  4491 ** machines to be created and run.  It may not be called from within
       
  4492 ** a transaction.
       
  4493 */
       
  4494 case OP_Vacuum: {
       
  4495   if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; 
       
  4496   rc = sqlite3RunVacuum(&p->zErrMsg, db);
       
  4497   if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
       
  4498   break;
       
  4499 }
       
  4500 #endif
       
  4501 
       
  4502 #if !defined(SQLITE_OMIT_AUTOVACUUM)
       
  4503 /* Opcode: IncrVacuum P1 P2 * * *
       
  4504 **
       
  4505 ** Perform a single step of the incremental vacuum procedure on
       
  4506 ** the P1 database. If the vacuum has finished, jump to instruction
       
  4507 ** P2. Otherwise, fall through to the next instruction.
       
  4508 */
       
  4509 case OP_IncrVacuum: {        /* jump */
       
  4510   Btree *pBt;
       
  4511 
       
  4512   assert( pOp->p1>=0 && pOp->p1<db->nDb );
       
  4513   assert( (p->btreeMask & (1<<pOp->p1))!=0 );
       
  4514   pBt = db->aDb[pOp->p1].pBt;
       
  4515   rc = sqlite3BtreeIncrVacuum(pBt);
       
  4516   if( rc==SQLITE_DONE ){
       
  4517     pc = pOp->p2 - 1;
       
  4518     rc = SQLITE_OK;
       
  4519   }
       
  4520   break;
       
  4521 }
       
  4522 #endif
       
  4523 
       
  4524 /* Opcode: Expire P1 * * * *
       
  4525 **
       
  4526 ** Cause precompiled statements to become expired. An expired statement
       
  4527 ** fails with an error code of SQLITE_SCHEMA if it is ever executed 
       
  4528 ** (via sqlite3_step()).
       
  4529 ** 
       
  4530 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
       
  4531 ** then only the currently executing statement is affected. 
       
  4532 */
       
  4533 case OP_Expire: {
       
  4534   if( !pOp->p1 ){
       
  4535     sqlite3ExpirePreparedStatements(db);
       
  4536   }else{
       
  4537     p->expired = 1;
       
  4538   }
       
  4539   break;
       
  4540 }
       
  4541 
       
  4542 #ifndef SQLITE_OMIT_SHARED_CACHE
       
  4543 /* Opcode: TableLock P1 P2 P3 P4 *
       
  4544 **
       
  4545 ** Obtain a lock on a particular table. This instruction is only used when
       
  4546 ** the shared-cache feature is enabled. 
       
  4547 **
       
  4548 ** If P1 is  the index of the database in sqlite3.aDb[] of the database
       
  4549 ** on which the lock is acquired.  A readlock is obtained if P3==0 or
       
  4550 ** a write lock if P3==1.
       
  4551 **
       
  4552 ** P2 contains the root-page of the table to lock.
       
  4553 **
       
  4554 ** P4 contains a pointer to the name of the table being locked. This is only
       
  4555 ** used to generate an error message if the lock cannot be obtained.
       
  4556 */
       
  4557 case OP_TableLock: {
       
  4558   int p1 = pOp->p1; 
       
  4559   u8 isWriteLock = pOp->p3;
       
  4560   assert( p1>=0 && p1<db->nDb );
       
  4561   assert( (p->btreeMask & (1<<p1))!=0 );
       
  4562   assert( isWriteLock==0 || isWriteLock==1 );
       
  4563   rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
       
  4564   if( rc==SQLITE_LOCKED ){
       
  4565     const char *z = pOp->p4.z;
       
  4566     sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z);
       
  4567   }
       
  4568   break;
       
  4569 }
       
  4570 #endif /* SQLITE_OMIT_SHARED_CACHE */
       
  4571 
       
  4572 #ifndef SQLITE_OMIT_VIRTUALTABLE
       
  4573 /* Opcode: VBegin * * * P4 *
       
  4574 **
       
  4575 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 
       
  4576 ** xBegin method for that table.
       
  4577 **
       
  4578 ** Also, whether or not P4 is set, check that this is not being called from
       
  4579 ** within a callback to a virtual table xSync() method. If it is, set the
       
  4580 ** error code to SQLITE_LOCKED.
       
