|
1 /* |
|
2 ** 2001 September 15 |
|
3 ** |
|
4 ** The author disclaims copyright to this source code. In place of |
|
5 ** a legal notice, here is a blessing: |
|
6 ** |
|
7 ** May you do good and not evil. |
|
8 ** May you find forgiveness for yourself and forgive others. |
|
9 ** May you share freely, never taking more than you give. |
|
10 ** |
|
11 ************************************************************************* |
|
12 ** This module contains C code that generates VDBE code used to process |
|
13 ** the WHERE clause of SQL statements. This module is responsible for |
|
14 ** generating the code that loops through a table looking for applicable |
|
15 ** rows. Indices are selected and used to speed the search when doing |
|
16 ** so is applicable. Because this module is responsible for selecting |
|
17 ** indices, you might also think of this module as the "query optimizer". |
|
18 ** |
|
19 ** $Id: where.c,v 1.319 2008/08/01 17:37:41 danielk1977 Exp $ |
|
20 */ |
|
21 #include "sqliteInt.h" |
|
22 |
|
23 /* |
|
24 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". |
|
25 */ |
|
26 #define BMS (sizeof(Bitmask)*8) |
|
27 |
|
28 /* |
|
29 ** Trace output macros |
|
30 */ |
|
31 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) |
|
32 int sqlite3WhereTrace = 0; |
|
33 #endif |
|
34 #if 0 |
|
35 # define WHERETRACE(X) if(sqlite3WhereTrace) sqlite3DebugPrintf X |
|
36 #else |
|
37 # define WHERETRACE(X) |
|
38 #endif |
|
39 |
|
40 /* Forward reference |
|
41 */ |
|
42 typedef struct WhereClause WhereClause; |
|
43 typedef struct ExprMaskSet ExprMaskSet; |
|
44 |
|
45 /* |
|
46 ** The query generator uses an array of instances of this structure to |
|
47 ** help it analyze the subexpressions of the WHERE clause. Each WHERE |
|
48 ** clause subexpression is separated from the others by an AND operator. |
|
49 ** |
|
50 ** All WhereTerms are collected into a single WhereClause structure. |
|
51 ** The following identity holds: |
|
52 ** |
|
53 ** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm |
|
54 ** |
|
55 ** When a term is of the form: |
|
56 ** |
|
57 ** X <op> <expr> |
|
58 ** |
|
59 ** where X is a column name and <op> is one of certain operators, |
|
60 ** then WhereTerm.leftCursor and WhereTerm.leftColumn record the |
|
61 ** cursor number and column number for X. WhereTerm.operator records |
|
62 ** the <op> using a bitmask encoding defined by WO_xxx below. The |
|
63 ** use of a bitmask encoding for the operator allows us to search |
|
64 ** quickly for terms that match any of several different operators. |
|
65 ** |
|
66 ** prereqRight and prereqAll record sets of cursor numbers, |
|
67 ** but they do so indirectly. A single ExprMaskSet structure translates |
|
68 ** cursor number into bits and the translated bit is stored in the prereq |
|
69 ** fields. The translation is used in order to maximize the number of |
|
70 ** bits that will fit in a Bitmask. The VDBE cursor numbers might be |
|
71 ** spread out over the non-negative integers. For example, the cursor |
|
72 ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The ExprMaskSet |
|
73 ** translates these sparse cursor numbers into consecutive integers |
|
74 ** beginning with 0 in order to make the best possible use of the available |
|
75 ** bits in the Bitmask. So, in the example above, the cursor numbers |
|
76 ** would be mapped into integers 0 through 7. |
|
77 */ |
|
78 typedef struct WhereTerm WhereTerm; |
|
79 struct WhereTerm { |
|
80 Expr *pExpr; /* Pointer to the subexpression */ |
|
81 i16 iParent; /* Disable pWC->a[iParent] when this term disabled */ |
|
82 i16 leftCursor; /* Cursor number of X in "X <op> <expr>" */ |
|
83 i16 leftColumn; /* Column number of X in "X <op> <expr>" */ |
|
84 u16 eOperator; /* A WO_xx value describing <op> */ |
|
85 u8 flags; /* Bit flags. See below */ |
|
86 u8 nChild; /* Number of children that must disable us */ |
|
87 WhereClause *pWC; /* The clause this term is part of */ |
|
88 Bitmask prereqRight; /* Bitmask of tables used by pRight */ |
|
89 Bitmask prereqAll; /* Bitmask of tables referenced by p */ |
|
90 }; |
|
91 |
|
92 /* |
|
93 ** Allowed values of WhereTerm.flags |
|
94 */ |
|
95 #define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(db, pExpr) */ |
|
96 #define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */ |
|
97 #define TERM_CODED 0x04 /* This term is already coded */ |
|
98 #define TERM_COPIED 0x08 /* Has a child */ |
|
99 #define TERM_OR_OK 0x10 /* Used during OR-clause processing */ |
|
100 |
|
101 /* |
|
102 ** An instance of the following structure holds all information about a |
|
103 ** WHERE clause. Mostly this is a container for one or more WhereTerms. |
|
104 */ |
|
105 struct WhereClause { |
|
106 Parse *pParse; /* The parser context */ |
|
107 ExprMaskSet *pMaskSet; /* Mapping of table indices to bitmasks */ |
|
108 int nTerm; /* Number of terms */ |
|
109 int nSlot; /* Number of entries in a[] */ |
|
110 WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */ |
|
111 WhereTerm aStatic[10]; /* Initial static space for a[] */ |
|
112 }; |
|
113 |
|
114 /* |
|
115 ** An instance of the following structure keeps track of a mapping |
|
116 ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm. |
|
117 ** |
|
118 ** The VDBE cursor numbers are small integers contained in |
|
119 ** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE |
|
120 ** clause, the cursor numbers might not begin with 0 and they might |
|
121 ** contain gaps in the numbering sequence. But we want to make maximum |
|
122 ** use of the bits in our bitmasks. This structure provides a mapping |
|
123 ** from the sparse cursor numbers into consecutive integers beginning |
|
124 ** with 0. |
|
125 ** |
|
126 ** If ExprMaskSet.ix[A]==B it means that The A-th bit of a Bitmask |
|
127 ** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A. |
|
128 ** |
|
129 ** For example, if the WHERE clause expression used these VDBE |
|
130 ** cursors: 4, 5, 8, 29, 57, 73. Then the ExprMaskSet structure |
|
131 ** would map those cursor numbers into bits 0 through 5. |
|
132 ** |
|
133 ** Note that the mapping is not necessarily ordered. In the example |
|
134 ** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0, |
|
135 ** 57->5, 73->4. Or one of 719 other combinations might be used. It |
|
136 ** does not really matter. What is important is that sparse cursor |
|
137 ** numbers all get mapped into bit numbers that begin with 0 and contain |
|
138 ** no gaps. |
|
139 */ |
|
140 struct ExprMaskSet { |
|
141 int n; /* Number of assigned cursor values */ |
|
142 int ix[sizeof(Bitmask)*8]; /* Cursor assigned to each bit */ |
|
143 }; |
|
144 |
|
145 |
|
146 /* |
|
147 ** Bitmasks for the operators that indices are able to exploit. An |
|
148 ** OR-ed combination of these values can be used when searching for |
|
149 ** terms in the where clause. |
|
150 */ |
|
151 #define WO_IN 1 |
|
152 #define WO_EQ 2 |
|
153 #define WO_LT (WO_EQ<<(TK_LT-TK_EQ)) |
|
154 #define WO_LE (WO_EQ<<(TK_LE-TK_EQ)) |
|
155 #define WO_GT (WO_EQ<<(TK_GT-TK_EQ)) |
|
156 #define WO_GE (WO_EQ<<(TK_GE-TK_EQ)) |
|
157 #define WO_MATCH 64 |
|
158 #define WO_ISNULL 128 |
|
159 |
|
160 /* |
|
161 ** Value for flags returned by bestIndex(). |