  4581 */
       
  4582 case OP_VBegin: {
       
  4583   sqlite3_vtab *pVtab = pOp->p4.pVtab;
       
  4584   rc = sqlite3VtabBegin(db, pVtab);
       
  4585   if( pVtab ){
       
  4586     sqlite3DbFree(db, p->zErrMsg);
       
  4587     p->zErrMsg = pVtab->zErrMsg;
       
  4588     pVtab->zErrMsg = 0;
       
  4589   }
       
  4590   break;
       
  4591 }
       
  4592 #endif /* SQLITE_OMIT_VIRTUALTABLE */
       
  4593 
       
  4594 #ifndef SQLITE_OMIT_VIRTUALTABLE
       
  4595 /* Opcode: VCreate P1 * * P4 *
       
  4596 **
       
  4597 ** P4 is the name of a virtual table in database P1. Call the xCreate method
       
  4598 ** for that table.
       
  4599 */
       
  4600 case OP_VCreate: {
       
  4601   rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg);
       
  4602   break;
       
  4603 }
       
  4604 #endif /* SQLITE_OMIT_VIRTUALTABLE */
       
  4605 
       
  4606 #ifndef SQLITE_OMIT_VIRTUALTABLE
       
  4607 /* Opcode: VDestroy P1 * * P4 *
       
  4608 **
       
  4609 ** P4 is the name of a virtual table in database P1.  Call the xDestroy method
       
  4610 ** of that table.
       
  4611 */
       
  4612 case OP_VDestroy: {
       
  4613   p->inVtabMethod = 2;
       
  4614   rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
       
  4615   p->inVtabMethod = 0;
       
  4616   break;
       
  4617 }
       
  4618 #endif /* SQLITE_OMIT_VIRTUALTABLE */
       
  4619 
       
  4620 #ifndef SQLITE_OMIT_VIRTUALTABLE
       
  4621 /* Opcode: VOpen P1 * * P4 *
       
  4622 **
       
  4623 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
       
  4624 ** P1 is a cursor number.  This opcode opens a cursor to the virtual
       
  4625 ** table and stores that cursor in P1.
       
  4626 */
       
  4627 case OP_VOpen: {
       
  4628   Cursor *pCur = 0;
       
  4629   sqlite3_vtab_cursor *pVtabCursor = 0;
       
  4630 
       
  4631   sqlite3_vtab *pVtab = pOp->p4.pVtab;
       
  4632   sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule;
       
  4633 
       
  4634   assert(pVtab && pModule);
       
  4635   if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
       
  4636   rc = pModule->xOpen(pVtab, &pVtabCursor);
       
  4637   sqlite3DbFree(db, p->zErrMsg);
       
  4638   p->zErrMsg = pVtab->zErrMsg;
       
  4639   pVtab->zErrMsg = 0;
       
  4640   if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
       
  4641   if( SQLITE_OK==rc ){
       
  4642     /* Initialize sqlite3_vtab_cursor base class */
       
  4643     pVtabCursor->pVtab = pVtab;
       
  4644 
       
  4645     /* Initialise vdbe cursor object */
       
  4646     pCur = allocateCursor(p, pOp->p1, &pOp[-1], -1, 0);
       
  4647     if( pCur ){
       
  4648       pCur->pVtabCursor = pVtabCursor;
       
  4649       pCur->pModule = pVtabCursor->pVtab->pModule;
       
  4650     }else{
       
  4651       db->mallocFailed = 1;
       
  4652       pModule->xClose(pVtabCursor);
       
  4653     }
       
  4654   }
       
  4655   break;
       
  4656 }
       
  4657 #endif /* SQLITE_OMIT_VIRTUALTABLE */
       
  4658 
       
  4659 #ifndef SQLITE_OMIT_VIRTUALTABLE
       
  4660 /* Opcode: VFilter P1 P2 P3 P4 *
       
  4661 **
       
  4662 ** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
       
  4663 ** the filtered result set is empty.
       
  4664 **
       
  4665 ** P4 is either NULL or a string that was generated by the xBestIndex
       
  4666 ** method of the module.  The interpretation of the P4 string is left
       
  4667 ** to the module implementation.
       