|
162 ** |
|
163 ** The least significant byte is reserved as a mask for WO_ values above. |
|
164 ** The WhereLevel.flags field is usually set to WO_IN|WO_EQ|WO_ISNULL. |
|
165 ** But if the table is the right table of a left join, WhereLevel.flags |
|
166 ** is set to WO_IN|WO_EQ. The WhereLevel.flags field can then be used as |
|
167 ** the "op" parameter to findTerm when we are resolving equality constraints. |
|
168 ** ISNULL constraints will then not be used on the right table of a left |
|
169 ** join. Tickets #2177 and #2189. |
|
170 */ |
|
171 #define WHERE_ROWID_EQ 0x000100 /* rowid=EXPR or rowid IN (...) */ |
|
172 #define WHERE_ROWID_RANGE 0x000200 /* rowid<EXPR and/or rowid>EXPR */ |
|
173 #define WHERE_COLUMN_EQ 0x001000 /* x=EXPR or x IN (...) */ |
|
174 #define WHERE_COLUMN_RANGE 0x002000 /* x<EXPR and/or x>EXPR */ |
|
175 #define WHERE_COLUMN_IN 0x004000 /* x IN (...) */ |
|
176 #define WHERE_TOP_LIMIT 0x010000 /* x<EXPR or x<=EXPR constraint */ |
|
177 #define WHERE_BTM_LIMIT 0x020000 /* x>EXPR or x>=EXPR constraint */ |
|
178 #define WHERE_IDX_ONLY 0x080000 /* Use index only - omit table */ |
|
179 #define WHERE_ORDERBY 0x100000 /* Output will appear in correct order */ |
|
180 #define WHERE_REVERSE 0x200000 /* Scan in reverse order */ |
|
181 #define WHERE_UNIQUE 0x400000 /* Selects no more than one row */ |
|
182 #define WHERE_VIRTUALTABLE 0x800000 /* Use virtual-table processing */ |
|
183 |
|
184 /* |
|
185 ** Initialize a preallocated WhereClause structure. |
|
186 */ |
|
187 static void whereClauseInit( |
|
188 WhereClause *pWC, /* The WhereClause to be initialized */ |
|
189 Parse *pParse, /* The parsing context */ |
|
190 ExprMaskSet *pMaskSet /* Mapping from table indices to bitmasks */ |
|
191 ){ |
|
192 pWC->pParse = pParse; |
|
193 pWC->pMaskSet = pMaskSet; |
|
194 pWC->nTerm = 0; |
|
195 pWC->nSlot = ArraySize(pWC->aStatic); |
|
196 pWC->a = pWC->aStatic; |
|
197 } |
|
198 |
|
199 /* |
|
200 ** Deallocate a WhereClause structure. The WhereClause structure |
|
201 ** itself is not freed. This routine is the inverse of whereClauseInit(). |
|
202 */ |
|
203 static void whereClauseClear(WhereClause *pWC){ |
|
204 int i; |
|
205 WhereTerm *a; |
|
206 sqlite3 *db = pWC->pParse->db; |
|
207 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ |
|
208 if( a->flags & TERM_DYNAMIC ){ |
|
209 sqlite3ExprDelete(db, a->pExpr); |
|
210 } |
|
211 } |
|
212 if( pWC->a!=pWC->aStatic ){ |
|
213 sqlite3DbFree(db, pWC->a); |
|
214 } |
|
215 } |
|
216 |
|
217 /* |
|
218 ** Add a new entries to the WhereClause structure. Increase the allocated |
|
219 ** space as necessary. |
|
220 ** |
|
221 ** If the flags argument includes TERM_DYNAMIC, then responsibility |
|
222 ** for freeing the expression p is assumed by the WhereClause object. |
|
223 ** |
|
224 ** WARNING: This routine might reallocate the space used to store |
|
225 ** WhereTerms. All pointers to WhereTerms should be invalidated after |
|
226 ** calling this routine. Such pointers may be reinitialized by referencing |
|
227 ** the pWC->a[] array. |
|
228 */ |
|
229 static int whereClauseInsert(WhereClause *pWC, Expr *p, int flags){ |
|
230 WhereTerm *pTerm; |
|
231 int idx; |
|
232 if( pWC->nTerm>=pWC->nSlot ){ |
|
233 WhereTerm *pOld = pWC->a; |
|
234 sqlite3 *db = pWC->pParse->db; |
|
235 pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 ); |
|
236 if( pWC->a==0 ){ |
|
237 if( flags & TERM_DYNAMIC ){ |
|
238 sqlite3ExprDelete(db, p); |
|
239 } |
|
240 pWC->a = pOld; |
|
241 return 0; |
|
242 } |
|
243 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); |
|
244 if( pOld!=pWC->aStatic ){ |
|
245 sqlite3DbFree(db, pOld); |
|
246 } |
|
247 pWC->nSlot *= 2; |
|
248 } |
|
249 pTerm = &pWC->a[idx = pWC->nTerm]; |
|
250 pWC->nTerm++; |
|
251 pTerm->pExpr = p; |
|
252 pTerm->flags = flags; |
|
253 pTerm->pWC = pWC; |
|
254 pTerm->iParent = -1; |
|
255 return idx; |
|
256 } |
|
257 |
|
258 /* |
|
259 ** This routine identifies subexpressions in the WHERE clause where |
|
260 ** each subexpression is separated by the AND operator or some other |
|
261 ** operator specified in the op parameter. The WhereClause structure |
|
262 ** is filled with pointers to subexpressions. For example: |
|
263 ** |
|
264 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) |
|
265 ** \________/ \_______________/ \________________/ |
|
266 ** slot[0] slot[1] slot[2] |
|
267 ** |
|
268 ** The original WHERE clause in pExpr is unaltered. All this routine |
|
269 ** does is make slot[] entries point to substructure within pExpr. |
|
270 ** |
|
271 ** In the previous sentence and in the diagram, "slot[]" refers to |
|
272 ** the WhereClause.a[] array. This array grows as needed to contain |
|
273 ** all terms of the WHERE clause. |
|
274 */ |
|
275 static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){ |
|
276 if( pExpr==0 ) return; |
|
277 if( pExpr->op!=op ){ |
|
278 whereClauseInsert(pWC, pExpr, 0); |
|
279 }else{ |
|
280 whereSplit(pWC, pExpr->pLeft, op); |
|
281 whereSplit(pWC, pExpr->pRight, op); |
|
282 } |
|
283 } |
|
284 |
|
285 /* |
|
286 ** Initialize an expression mask set |
|
287 */ |
|
288 #define initMaskSet(P) memset(P, 0, sizeof(*P)) |
|
289 |
|
290 /* |
|
291 ** Return the bitmask for the given cursor number. Return 0 if |
|
292 ** iCursor is not in the set. |
|
293 */ |
|
294 static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){ |
|
295 int i; |
|
296 for(i=0; i<pMaskSet->n; i++){ |
|
297 if( pMaskSet->ix[i]==iCursor ){ |
|
298 return ((Bitmask)1)<<i; |
|
299 } |
|
300 } |
|
301 return 0; |
|
302 } |
|
303 |
|
304 /* |
|
305 ** Create a new mask for cursor iCursor. |
|
306 ** |
|
307 ** There is one cursor per table in the FROM clause. The number of |
|
308 ** tables in the FROM clause is limited by a test early in the |
|
309 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] |
|
310 ** array will never overflow. |
|
311 */ |
|
312 static void createMask(ExprMaskSet *pMaskSet, int iCursor){ |
|
313 assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); |
|
314 pMaskSet->ix[pMaskSet->n++] = iCursor; |
|
315 } |
|
316 |
|
317 /* |
|
318 ** This routine walks (recursively) an expression tree and generates |
|
319 ** a bitmask indicating which tables are used in that expression |
|
320 ** tree. |
|
321 ** |
|
322 ** In order for this routine to work, the calling function must have |
|
323 ** previously invoked sqlite3ExprResolveNames() on the expression. See |
|
324 ** the header comment on that routine for additional information. |
|
325 ** The sqlite3ExprResolveNames() routines looks for column names and |
|
326 ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to |
|
327 ** the VDBE cursor number of the table. This routine just has to |
|
328 ** translate the cursor numbers into bitmask values and OR all |
|
329 ** the bitmasks together. |
|
330 */ |
|
331 static Bitmask exprListTableUsage(ExprMaskSet*, ExprList*); |
|
332 static Bitmask exprSelectTableUsage(ExprMaskSet*, Select*); |
|
333 static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){ |
|
334 Bitmask mask = 0; |
|
335 if( p==0 ) return 0; |
|
336 if( p->op==TK_COLUMN ){ |
|
337 mask = getMask(pMaskSet, p->iTable); |
|
338 return mask; |