  4668 **
       
  4669 ** This opcode invokes the xFilter method on the virtual table specified
       
  4670 ** by P1.  The integer query plan parameter to xFilter is stored in register
       
  4671 ** P3. Register P3+1 stores the argc parameter to be passed to the
       
  4672 ** xFilter method. Registers P3+2..P3+1+argc are the argc
       
  4673 ** additional parameters which are passed to
       
  4674 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
       
  4675 **
       
  4676 ** A jump is made to P2 if the result set after filtering would be empty.
       
  4677 */
       
  4678 case OP_VFilter: {   /* jump */
       
  4679   int nArg;
       
  4680   int iQuery;
       
  4681   const sqlite3_module *pModule;
       
  4682   Mem *pQuery = &p->aMem[pOp->p3];
       
  4683   Mem *pArgc = &pQuery[1];
       
  4684   sqlite3_vtab_cursor *pVtabCursor;
       
  4685   sqlite3_vtab *pVtab;
       
  4686 
       
  4687   Cursor *pCur = p->apCsr[pOp->p1];
       
  4688 
       
  4689   REGISTER_TRACE(pOp->p3, pQuery);
       
  4690   assert( pCur->pVtabCursor );
       
  4691   pVtabCursor = pCur->pVtabCursor;
       
  4692   pVtab = pVtabCursor->pVtab;
       
  4693   pModule = pVtab->pModule;
       
  4694 
       
  4695   /* Grab the index number and argc parameters */
       
  4696   assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
       
  4697   nArg = pArgc->u.i;
       
  4698   iQuery = pQuery->u.i;
       
  4699 
       
  4700   /* Invoke the xFilter method */
       
  4701   {
       
  4702     int res = 0;
       
  4703     int i;
       
  4704     Mem **apArg = p->apArg;
       
  4705     for(i = 0; i<nArg; i++){
       
  4706       apArg[i] = &pArgc[i+1];
       
  4707       storeTypeInfo(apArg[i], 0);
       
  4708     }
       
  4709 
       
  4710     if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
       
  4711     sqlite3VtabLock(pVtab);
       
  4712     p->inVtabMethod = 1;
       
  4713     rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
       
  4714     p->inVtabMethod = 0;
       
  4715     sqlite3DbFree(db, p->zErrMsg);
       
  4716     p->zErrMsg = pVtab->zErrMsg;
       
  4717     pVtab->zErrMsg = 0;
       
  4718     sqlite3VtabUnlock(db, pVtab);
       
  4719     if( rc==SQLITE_OK ){
       
  4720       res = pModule->xEof(pVtabCursor);
       
  4721     }
       
  4722     if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
       
  4723 
       
  4724     if( res ){
       
  4725       pc = pOp->p2 - 1;
       
  4726     }
       
  4727   }
       
  4728   pCur->nullRow = 0;
       
  4729 
       
  4730   break;
       
  4731 }
       
  4732 #endif /* SQLITE_OMIT_VIRTUALTABLE */
       
  4733 
       
  4734 #ifndef SQLITE_OMIT_VIRTUALTABLE
       
  4735 /* Opcode: VRowid P1 P2 * * *
       
  4736 **
       
  4737 ** Store into register P2  the rowid of
       
  4738 ** the virtual-table that the P1 cursor is pointing to.
       
  4739 */
       
  4740 case OP_VRowid: {             /* out2-prerelease */
       
  4741   sqlite3_vtab *pVtab;
       
  4742   const sqlite3_module *pModule;
       
  4743   sqlite_int64 iRow;
       
  4744   Cursor *pCur = p->apCsr[pOp->p1];
       
  4745 
       
  4746   assert( pCur->pVtabCursor );
       
  4747   if( pCur->nullRow ){
       
  4748     break;
       
  4749   }
       
  4750   pVtab = pCur->pVtabCursor->pVtab;
       
  4751   pModule = pVtab->pModule;
       
  4752   assert( pModule->xRowid );
       
  4753   if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
       
  4754   rc = pModule->xRowid(pCur->pVtabCursor, &iRow);
       
  4755   sqlite3DbFree(db, p->zErrMsg);
       
  4756   p->zErrMsg = pVtab->zErrMsg;
       
  4757   pVtab->zErrMsg = 0;
       
  4758   if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
       
  4759   MemSetTypeFlag(pOut, MEM_Int);
       
  4760   pOut->u.i = iRow;
       
  4761   break;
       
  4762 }
       
  4763 #endif /* SQLITE_OMIT_VIRTUALTABLE */
       
  4764 
       
  4765 #ifndef SQLITE_OMIT_VIRTUALTABLE
       
  4766 /* Opcode: VColumn P1 P2 P3 * *
       
  4767 **
       
  4768 ** Store the value of the P2-th column of
       
  4769 ** the row of the virtual-table that the 
       
  4770 ** P1 cursor is pointing to into register P3.
       
  4771 */
       
  4772 case OP_VColumn: {
       
  4773   sqlite3_vtab *pVtab;
       
  4774   const sqlite3_module *pModule;
       
  4775   Mem *pDest;
       
  4776   sqlite3_context sContext;
       
  4777 
       
  4778   Cursor *pCur = p->apCsr[pOp->p1];
       
  4779   assert( pCur->pVtabCursor );
       
  4780   assert( pOp->p3>0 && pOp->p3<=p->nMem );
       
  4781   pDest = &p->aMem[pOp->p3];
       
  4782   if( pCur->nullRow ){
       
  4783     sqlite3VdbeMemSetNull(pDest);
       
  4784     break;
       
  4785   }
       
  4786   pVtab = pCur->pVtabCursor->pVtab;
       
  4787   pModule = pVtab->pModule;
       
  4788   assert( pModule->xColumn );
       
  4789   memset(&sContext, 0, sizeof(sContext));
       
  4790 
       
  4791   /* The output cell may already have a buffer allocated. Move
       
  4792   ** the current contents to sContext.s so in case the user-function 
       
  4793   ** can use the already allocated buffer instead of allocating a 
       
  4794   ** new one.
       
  4795   */
       
  4796   sqlite3VdbeMemMove(&sContext.s, pDest);
       
  4797   MemSetTypeFlag(&sContext.s, MEM_Null);
       
  4798 
       
  4799   if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
       
  4800   rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
       
  4801   sqlite3DbFree(db, p->zErrMsg);
       
  4802   p->zErrMsg = pVtab->zErrMsg;
       
  4803   pVtab->zErrMsg = 0;
       
  4804 
       
  4805   /* Copy the result of the function to the P3 register. We
       
  4806   ** do this regardless of whether or not an error occured to ensure any
       
  4807   ** dynamic allocation in sContext.s (a Mem struct) is  released.
       
  4808   */
       
  4809   sqlite3VdbeChangeEncoding(&sContext.s, encoding);
       
  4810   REGISTER_TRACE(pOp->p3, pDest);
       
  4811   sqlite3VdbeMemMove(pDest, &sContext.s);
       
  4812   UPDATE_MAX_BLOBSIZE(pDest);
       
  4813 
       
  4814   if( sqlite3SafetyOn(db) ){
       
  4815     goto abort_due_to_misuse;
       
  4816   }
       
  4817   if( sqlite3VdbeMemTooBig(pDest) ){
       
  4818     goto too_big;
       
  4819   }
       
  4820   break;
       
  4821 }
       
  4822 #endif /* SQLITE_OMIT_VIRTUALTABLE */
       
  4823 
       
  4824 #ifndef SQLITE_OMIT_VIRTUALTABLE
       
  4825 /* Opcode: VNext P1 P2 * * *
       
  4826 **
       
  4827 ** Advance virtual table P1 to the next row in its result set and
       
  4828 ** jump to instruction P2.  Or, if the virtual table has reached
       
  4829 ** the end of its result set, then fall through to the next instruction.
       
  4830 */
       
  4831 case OP_VNext: {   /* jump */
       
  4832   sqlite3_vtab *pVtab;
       
  4833   const sqlite3_module *pModule;
       
  4834   int res = 0;
       
  4835 
       
  4836   Cursor *pCur = p->apCsr[pOp->p1];
       
  4837   assert( pCur->pVtabCursor );
       
  4838   if( pCur->nullRow ){
       
  4839     break;
       
  4840   }
       
  4841   pVtab = pCur->pVtabCursor->pVtab;
       
  4842   pModule = pVtab->pModule;
       
  4843   assert( pModule->xNext );
       
  4844 
       
  4845   /* Invoke the xNext() method of the module. There is no way for the
       
  4846   ** underlying implementation to return an error if one occurs during
       
  4847   ** xNext(). Instead, if an error occurs, true is returned (indicating that 
       
  4848   ** data is available) and the error code returned when xColumn or
       
  4849   ** some other method is next invoked on the save virtual table cursor.
       