|
339 } |
|
340 mask = exprTableUsage(pMaskSet, p->pRight); |
|
341 mask |= exprTableUsage(pMaskSet, p->pLeft); |
|
342 mask |= exprListTableUsage(pMaskSet, p->pList); |
|
343 mask |= exprSelectTableUsage(pMaskSet, p->pSelect); |
|
344 return mask; |
|
345 } |
|
346 static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){ |
|
347 int i; |
|
348 Bitmask mask = 0; |
|
349 if( pList ){ |
|
350 for(i=0; i<pList->nExpr; i++){ |
|
351 mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr); |
|
352 } |
|
353 } |
|
354 return mask; |
|
355 } |
|
356 static Bitmask exprSelectTableUsage(ExprMaskSet *pMaskSet, Select *pS){ |
|
357 Bitmask mask = 0; |
|
358 while( pS ){ |
|
359 mask |= exprListTableUsage(pMaskSet, pS->pEList); |
|
360 mask |= exprListTableUsage(pMaskSet, pS->pGroupBy); |
|
361 mask |= exprListTableUsage(pMaskSet, pS->pOrderBy); |
|
362 mask |= exprTableUsage(pMaskSet, pS->pWhere); |
|
363 mask |= exprTableUsage(pMaskSet, pS->pHaving); |
|
364 pS = pS->pPrior; |
|
365 } |
|
366 return mask; |
|
367 } |
|
368 |
|
369 /* |
|
370 ** Return TRUE if the given operator is one of the operators that is |
|
371 ** allowed for an indexable WHERE clause term. The allowed operators are |
|
372 ** "=", "<", ">", "<=", ">=", and "IN". |
|
373 */ |
|
374 static int allowedOp(int op){ |
|
375 assert( TK_GT>TK_EQ && TK_GT<TK_GE ); |
|
376 assert( TK_LT>TK_EQ && TK_LT<TK_GE ); |
|
377 assert( TK_LE>TK_EQ && TK_LE<TK_GE ); |
|
378 assert( TK_GE==TK_EQ+4 ); |
|
379 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL; |
|
380 } |
|
381 |
|
382 /* |
|
383 ** Swap two objects of type T. |
|
384 */ |
|
385 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} |
|
386 |
|
387 /* |
|
388 ** Commute a comparison operator. Expressions of the form "X op Y" |
|
389 ** are converted into "Y op X". |
|
390 ** |
|
391 ** If a collation sequence is associated with either the left or right |
|
392 ** side of the comparison, it remains associated with the same side after |
|
393 ** the commutation. So "Y collate NOCASE op X" becomes |
|
394 ** "X collate NOCASE op Y". This is because any collation sequence on |
|
395 ** the left hand side of a comparison overrides any collation sequence |
|
396 ** attached to the right. For the same reason the EP_ExpCollate flag |
|
397 ** is not commuted. |
|
398 */ |
|
399 static void exprCommute(Expr *pExpr){ |
|
400 u16 expRight = (pExpr->pRight->flags & EP_ExpCollate); |
|
401 u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate); |
|
402 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); |
|
403 SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl); |
|
404 pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft; |
|
405 pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight; |
|
406 SWAP(Expr*,pExpr->pRight,pExpr->pLeft); |
|
407 if( pExpr->op>=TK_GT ){ |
|
408 assert( TK_LT==TK_GT+2 ); |
|
409 assert( TK_GE==TK_LE+2 ); |
|
410 assert( TK_GT>TK_EQ ); |
|
411 assert( TK_GT<TK_LE ); |
|
412 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); |
|
413 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; |
|
414 } |
|
415 } |
|
416 |
|
417 /* |
|
418 ** Translate from TK_xx operator to WO_xx bitmask. |
|
419 */ |
|
420 static int operatorMask(int op){ |
|
421 int c; |
|
422 assert( allowedOp(op) ); |
|
423 if( op==TK_IN ){ |
|
424 c = WO_IN; |
|
425 }else if( op==TK_ISNULL ){ |
|
426 c = WO_ISNULL; |
|
427 }else{ |
|
428 c = WO_EQ<<(op-TK_EQ); |
|
429 } |
|
430 assert( op!=TK_ISNULL || c==WO_ISNULL ); |
|
431 assert( op!=TK_IN || c==WO_IN ); |
|
432 assert( op!=TK_EQ || c==WO_EQ ); |
|
433 assert( op!=TK_LT || c==WO_LT ); |
|
434 assert( op!=TK_LE || c==WO_LE ); |
|
435 assert( op!=TK_GT || c==WO_GT ); |
|
436 assert( op!=TK_GE || c==WO_GE ); |
|
437 return c; |
|
438 } |
|
439 |
|
440 /* |
|
441 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" |
|
442 ** where X is a reference to the iColumn of table iCur and <op> is one of |
|
443 ** the WO_xx operator codes specified by the op parameter. |
|
444 ** Return a pointer to the term. Return 0 if not found. |
|
445 */ |
|
446 static WhereTerm *findTerm( |
|
447 WhereClause *pWC, /* The WHERE clause to be searched */ |
|
448 int iCur, /* Cursor number of LHS */ |
|
449 int iColumn, /* Column number of LHS */ |
|
450 Bitmask notReady, /* RHS must not overlap with this mask */ |
|
451 u16 op, /* Mask of WO_xx values describing operator */ |
|
452 Index *pIdx /* Must be compatible with this index, if not NULL */ |
|
453 ){ |
|
454 WhereTerm *pTerm; |
|
455 int k; |
|
456 assert( iCur>=0 ); |
|
457 for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){ |
|
458 if( pTerm->leftCursor==iCur |
|
459 && (pTerm->prereqRight & notReady)==0 |
|
460 && pTerm->leftColumn==iColumn |
|
461 && (pTerm->eOperator & op)!=0 |
|
462 ){ |
|
463 if( pIdx && pTerm->eOperator!=WO_ISNULL ){ |
|
464 Expr *pX = pTerm->pExpr; |
|
465 CollSeq *pColl; |
|
466 char idxaff; |
|
467 int j; |
|
468 Parse *pParse = pWC->pParse; |
|
469 |
|
470 idxaff = pIdx->pTable->aCol[iColumn].affinity; |
|
471 if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue; |
|
472 |
|
473 /* Figure out the collation sequence required from an index for |
|
474 ** it to be useful for optimising expression pX. Store this |
|
475 ** value in variable pColl. |
|
476 */ |
|
477 assert(pX->pLeft); |
|
478 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); |
|
479 if( !pColl ){ |
|
480 pColl = pParse->db->pDfltColl; |
|
481 } |
|
482 |
|
483 for(j=0; pIdx->aiColumn[j]!=iColumn; j++){ |
|
484 if( NEVER(j>=pIdx->nColumn) ) return 0; |
|
485 } |
|
486 if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue; |
|
487 } |
|
488 return pTerm; |
|
489 } |
|
490 } |
|
491 return 0; |
|
492 } |
|
493 |
|
494 /* Forward reference */ |
|
495 static void exprAnalyze(SrcList*, WhereClause*, int); |
|
496 |
|
497 /* |
|
498 ** Call exprAnalyze on all terms in a WHERE clause. |
|
499 ** |
|
500 ** |
|
501 */ |
|
502 static void exprAnalyzeAll( |
|
503 SrcList *pTabList, /* the FROM clause */ |
|
504 WhereClause *pWC /* the WHERE clause to be analyzed */ |
|
505 ){ |
|
506 int i; |
|
507 for(i=pWC->nTerm-1; i>=0; i--){ |
|
508 exprAnalyze(pTabList, pWC, i); |
|
509 } |
|
510 } |
|
511 |
|
512 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION |
|
513 /* |
|
514 ** Check to see if the given expression is a LIKE or GLOB operator that |
|
515 ** can be optimized using inequality constraints. Return TRUE if it is |
|
516 ** so and false if not. |
|
517 ** |
|
518 ** In order for the operator to be optimizible, the RHS must be a string |
|
519 ** literal that does not begin with a wildcard. |
|
520 */ |
|
521 static int isLikeOrGlob( |
|
522 sqlite3 *db, /* The database */ |
|
523 Expr *pExpr, /* Test this expression */ |
|
524 int *pnPattern, /* Number of non-wildcard prefix characters */ |
|
525 int *pisComplete, /* True if the only wildcard is % in the last character */ |
|
526 int *pnoCase /* True if uppercase is equivalent to lowercase */ |
|
527 ){ |
|
528 const char *z; |
|
529 Expr *pRight, *pLeft; |
|
530 ExprList *pList; |
|
531 int c, cnt; |
|
532 char wc[3]; |
|
533 CollSeq *pColl; |
|
534 |
|
535 if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){ |
|
536 return 0; |
|