  4850   */
       
  4851   if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
       
  4852   sqlite3VtabLock(pVtab);
       
  4853   p->inVtabMethod = 1;
       
  4854   rc = pModule->xNext(pCur->pVtabCursor);
       
  4855   p->inVtabMethod = 0;
       
  4856   sqlite3DbFree(db, p->zErrMsg);
       
  4857   p->zErrMsg = pVtab->zErrMsg;
       
  4858   pVtab->zErrMsg = 0;
       
  4859   sqlite3VtabUnlock(db, pVtab);
       
  4860   if( rc==SQLITE_OK ){
       
  4861     res = pModule->xEof(pCur->pVtabCursor);
       
  4862   }
       
  4863   if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
       
  4864 
       
  4865   if( !res ){
       
  4866     /* If there is data, jump to P2 */
       
  4867     pc = pOp->p2 - 1;
       
  4868   }
       
  4869   break;
       
  4870 }
       
  4871 #endif /* SQLITE_OMIT_VIRTUALTABLE */
       
  4872 
       
  4873 #ifndef SQLITE_OMIT_VIRTUALTABLE
       
  4874 /* Opcode: VRename P1 * * P4 *
       
  4875 **
       
  4876 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
       
  4877 ** This opcode invokes the corresponding xRename method. The value
       
  4878 ** in register P1 is passed as the zName argument to the xRename method.
       
  4879 */
       
  4880 case OP_VRename: {
       
  4881   sqlite3_vtab *pVtab = pOp->p4.pVtab;
       
  4882   Mem *pName = &p->aMem[pOp->p1];
       
  4883   assert( pVtab->pModule->xRename );
       
  4884   REGISTER_TRACE(pOp->p1, pName);
       
  4885 
       
  4886   Stringify(pName, encoding);
       
  4887 
       
  4888   if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
       
  4889   sqlite3VtabLock(pVtab);
       
  4890   rc = pVtab->pModule->xRename(pVtab, pName->z);
       
  4891   sqlite3DbFree(db, p->zErrMsg);
       
  4892   p->zErrMsg = pVtab->zErrMsg;
       
  4893   pVtab->zErrMsg = 0;
       
  4894   sqlite3VtabUnlock(db, pVtab);
       
  4895   if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
       
  4896 
       
  4897   break;
       
  4898 }
       
  4899 #endif
       
  4900 
       
  4901 #ifndef SQLITE_OMIT_VIRTUALTABLE
       
  4902 /* Opcode: VUpdate P1 P2 P3 P4 *
       
  4903 **
       
  4904 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
       
  4905 ** This opcode invokes the corresponding xUpdate method. P2 values
       
  4906 ** are contiguous memory cells starting at P3 to pass to the xUpdate 
       
  4907 ** invocation. The value in register (P3+P2-1) corresponds to the 
       
  4908 ** p2th element of the argv array passed to xUpdate.
       
  4909 **
       
  4910 ** The xUpdate method will do a DELETE or an INSERT or both.
       
  4911 ** The argv[0] element (which corresponds to memory cell P3)
       
  4912 ** is the rowid of a row to delete.  If argv[0] is NULL then no 
       
  4913 ** deletion occurs.  The argv[1] element is the rowid of the new 
       
  4914 ** row.  This can be NULL to have the virtual table select the new 
       
  4915 ** rowid for itself.  The subsequent elements in the array are 
       
  4916 ** the values of columns in the new row.
       
  4917 **
       
  4918 ** If P2==1 then no insert is performed.  argv[0] is the rowid of
       
  4919 ** a row to delete.
       
  4920 **
       
  4921 ** P1 is a boolean flag. If it is set to true and the xUpdate call
       
  4922 ** is successful, then the value returned by sqlite3_last_insert_rowid() 
       
  4923 ** is set to the value of the rowid for the row just inserted.
       