537 } |
|
538 #ifdef SQLITE_EBCDIC |
|
539 if( *pnoCase ) return 0; |
|
540 #endif |
|
541 pList = pExpr->pList; |
|
542 pRight = pList->a[0].pExpr; |
|
543 if( pRight->op!=TK_STRING |
|
544 && (pRight->op!=TK_REGISTER || pRight->iColumn!=TK_STRING) ){ |
|
545 return 0; |
|
546 } |
|
547 pLeft = pList->a[1].pExpr; |
|
548 if( pLeft->op!=TK_COLUMN ){ |
|
549 return 0; |
|
550 } |
|
551 pColl = pLeft->pColl; |
|
552 assert( pColl!=0 || pLeft->iColumn==-1 ); |
|
553 if( pColl==0 ){ |
|
554 /* No collation is defined for the ROWID. Use the default. */ |
|
555 pColl = db->pDfltColl; |
|
556 } |
|
557 if( (pColl->type!=SQLITE_COLL_BINARY || *pnoCase) && |
|
558 (pColl->type!=SQLITE_COLL_NOCASE || !*pnoCase) ){ |
|
559 return 0; |
|
560 } |
|
561 sqlite3DequoteExpr(db, pRight); |
|
562 z = (char *)pRight->token.z; |
|
563 cnt = 0; |
|
564 if( z ){ |
|
565 while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ cnt++; } |
|
566 } |
|
567 if( cnt==0 || 255==(u8)z[cnt] ){ |
|
568 return 0; |
|
569 } |
|
570 *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0; |
|
571 *pnPattern = cnt; |
|
572 return 1; |
|
573 } |
|
574 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ |
|
575 |
|
576 |
|
577 #ifndef SQLITE_OMIT_VIRTUALTABLE |
|
578 /* |
|
579 ** Check to see if the given expression is of the form |
|
580 ** |
|
581 ** column MATCH expr |
|
582 ** |
|
583 ** If it is then return TRUE. If not, return FALSE. |
|
584 */ |
|
585 static int isMatchOfColumn( |
|
586 Expr *pExpr /* Test this expression */ |
|
587 ){ |
|
588 ExprList *pList; |
|
589 |
|
590 if( pExpr->op!=TK_FUNCTION ){ |
|
591 return 0; |
|
592 } |
|
593 if( pExpr->token.n!=5 || |
|
594 sqlite3StrNICmp((const char*)pExpr->token.z,"match",5)!=0 ){ |
|
595 return 0; |
|
596 } |
|
597 pList = pExpr->pList; |
|
598 if( pList->nExpr!=2 ){ |
|
599 return 0; |
|
600 } |
|
601 if( pList->a[1].pExpr->op != TK_COLUMN ){ |
|
602 return 0; |
|
603 } |
|
604 return 1; |
|
605 } |
|
606 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
|
607 |
|
608 /* |
|
609 ** If the pBase expression originated in the ON or USING clause of |
|
610 ** a join, then transfer the appropriate markings over to derived. |
|
611 */ |
|
612 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ |
|
613 pDerived->flags |= pBase->flags & EP_FromJoin; |
|
614 pDerived->iRightJoinTable = pBase->iRightJoinTable; |
|
615 } |
|
616 |
|
617 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) |
|
618 /* |
|
619 ** Return TRUE if the given term of an OR clause can be converted |
|
620 ** into an IN clause. The iCursor and iColumn define the left-hand |
|
621 ** side of the IN clause. |
|
622 ** |
|
623 ** The context is that we have multiple OR-connected equality terms |
|
624 ** like this: |
|
625 ** |
|
626 ** a=<expr1> OR a=<expr2> OR b=<expr3> OR ... |
|
627 ** |
|
628 ** The pOrTerm input to this routine corresponds to a single term of |
|
629 ** this OR clause. In order for the term to be a candidate for |
|
630 ** conversion to an IN operator, the following must be true: |
|
631 ** |
|
632 ** * The left-hand side of the term must be the column which |
|
633 ** is identified by iCursor and iColumn. |
|
634 ** |
|
635 ** * If the right-hand side is also a column, then the affinities |
|
636 ** of both right and left sides must be such that no type |
|
637 ** conversions are required on the right. (Ticket #2249) |
|
638 ** |
|
639 ** If both of these conditions are true, then return true. Otherwise |
|
640 ** return false. |
|
641 */ |
|
642 static int orTermIsOptCandidate(WhereTerm *pOrTerm, int iCursor, int iColumn){ |
|
643 int affLeft, affRight; |
|
644 assert( pOrTerm->eOperator==WO_EQ ); |
|
645 if( pOrTerm->leftCursor!=iCursor ){ |
|
646 return 0; |
|
647 } |
|
648 if( pOrTerm->leftColumn!=iColumn ){ |
|
649 return 0; |
|
650 } |
|
651 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); |
|
652 if( affRight==0 ){ |
|
653 return 1; |
|
654 } |
|
655 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); |
|
656 if( affRight!=affLeft ){ |
|
657 return 0; |
|
658 } |
|
659 return 1; |
|
660 } |
|
661 |
|
662 /* |
|
663 ** Return true if the given term of an OR clause can be ignored during |
|
664 ** a check to make sure all OR terms are candidates for optimization. |
|
665 ** In other words, return true if a call to the orTermIsOptCandidate() |
|
666 ** above returned false but it is not necessary to disqualify the |
|
667 ** optimization. |
|
668 ** |
|
669 ** Suppose the original OR phrase was this: |
|
670 ** |
|
671 ** a=4 OR a=11 OR a=b |
|
672 ** |
|
673 ** During analysis, the third term gets flipped around and duplicate |
|
674 ** so that we are left with this: |
|
675 ** |
|
676 ** a=4 OR a=11 OR a=b OR b=a |
|
677 ** |
|
678 ** Since the last two terms are duplicates, only one of them |
|
679 ** has to qualify in order for the whole phrase to qualify. When |
|
680 ** this routine is called, we know that pOrTerm did not qualify. |
|
681 ** This routine merely checks to see if pOrTerm has a duplicate that |
|
682 ** might qualify. If there is a duplicate that has not yet been |
|
683 ** disqualified, then return true. If there are no duplicates, or |
|
684 ** the duplicate has also been disqualified, return false. |
|
685 */ |
|
686 static int orTermHasOkDuplicate(WhereClause *pOr, WhereTerm *pOrTerm){ |
|
687 if( pOrTerm->flags & TERM_COPIED ){ |
|
688 /* This is the original term. The duplicate is to the left had |
|
689 ** has not yet been analyzed and thus has not yet been disqualified. */ |
|
690 return 1; |
|
691 } |
|
692 if( (pOrTerm->flags & TERM_VIRTUAL)!=0 |
|
693 && (pOr->a[pOrTerm->iParent].flags & TERM_OR_OK)!=0 ){ |
|
694 /* This is a duplicate term. The original qualified so this one |
|
695 ** does not have to. */ |
|
696 return 1; |
|
697 } |
|
698 /* This is either a singleton term or else it is a duplicate for |
|
699 ** which the original did not qualify. Either way we are done for. */ |
|
700 return 0; |
|
701 } |
|
702 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ |
|
703 |
|
704 /* |
|
705 ** The input to this routine is an WhereTerm structure with only the |
|
706 ** "pExpr" field filled in. The job of this routine is to analyze the |
|
707 ** subexpression and populate all the other fields of the WhereTerm |
|
708 ** structure. |
|
709 ** |
|
710 ** If the expression is of the form "<expr> <op> X" it gets commuted |
|
711 ** to the standard form of "X <op> <expr>". If the expression is of |
|
712 ** the form "X <op> Y" where both X and Y are columns, then the original |
|
713 ** expression is unchanged and a new virtual expression of the form |
|
714 ** "Y <op> X" is added to the WHERE clause and analyzed separately. |
|
715 */ |
|
716 static void exprAnalyze( |
|
717 SrcList *pSrc, /* the FROM clause */ |
|
718 WhereClause *pWC, /* the WHERE clause */ |
|
719 int idxTerm /* Index of the term to be analyzed */ |
|
720 ){ |
|
721 WhereTerm *pTerm; |
|
722 ExprMaskSet *pMaskSet; |
|
723 Expr *pExpr; |
|
724 Bitmask prereqLeft; |
|
725 Bitmask prereqAll; |
|
726 Bitmask extraRight = 0; |
|
727 int nPattern; |
|
728 int isComplete; |
|
729 int noCase; |
|
730 int op; |
|
731 Parse *pParse = pWC->pParse; |
|
732 sqlite3 *db = pParse->db; |
|
733 |
|
734 if( db->mallocFailed ){ |
|
735 return; |
|
736 } |
|
737 pTerm = &pWC->a[idxTerm]; |
|
738 pMaskSet = pWC->pMaskSet; |
|
739 pExpr = pTerm->pExpr; |
|
740 prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft); |
|
741 op = pExpr->op; |
|
742 if( op==TK_IN ){ |
|
743 assert( pExpr->pRight==0 ); |
|
744 pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->pList) |
|
745 | exprSelectTableUsage(pMaskSet, pExpr->pSelect); |
|
746 }else if( op==TK_ISNULL ){ |
|
747 pTerm->prereqRight = 0; |
|
748 }else{ |
|
749 pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight); |
|
750 } |
|
751 prereqAll = exprTableUsage(pMaskSet, pExpr); |
|
752 if( ExprHasProperty(pExpr, EP_FromJoin) ){ |
|
753 Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable); |
|
754 prereqAll |= x; |
|
755 extraRight = x-1; /* ON clause terms may not be used with an index |
|
756 ** on left table of a LEFT JOIN. Ticket #3015 */ |
|
757 } |
|
758 pTerm->prereqAll = prereqAll; |
|
759 pTerm->leftCursor = -1; |
|
760 pTerm->iParent = -1; |
|
761 pTerm->eOperator = 0; |
|
762 if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){ |
|
763 Expr *pLeft = pExpr->pLeft; |
|
764 Expr *pRight = pExpr->pRight; |
|
765 if( pLeft->op==TK_COLUMN ){ |
|
766 pTerm->leftCursor = pLeft->iTable; |
|
767 pTerm->leftColumn = pLeft->iColumn; |
|
768 pTerm->eOperator = operatorMask(op); |
|
769 } |
|
770 if( pRight && pRight->op==TK_COLUMN ){ |
|
771 WhereTerm *pNew; |
|
772 Expr *pDup; |
|
773 if( pTerm->leftCursor>=0 ){ |
|
774 int idxNew; |
|
775 pDup = sqlite3ExprDup(db, pExpr); |
|
776 if( db->mallocFailed ){ |
|
777 sqlite3ExprDelete(db, pDup); |
|
778 return; |
|
779 } |
|
780 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); |
|
781 if( idxNew==0 ) return; |
|
782 pNew = &pWC->a[idxNew]; |
|
783 pNew->iParent = idxTerm; |
|
784 pTerm = &pWC->a[idxTerm]; |
|
785 pTerm->nChild = 1; |
|
786 pTerm->flags |= TERM_COPIED; |
|
787 }else{ |
|
788 pDup = pExpr; |
|
789 pNew = pTerm; |
|
790 } |
|
791 exprCommute(pDup); |
|
792 pLeft = pDup->pLeft; |
|
793 pNew->leftCursor = pLeft->iTable; |
|
794 pNew->leftColumn = pLeft->iColumn; |
|
795 pNew->prereqRight = prereqLeft; |
|
796 pNew->prereqAll = prereqAll; |
|
797 pNew->eOperator = operatorMask(pDup->op); |
|
798 } |
|
799 } |
|
800 |
|
801 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION |
|
802 /* If a term is the BETWEEN operator, create two new virtual terms |
|
803 ** that define the range that the BETWEEN implements. |
|
804 */ |
|
805 else if( pExpr->op==TK_BETWEEN ){ |
|
806 ExprList *pList = pExpr->pList; |
|
807 int i; |
|
808 static const u8 ops[] = {TK_GE, TK_LE}; |
|
809 assert( pList!=0 ); |
|
810 assert( pList->nExpr==2 ); |
|
811 for(i=0; i<2; i++){ |
|
812 Expr *pNewExpr; |
|
813 int idxNew; |
|
814 pNewExpr = sqlite3Expr(db, ops[i], sqlite3ExprDup(db, pExpr->pLeft), |
|
815 sqlite3ExprDup(db, pList->a[i].pExpr), 0); |
|
816 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); |
|
817 exprAnalyze(pSrc, pWC, idxNew); |
|
818 pTerm = &pWC->a[idxTerm]; |
|
819 pWC->a[idxNew].iParent = idxTerm; |
|
820 } |
|
821 pTerm->nChild = 2; |
|
822 } |
|
823 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ |
|
824 |
|
825 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) |
|
826 /* Attempt to convert OR-connected terms into an IN operator so that |
|
827 ** they can make use of indices. Example: |
|
828 ** |
|
829 ** x = expr1 OR expr2 = x OR x = expr3 |
|
830 ** |
|
831 ** is converted into |
|
832 ** |
|
833 ** x IN (expr1,expr2,expr3) |
|
834 ** |
|
835 ** This optimization must be omitted if OMIT_SUBQUERY is defined because |
|
836 ** the compiler for the the IN operator is part of sub-queries. |
|
837 */ |
|
838 else if( pExpr->op==TK_OR ){ |
|
839 int ok; |
|
840 int i, j; |
|
841 int iColumn, iCursor; |
|
842 WhereClause sOr; |
|
843 WhereTerm *pOrTerm; |
|
844 |
|
845 assert( (pTerm->flags & TERM_DYNAMIC)==0 ); |
|
846 whereClauseInit(&sOr, pWC->pParse, pMaskSet); |
|
847 whereSplit(&sOr, pExpr, TK_OR); |
|
848 exprAnalyzeAll(pSrc, &sOr); |
|
849 assert( sOr.nTerm>=2 ); |
|
850 j = 0; |
|
851 if( db->mallocFailed ) goto or_not_possible; |
|
852 do{ |
|
853 assert( j<sOr.nTerm ); |
|
854 iColumn = sOr.a[j].leftColumn; |
|
855 iCursor = sOr.a[j].leftCursor; |
|
856 ok = iCursor>=0; |
|
857 for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){ |
|
858 if( pOrTerm->eOperator!=WO_EQ ){ |
|
859 goto or_not_possible; |
|
860 } |
|
861 if( orTermIsOptCandidate(pOrTerm, iCursor, iColumn) ){ |
|
862 pOrTerm->flags |= TERM_OR_OK; |
|
863 }else if( orTermHasOkDuplicate(&sOr, pOrTerm) ){ |
|
864 pOrTerm->flags &= ~TERM_OR_OK; |
|
865 }else{ |
|
866 ok = 0; |
|
867 } |
|
868 } |
|
869 }while( !ok && (sOr.a[j++].flags & TERM_COPIED)!=0 && j<2 ); |
|
870 if( ok ){ |
|
871 ExprList *pList = 0; |
|
872 Expr *pNew, *pDup; |
|
873 Expr *pLeft = 0; |
|
874 for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0; i--, pOrTerm++){ |
|
875 if( (pOrTerm->flags & TERM_OR_OK)==0 ) continue; |
|
876 pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight); |
|
877 pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup, 0); |
|
878 pLeft = pOrTerm->pExpr->pLeft; |
|
879 } |
|
880 assert( pLeft!=0 ); |
|
881 pDup = sqlite3ExprDup(db, pLeft); |
|
882 pNew = sqlite3Expr(db, TK_IN, pDup, 0, 0); |
|
883 if( pNew ){ |
|
884 int idxNew; |
|
885 transferJoinMarkings(pNew, pExpr); |
|
886 pNew->pList = pList; |
|
887 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); |
|
888 exprAnalyze(pSrc, pWC, idxNew); |
|
889 pTerm = &pWC->a[idxTerm]; |
|
890 pWC->a[idxNew].iParent = idxTerm; |
|
891 pTerm->nChild = 1; |
|
892 }else{ |
|
893 sqlite3ExprListDelete(db, pList); |
|
894 } |
|
895 } |
|
896 or_not_possible: |
|
897 whereClauseClear(&sOr); |
|
898 } |
|
899 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ |
|
900 |
|
901 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION |
|
902 /* Add constraints to reduce the search space on a LIKE or GLOB |
|
903 ** operator. |
|
904 ** |
|
905 ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints |
|
906 ** |
|
907 ** x>='abc' AND x<'abd' AND x LIKE 'abc%' |
|
908 ** |
|
909 ** The last character of the prefix "abc" is incremented to form the |
|
910 ** termination condition "abd". |
|
911 */ |
|
912 if( isLikeOrGlob(db, pExpr, &nPattern, &isComplete, &noCase) ){ |
|
913 Expr *pLeft, *pRight; |
|
914 Expr *pStr1, *pStr2; |
|
915 Expr *pNewExpr1, *pNewExpr2; |
|
916 int idxNew1, idxNew2; |
|
917 |
|
918 pLeft = pExpr->pList->a[1].pExpr; |
|
919 pRight = pExpr->pList->a[0].pExpr; |
|
920 pStr1 = sqlite3PExpr(pParse, TK_STRING, 0, 0, 0); |
|
921 if( pStr1 ){ |
|
922 sqlite3TokenCopy(db, &pStr1->token, &pRight->token); |
|
923 pStr1->token.n = nPattern; |
|
924 pStr1->flags = EP_Dequoted; |
|
925 } |
|
926 pStr2 = sqlite3ExprDup(db, pStr1); |
|
927 if( !db->mallocFailed ){ |
|
928 u8 c, *pC; |
|
929 assert( pStr2->token.dyn ); |
|
930 pC = (u8*)&pStr2->token.z[nPattern-1]; |
|
931 c = *pC; |
|
932 if( noCase ){ |
|
933 if( c=='@' ) isComplete = 0; |
|
934 c = sqlite3UpperToLower[c]; |
|
935 } |
|
936 *pC = c + 1; |
|
937 } |
|
938 pNewExpr1 = sqlite3PExpr(pParse, TK_GE, sqlite3ExprDup(db,pLeft), pStr1, 0); |
|