  4924 */
       
  4925 case OP_VUpdate: {
       
  4926   sqlite3_vtab *pVtab = pOp->p4.pVtab;
       
  4927   sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule;
       
  4928   int nArg = pOp->p2;
       
  4929   assert( pOp->p4type==P4_VTAB );
       
  4930   if( pModule->xUpdate==0 ){
       
  4931     sqlite3SetString(&p->zErrMsg, db, "read-only table");
       
  4932     rc = SQLITE_ERROR;
       
  4933   }else{
       
  4934     int i;
       
  4935     sqlite_int64 rowid;
       
  4936     Mem **apArg = p->apArg;
       
  4937     Mem *pX = &p->aMem[pOp->p3];
       
  4938     for(i=0; i<nArg; i++){
       
  4939       storeTypeInfo(pX, 0);
       
  4940       apArg[i] = pX;
       
  4941       pX++;
       
  4942     }
       
  4943     if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
       
  4944     sqlite3VtabLock(pVtab);
       
  4945     rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
       
  4946     sqlite3DbFree(db, p->zErrMsg);
       
  4947     p->zErrMsg = pVtab->zErrMsg;
       
  4948     pVtab->zErrMsg = 0;
       
  4949     sqlite3VtabUnlock(db, pVtab);
       
  4950     if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
       
  4951     if( pOp->p1 && rc==SQLITE_OK ){
       
  4952       assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
       
  4953       db->lastRowid = rowid;
       
  4954     }
       
  4955     p->nChange++;
       
  4956   }
       
  4957   break;
       
  4958 }
       
  4959 #endif /* SQLITE_OMIT_VIRTUALTABLE */
       
  4960 
       
  4961 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
       
  4962 /* Opcode: Pagecount P1 P2 * * *
       
  4963 **
       
  4964 ** Write the current number of pages in database P1 to memory cell P2.
       
  4965 */
       
  4966 case OP_Pagecount: {            /* out2-prerelease */
       
  4967   int p1 = pOp->p1; 
       
  4968   int nPage;
       
  4969   Pager *pPager = sqlite3BtreePager(db->aDb[p1].pBt);
       
  4970 
       
  4971   rc = sqlite3PagerPagecount(pPager, &nPage);
       
  4972   if( rc==SQLITE_OK ){
       
  4973     pOut->flags = MEM_Int;
       
  4974     pOut->u.i = nPage;
       
  4975   }
       
  4976   break;
       
  4977 }
       
  4978 #endif
       
  4979 
       
  4980 #ifndef SQLITE_OMIT_TRACE
       
  4981 /* Opcode: Trace * * * P4 *
       
  4982 **
       
  4983 ** If tracing is enabled (by the sqlite3_trace()) interface, then
       
  4984 ** the UTF-8 string contained in P4 is emitted on the trace callback.
       
  4985 */
       
  4986 case OP_Trace: {
       
  4987   if( pOp->p4.z ){
       
  4988     if( db->xTrace ){
       
  4989       db->xTrace(db->pTraceArg, pOp->p4.z);
       
  4990     }
       
  4991 #ifdef SQLITE_DEBUG
       
  4992     if( (db->flags & SQLITE_SqlTrace)!=0 ){
       
  4993       sqlite3DebugPrintf("SQL-trace: %s\n", pOp->p4.z);
       
  4994     }
       
  4995 #endif /* SQLITE_DEBUG */
       
  4996   }
       
  4997   break;
       
  4998 }
       
  4999 #endif
       
  5000 
       
  5001 
       
  5002 /* Opcode: Noop * * * * *
       
  5003 **
       
  5004 ** Do nothing.  This instruction is often useful as a jump
       
  5005 ** destination.
       
  5006 */
       
  5007 /*
       
  5008 ** The magic Explain opcode are only inserted when explain==2 (which
       
  5009 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
       
  5010 ** This opcode records information from the optimizer.  It is the
       
  5011 ** the same as a no-op.  This opcodesnever appears in a real VM program.
       
  5012 */
       
  5013 default: {          /* This is really OP_Noop and OP_Explain */
       
  5014   break;
       
  5015 }
       
  5016 
       
  5017 /*****************************************************************************
       
  5018 ** The cases of the switch statement above this line should all be indented
       
  5019 ** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
       
  5020 ** readability.  From this point on down, the normal indentation rules are
       
  5021 ** restored.
       