939 idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC); |
|
940 exprAnalyze(pSrc, pWC, idxNew1); |
|
941 pNewExpr2 = sqlite3PExpr(pParse, TK_LT, sqlite3ExprDup(db,pLeft), pStr2, 0); |
|
942 idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC); |
|
943 exprAnalyze(pSrc, pWC, idxNew2); |
|
944 pTerm = &pWC->a[idxTerm]; |
|
945 if( isComplete ){ |
|
946 pWC->a[idxNew1].iParent = idxTerm; |
|
947 pWC->a[idxNew2].iParent = idxTerm; |
|
948 pTerm->nChild = 2; |
|
949 } |
|
950 } |
|
951 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ |
|
952 |
|
953 #ifndef SQLITE_OMIT_VIRTUALTABLE |
|
954 /* Add a WO_MATCH auxiliary term to the constraint set if the |
|
955 ** current expression is of the form: column MATCH expr. |
|
956 ** This information is used by the xBestIndex methods of |
|
957 ** virtual tables. The native query optimizer does not attempt |
|
958 ** to do anything with MATCH functions. |
|
959 */ |
|
960 if( isMatchOfColumn(pExpr) ){ |
|
961 int idxNew; |
|
962 Expr *pRight, *pLeft; |
|
963 WhereTerm *pNewTerm; |
|
964 Bitmask prereqColumn, prereqExpr; |
|
965 |
|
966 pRight = pExpr->pList->a[0].pExpr; |
|
967 pLeft = pExpr->pList->a[1].pExpr; |
|
968 prereqExpr = exprTableUsage(pMaskSet, pRight); |
|
969 prereqColumn = exprTableUsage(pMaskSet, pLeft); |
|
970 if( (prereqExpr & prereqColumn)==0 ){ |
|
971 Expr *pNewExpr; |
|
972 pNewExpr = sqlite3Expr(db, TK_MATCH, 0, sqlite3ExprDup(db, pRight), 0); |
|
973 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); |
|
974 pNewTerm = &pWC->a[idxNew]; |
|
975 pNewTerm->prereqRight = prereqExpr; |
|
976 pNewTerm->leftCursor = pLeft->iTable; |
|
977 pNewTerm->leftColumn = pLeft->iColumn; |
|
978 pNewTerm->eOperator = WO_MATCH; |
|
979 pNewTerm->iParent = idxTerm; |
|
980 pTerm = &pWC->a[idxTerm]; |
|
981 pTerm->nChild = 1; |
|
982 pTerm->flags |= TERM_COPIED; |
|
983 pNewTerm->prereqAll = pTerm->prereqAll; |
|
984 } |
|
985 } |
|
986 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
|
987 |
|
988 /* Prevent ON clause terms of a LEFT JOIN from being used to drive |
|
989 ** an index for tables to the left of the join. |
|
990 */ |
|
991 pTerm->prereqRight |= extraRight; |
|
992 } |
|
993 |
|
994 /* |
|
995 ** Return TRUE if any of the expressions in pList->a[iFirst...] contain |
|
996 ** a reference to any table other than the iBase table. |
|
997 */ |
|
998 static int referencesOtherTables( |
|
999 ExprList *pList, /* Search expressions in ths list */ |
|
1000 ExprMaskSet *pMaskSet, /* Mapping from tables to bitmaps */ |
|
1001 int iFirst, /* Be searching with the iFirst-th expression */ |
|
1002 int iBase /* Ignore references to this table */ |
|
1003 ){ |
|
1004 Bitmask allowed = ~getMask(pMaskSet, iBase); |
|
1005 while( iFirst<pList->nExpr ){ |
|
1006 if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){ |
|
1007 return 1; |
|
1008 } |
|
1009 } |
|
1010 return 0; |
|
1011 } |
|
1012 |
|
1013 |
|
1014 /* |
|
1015 ** This routine decides if pIdx can be used to satisfy the ORDER BY |
|
1016 ** clause. If it can, it returns 1. If pIdx cannot satisfy the |
|
1017 ** ORDER BY clause, this routine returns 0. |
|
1018 ** |
|
1019 ** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the |
|
1020 ** left-most table in the FROM clause of that same SELECT statement and |
|
1021 ** the table has a cursor number of "base". pIdx is an index on pTab. |
|
1022 ** |
|
1023 ** nEqCol is the number of columns of pIdx that are used as equality |
|
1024 ** constraints. Any of these columns may be missing from the ORDER BY |
|
1025 ** clause and the match can still be a success. |
|
1026 ** |
|
1027 ** All terms of the ORDER BY that match against the index must be either |
|
1028 ** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE |
|
1029 ** index do not need to satisfy this constraint.) The *pbRev value is |
|
1030 ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if |
|
1031 ** the ORDER BY clause is all ASC. |
|
1032 */ |
|
1033 static int isSortingIndex( |
|
1034 Parse *pParse, /* Parsing context */ |
|
1035 ExprMaskSet *pMaskSet, /* Mapping from table indices to bitmaps */ |
|
1036 Index *pIdx, /* The index we are testing */ |
|
1037 int base, /* Cursor number for the table to be sorted */ |
|
1038 ExprList *pOrderBy, /* The ORDER BY clause */ |
|
1039 int nEqCol, /* Number of index columns with == constraints */ |
|
1040 int *pbRev /* Set to 1 if ORDER BY is DESC */ |
|
1041 ){ |
|
1042 int i, j; /* Loop counters */ |
|
1043 int sortOrder = 0; /* XOR of index and ORDER BY sort direction */ |
|
1044 int nTerm; /* Number of ORDER BY terms */ |
|
1045 struct ExprList_item *pTerm; /* A term of the ORDER BY clause */ |
|
1046 sqlite3 *db = pParse->db; |
|
1047 |
|
1048 assert( pOrderBy!=0 ); |
|
1049 nTerm = pOrderBy->nExpr; |
|
1050 assert( nTerm>0 ); |
|
1051 |
|
1052 /* Match terms of the ORDER BY clause against columns of |
|
1053 ** the index. |
|
1054 ** |
|
1055 ** Note that indices have pIdx->nColumn regular columns plus |
|
1056 ** one additional column containing the rowid. The rowid column |
|
1057 ** of the index is also allowed to match against the ORDER BY |
|
1058 ** clause. |
|
1059 */ |
|
1060 for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){ |
|
1061 Expr *pExpr; /* The expression of the ORDER BY pTerm */ |
|
1062 CollSeq *pColl; /* The collating sequence of pExpr */ |
|
1063 int termSortOrder; /* Sort order for this term */ |
|
1064 int iColumn; /* The i-th column of the index. -1 for rowid */ |
|
1065 int iSortOrder; /* 1 for DESC, 0 for ASC on the i-th index term */ |
|
1066 const char *zColl; /* Name of the collating sequence for i-th index term */ |
|
1067 |
|
1068 pExpr = pTerm->pExpr; |
|
1069 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){ |
|
1070 /* Can not use an index sort on anything that is not a column in the |
|
1071 ** left-most table of the FROM clause */ |
|
1072 break; |
|
1073 } |
|
1074 pColl = sqlite3ExprCollSeq(pParse, pExpr); |
|
1075 if( !pColl ){ |
|
1076 pColl = db->pDfltColl; |
|
1077 } |
|
1078 if( i<pIdx->nColumn ){ |
|
1079 iColumn = pIdx->aiColumn[i]; |
|
1080 if( iColumn==pIdx->pTable->iPKey ){ |
|
1081 iColumn = -1; |
|
1082 } |
|
1083 iSortOrder = pIdx->aSortOrder[i]; |
|
1084 zColl = pIdx->azColl[i]; |
|
1085 }else{ |
|
1086 iColumn = -1; |
|
1087 iSortOrder = 0; |
|
1088 zColl = pColl->zName; |
|
1089 } |
|
1090 if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){ |
|
1091 /* Term j of the ORDER BY clause does not match column i of the index */ |
|
1092 if( i<nEqCol ){ |
|
1093 /* If an index column that is constrained by == fails to match an |
|
1094 ** ORDER BY term, that is OK. Just ignore that column of the index |
|
1095 */ |
|
1096 continue; |
|
1097 }else if( i==pIdx->nColumn ){ |
|
1098 /* Index column i is the rowid. All other terms match. */ |
|
1099 break; |
|
1100 }else{ |
|
1101 /* If an index column fails to match and is not constrained by == |
|
1102 ** then the index cannot satisfy the ORDER BY constraint. |
|
1103 */ |
|
1104 return 0; |
|
1105 } |
|
1106 } |
|
1107 assert( pIdx->aSortOrder!=0 ); |
|
1108 assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 ); |
|
1109 assert( iSortOrder==0 || iSortOrder==1 ); |
|
1110 termSortOrder = iSortOrder ^ pTerm->sortOrder; |
|
1111 if( i>nEqCol ){ |