  5022 *****************************************************************************/
       
  5023     }
       
  5024 
       
  5025 #ifdef VDBE_PROFILE
       
  5026     {
       
  5027       u64 elapsed = sqlite3Hwtime() - start;
       
  5028       pOp->cycles += elapsed;
       
  5029       pOp->cnt++;
       
  5030 #if 0
       
  5031         fprintf(stdout, "%10llu ", elapsed);
       
  5032         sqlite3VdbePrintOp(stdout, origPc, &p->aOp[origPc]);
       
  5033 #endif
       
  5034     }
       
  5035 #endif
       
  5036 
       
  5037     /* The following code adds nothing to the actual functionality
       
  5038     ** of the program.  It is only here for testing and debugging.
       
  5039     ** On the other hand, it does burn CPU cycles every time through
       
  5040     ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
       
  5041     */
       
  5042 #ifndef NDEBUG
       
  5043     assert( pc>=-1 && pc<p->nOp );
       
  5044 
       
  5045 #ifdef SQLITE_DEBUG
       
  5046     if( p->trace ){
       
  5047       if( rc!=0 ) fprintf(p->trace,"rc=%d\n",rc);
       
  5048       if( opProperty & OPFLG_OUT2_PRERELEASE ){
       
  5049         registerTrace(p->trace, pOp->p2, pOut);
       
  5050       }
       
  5051       if( opProperty & OPFLG_OUT3 ){
       
  5052         registerTrace(p->trace, pOp->p3, pOut);
       
  5053       }
       
  5054     }
       
  5055 #endif  /* SQLITE_DEBUG */
       
  5056 #endif  /* NDEBUG */
       
  5057   }  /* The end of the for(;;) loop the loops through opcodes */
       
  5058 
       
  5059   /* If we reach this point, it means that execution is finished with
       
  5060   ** an error of some kind.
       
  5061   */
       
  5062 vdbe_error_halt:
       
  5063   assert( rc );
       
  5064   p->rc = rc;
       
  5065   sqlite3VdbeHalt(p);
       
  5066   if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
       
  5067   rc = SQLITE_ERROR;
       
  5068 
       
  5069   /* This is the only way out of this procedure.  We have to
       
  5070   ** release the mutexes on btrees that were acquired at the
       
  5071   ** top. */
       
  5072 vdbe_return:
       
  5073   sqlite3BtreeMutexArrayLeave(&p->aMutex);
       
  5074   return rc;
       
  5075 
       
  5076   /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
       
  5077   ** is encountered.
       
  5078   */
       
  5079 too_big:
       
  5080   sqlite3SetString(&p->zErrMsg, db, "string or blob too big");
       
  5081   rc = SQLITE_TOOBIG;
       
  5082   goto vdbe_error_halt;
       
  5083 
       
  5084   /* Jump to here if a malloc() fails.
       
  5085   */
       
  5086 no_mem:
       
  5087   db->mallocFailed = 1;
       
  5088   sqlite3SetString(&p->zErrMsg, db, "out of memory");
       
  5089   rc = SQLITE_NOMEM;
       
  5090   goto vdbe_error_halt;
       
  5091 
       
  5092   /* Jump to here for an SQLITE_MISUSE error.
       
  5093   */
       
  5094 abort_due_to_misuse:
       
  5095   rc = SQLITE_MISUSE;
       
  5096   /* Fall thru into abort_due_to_error */
       
  5097 
       
  5098   /* Jump to here for any other kind of fatal error.  The "rc" variable
       
  5099   ** should hold the error number.
       
  5100   */
       
  5101 abort_due_to_error:
       
  5102   assert( p->zErrMsg==0 );
       
  5103   if( db->mallocFailed ) rc = SQLITE_NOMEM;
       
  5104   if( rc!=SQLITE_IOERR_NOMEM ){
       
  5105     sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
       
  5106   }
       
  5107   goto vdbe_error_halt;
       
  5108 
       
  5109   /* Jump to here if the sqlite3_interrupt() API sets the interrupt
       
  5110   ** flag.
       
  5111   */
       
  5112 abort_due_to_interrupt:
       
  5113   assert( db->u1.isInterrupted );
       
  5114   rc = SQLITE_INTERRUPT;
       
  5115   p->rc = rc;
       
  5116   sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
       
  5117   goto vdbe_error_halt;
       
  5118 }