|
1112 if( termSortOrder!=sortOrder ){ |
|
1113 /* Indices can only be used if all ORDER BY terms past the |
|
1114 ** equality constraints are all either DESC or ASC. */ |
|
1115 return 0; |
|
1116 } |
|
1117 }else{ |
|
1118 sortOrder = termSortOrder; |
|
1119 } |
|
1120 j++; |
|
1121 pTerm++; |
|
1122 if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ |
|
1123 /* If the indexed column is the primary key and everything matches |
|
1124 ** so far and none of the ORDER BY terms to the right reference other |
|
1125 ** tables in the join, then we are assured that the index can be used |
|
1126 ** to sort because the primary key is unique and so none of the other |
|
1127 ** columns will make any difference |
|
1128 */ |
|
1129 j = nTerm; |
|
1130 } |
|
1131 } |
|
1132 |
|
1133 *pbRev = sortOrder!=0; |
|
1134 if( j>=nTerm ){ |
|
1135 /* All terms of the ORDER BY clause are covered by this index so |
|
1136 ** this index can be used for sorting. */ |
|
1137 return 1; |
|
1138 } |
|
1139 if( pIdx->onError!=OE_None && i==pIdx->nColumn |
|
1140 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ |
|
1141 /* All terms of this index match some prefix of the ORDER BY clause |
|
1142 ** and the index is UNIQUE and no terms on the tail of the ORDER BY |
|
1143 ** clause reference other tables in a join. If this is all true then |
|
1144 ** the order by clause is superfluous. */ |
|
1145 return 1; |
|
1146 } |
|
1147 return 0; |
|
1148 } |
|
1149 |
|
1150 /* |
|
1151 ** Check table to see if the ORDER BY clause in pOrderBy can be satisfied |
|
1152 ** by sorting in order of ROWID. Return true if so and set *pbRev to be |
|
1153 ** true for reverse ROWID and false for forward ROWID order. |
|
1154 */ |
|
1155 static int sortableByRowid( |
|
1156 int base, /* Cursor number for table to be sorted */ |
|
1157 ExprList *pOrderBy, /* The ORDER BY clause */ |
|
1158 ExprMaskSet *pMaskSet, /* Mapping from tables to bitmaps */ |
|
1159 int *pbRev /* Set to 1 if ORDER BY is DESC */ |
|
1160 ){ |
|
1161 Expr *p; |
|
1162 |
|
1163 assert( pOrderBy!=0 ); |
|
1164 assert( pOrderBy->nExpr>0 ); |
|
1165 p = pOrderBy->a[0].pExpr; |
|
1166 if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1 |
|
1167 && !referencesOtherTables(pOrderBy, pMaskSet, 1, base) ){ |
|
1168 *pbRev = pOrderBy->a[0].sortOrder; |
|
1169 return 1; |
|
1170 } |
|
1171 return 0; |
|
1172 } |
|
1173 |
|
1174 /* |
|
1175 ** Prepare a crude estimate of the logarithm of the input value. |
|
1176 ** The results need not be exact. This is only used for estimating |
|
1177 ** the total cost of performing operations with O(logN) or O(NlogN) |
|
1178 ** complexity. Because N is just a guess, it is no great tragedy if |
|
1179 ** logN is a little off. |
|
1180 */ |
|
1181 static double estLog(double N){ |
|
1182 double logN = 1; |
|
1183 double x = 10; |
|
1184 while( N>x ){ |
|
1185 logN += 1; |
|
1186 x *= 10; |
|
1187 } |
|
1188 return logN; |
|
1189 } |
|
1190 |
|
1191 /* |
|
1192 ** Two routines for printing the content of an sqlite3_index_info |
|
1193 ** structure. Used for testing and debugging only. If neither |
|
1194 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines |
|
1195 ** are no-ops. |
|
1196 */ |
|
1197 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG) |
|
1198 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ |
|
1199 int i; |
|
1200 if( !sqlite3WhereTrace ) return; |
|
1201 for(i=0; i<p->nConstraint; i++){ |
|
1202 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", |
|
1203 i, |
|
1204 p->aConstraint[i].iColumn, |
|
1205 p->aConstraint[i].iTermOffset, |
|
1206 p->aConstraint[i].op, |
|
1207 p->aConstraint[i].usable); |
|
1208 } |
|
1209 for(i=0; i<p->nOrderBy; i++){ |
|
1210 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", |
|
1211 i, |
|
1212 p->aOrderBy[i].iColumn, |
|
1213 p->aOrderBy[i].desc); |
|
1214 } |
|
1215 } |
|
1216 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ |
|
1217 int i; |
|
1218 if( !sqlite3WhereTrace ) return; |
|
1219 for(i=0; i<p->nConstraint; i++){ |
|
1220 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", |
|
1221 i, |
|
1222 p->aConstraintUsage[i].argvIndex, |
|
1223 p->aConstraintUsage[i].omit); |
|
1224 } |
|
1225 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); |
|
1226 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); |
|
1227 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); |
|
1228 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); |
|
1229 } |
|
1230 #else |
|
1231 #define TRACE_IDX_INPUTS(A) |
|
1232 #define TRACE_IDX_OUTPUTS(A) |
|
1233 #endif |
|
1234 |
|
1235 #ifndef SQLITE_OMIT_VIRTUALTABLE |
|
1236 /* |
|
1237 ** Compute the best index for a virtual table. |
|
1238 ** |
|
1239 ** The best index is computed by the xBestIndex method of the virtual |
|
1240 ** table module. This routine is really just a wrapper that sets up |
|
1241 ** the sqlite3_index_info structure that is used to communicate with |
|
1242 ** xBestIndex. |
|
1243 ** |
|
1244 ** In a join, this routine might be called multiple times for the |
|
1245 ** same virtual table. The sqlite3_index_info structure is created |
|
1246 ** and initialized on the first invocation and reused on all subsequent |
|
1247 ** invocations. The sqlite3_index_info structure is also used when |
|
1248 ** code is generated to access the virtual table. The whereInfoDelete() |
|
1249 ** routine takes care of freeing the sqlite3_index_info structure after |
|
1250 ** everybody has finished with it. |
|
1251 */ |
|
1252 static double bestVirtualIndex( |
|
1253 Parse *pParse, /* The parsing context */ |
|
1254 WhereClause *pWC, /* The WHERE clause */ |
|
1255 struct SrcList_item *pSrc, /* The FROM clause term to search */ |
|
1256 Bitmask notReady, /* Mask of cursors that are not available */ |
|
1257 ExprList *pOrderBy, /* The order by clause */ |
|
1258 int orderByUsable, /* True if we can potential sort */ |
|
1259 sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */ |
|
1260 ){ |
|
1261 Table *pTab = pSrc->pTab; |
|
1262 sqlite3_vtab *pVtab = pTab->pVtab; |
|
1263 sqlite3_index_info *pIdxInfo; |
|
1264 struct sqlite3_index_constraint *pIdxCons; |
|
1265 struct sqlite3_index_orderby *pIdxOrderBy; |
|
1266 struct sqlite3_index_constraint_usage *pUsage; |
|
1267 WhereTerm *pTerm; |
|
1268 int i, j; |
|
1269 int nOrderBy; |
|
1270 int rc; |
|
1271 |
|
1272 /* If the sqlite3_index_info structure has not been previously |
|
1273 ** allocated and initialized for this virtual table, then allocate |
|
1274 ** and initialize it now |
|
1275 */ |
|
1276 pIdxInfo = *ppIdxInfo; |
|
1277 if( pIdxInfo==0 ){ |
|
1278 WhereTerm *pTerm; |
|
1279 int nTerm; |
|
1280 WHERETRACE(("Recomputing index info for %s...\n", pTab->zName)); |
|
1281 |
|
1282 /* Count the number of possible WHERE clause constraints referring |
|
1283 ** to this virtual table */ |
|
1284 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ |
|
1285 if( pTerm->leftCursor != pSrc->iCursor ) continue; |
|
1286 if( (pTerm->eOperator&(pTerm->eOperator-1))==0 ); |
|
1287 testcase( pTerm->eOperator==WO_IN ); |
|
1288 testcase( pTerm->eOperator==WO_ISNULL ); |
|
1289 if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue; |
|
1290 nTerm++; |
|
1291 } |
|
1292 |
|
1293 /* If the ORDER BY clause contains only columns in the current |
|
1294 ** virtual table then allocate space for the aOrderBy part of |
|
1295 ** the sqlite3_index_info structure. |
|
1296 */ |
|
1297 nOrderBy = 0; |
|
1298 if( pOrderBy ){ |
|
1299 for(i=0; i<pOrderBy->nExpr; i++){ |
|
1300 Expr *pExpr = pOrderBy->a[i].pExpr; |
|
1301 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; |
|
1302 } |
|
1303 if( i==pOrderBy->nExpr ){ |
|
1304 nOrderBy = pOrderBy->nExpr; |
|
1305 } |
|
1306 } |
|
1307 |
|
1308 /* Allocate the sqlite3_index_info structure |
|
1309 */ |
|
1310 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) |
|
1311 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm |
|
1312 + sizeof(*pIdxOrderBy)*nOrderBy ); |
|
1313 if( pIdxInfo==0 ){ |
|
1314 sqlite3ErrorMsg(pParse, "out of memory"); |
|
1315 return 0.0; |
|
1316 } |
|
1317 *ppIdxInfo = pIdxInfo; |
|
1318 |
|
1319 /* Initialize the structure. The sqlite3_index_info structure contains |
|
1320 ** many fields that are declared "const" to prevent xBestIndex from |
|
1321 ** changing them. We have to do some funky casting in order to |
|
1322 ** initialize those fields. |
|
1323 */ |
|
1324 pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1]; |
|
1325 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; |
|
1326 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; |
|
1327 *(int*)&pIdxInfo->nConstraint = nTerm; |
|
1328 *(int*)&pIdxInfo->nOrderBy = nOrderBy; |
|
1329 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons; |
|
1330 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; |
|
1331 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = |
|
1332 pUsage; |
|
1333 |
|
1334 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ |
|
1335 if( pTerm->leftCursor != pSrc->iCursor ) continue; |
|
1336 if( (pTerm->eOperator&(pTerm->eOperator-1))==0 ); |
|
1337 testcase( pTerm->eOperator==WO_IN ); |
|
1338 testcase( pTerm->eOperator==WO_ISNULL ); |
|
1339 if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue; |
|
1340 pIdxCons[j].iColumn = pTerm->leftColumn; |
|
1341 pIdxCons[j].iTermOffset = i; |
|
1342 pIdxCons[j].op = pTerm->eOperator; |
|
1343 /* The direct assignment in the previous line is possible only because |
|
1344 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The |
|
1345 ** following asserts verify this fact. */ |
|
1346 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); |
|
1347 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); |
|
1348 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); |
|
1349 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); |
|
1350 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); |
|
1351 assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH ); |
|
1352 assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) ); |
|
1353 j++; |
|
1354 } |
|
1355 for(i=0; i<nOrderBy; i++){ |
|
1356 Expr *pExpr = pOrderBy->a[i].pExpr; |
|
1357 pIdxOrderBy[i].iColumn = pExpr->iColumn; |
|
1358 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder; |
|
1359 } |
|
1360 } |
|
1361 |
|
1362 /* At this point, the sqlite3_index_info structure that pIdxInfo points |
|
1363 ** to will have been initialized, either during the current invocation or |
|
1364 ** during some prior invocation. Now we just have to customize the |
|
1365 ** details of pIdxInfo for the current invocation and pass it to |
|
1366 ** xBestIndex. |
|
1367 */ |
|
1368 |
|
1369 /* The module name must be defined. Also, by this point there must |
|
1370 ** be a pointer to an sqlite3_vtab structure. Otherwise |
|
1371 ** sqlite3ViewGetColumnNames() would have picked up the error. |
|
1372 */ |
|
1373 assert( pTab->azModuleArg && pTab->azModuleArg[0] ); |
|
1374 assert( pVtab ); |
|
1375 #if 0 |
|
1376 if( pTab->pVtab==0 ){ |
|
1377 sqlite3ErrorMsg(pParse, "undefined module %s for table %s", |
|
1378 pTab->azModuleArg[0], pTab->zName); |
|
1379 return 0.0; |
|
1380 } |
|
1381 #endif |
|
1382 |
|
1383 /* Set the aConstraint[].usable fields and initialize all |
|
1384 ** output variables to zero. |
|
1385 ** |
|
1386 ** aConstraint[].usable is true for constraints where the right-hand |
|
1387 ** side contains only references to tables to the left of the current |
|
1388 ** table. In other words, if the constraint is of the form: |
|
1389 ** |
|
1390 ** column = expr |
|
1391 ** |
|
1392 ** and we are evaluating a join, then the constraint on column is |
|
1393 ** only valid if all tables referenced in expr occur to the left |
|
1394 ** of the table containing column. |
|
1395 ** |
|
1396 ** The aConstraints[] array contains entries for all constraints |
|
1397 ** on the current table. That way we only have to compute it once |
|
1398 ** even though we might try to pick the best index multiple times. |
|
1399 ** For each attempt at picking an index, the order of tables in the |
|
1400 ** join might be different so we have to recompute the usable flag |
|
1401 ** each time. |
|
1402 */ |
|
1403 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; |
|
1404 pUsage = pIdxInfo->aConstraintUsage; |
|
1405 for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){ |
|
1406 j = pIdxCons->iTermOffset; |
|
1407 pTerm = &pWC->a[j]; |
|
1408 pIdxCons->usable = (pTerm->prereqRight & notReady)==0; |
|
1409 } |
|
1410 memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint); |
|
1411 if( pIdxInfo->needToFreeIdxStr ){ |
|
1412 sqlite3_free(pIdxInfo->idxStr); |
|
1413 } |
|
1414 pIdxInfo->idxStr = 0; |
|
1415 pIdxInfo->idxNum = 0; |
|
1416 pIdxInfo->needToFreeIdxStr = 0; |
|
1417 pIdxInfo->orderByConsumed = 0; |
|
1418 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / 2.0; |
|
1419 nOrderBy = pIdxInfo->nOrderBy; |
|
1420 if( pIdxInfo->nOrderBy && !orderByUsable ){ |
|
1421 *(int*)&pIdxInfo->nOrderBy = 0; |
|
1422 } |
|
1423 |
|
1424 (void)sqlite3SafetyOff(pParse->db); |
|
1425 WHERETRACE(("xBestIndex for %s\n", pTab->zName)); |
|
1426 TRACE_IDX_INPUTS(pIdxInfo); |
|
1427 rc = pVtab->pModule->xBestIndex(pVtab, pIdxInfo); |
|
1428 TRACE_IDX_OUTPUTS(pIdxInfo); |
|
1429 (void)sqlite3SafetyOn(pParse->db); |
|
1430 |
|
1431 if( rc!=SQLITE_OK ){ |
|
1432 if( rc==SQLITE_NOMEM ){ |
|
1433 pParse->db->mallocFailed = 1; |
|
1434 }else if( !pVtab->zErrMsg ){ |
|
1435 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); |
|
1436 }else{ |
|
1437 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); |
|
1438 } |
|
1439 } |
|
1440 sqlite3DbFree(pParse->db, pVtab->zErrMsg); |
|
1441 pVtab->zErrMsg = 0; |
|
1442 |
|
1443 for(i=0; i<pIdxInfo->nConstraint; i++){ |
|
1444 if( !pIdxInfo->aConstraint[i].usable && pUsage[i].argvIndex>0 ){ |
|
1445 sqlite3ErrorMsg(pParse, |
|
1446 "table %s: xBestIndex returned an invalid plan", pTab->zName); |
|
1447 return 0.0; |
|
1448 } |
|
1449 } |
|
1450 |
|
1451 *(int*)&pIdxInfo->nOrderBy = nOrderBy; |
|
1452 return pIdxInfo->estimatedCost; |
|
1453 } |
|
1454 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
|
1455 |
|
1456 /* |
|
1457 ** Find the best index for accessing a particular table. Return a pointer |
|
1458 ** to the index, flags that describe how the index should be used, the |
|
1459 ** number of equality constraints, and the "cost" for this index. |
|
1460 ** |
|
1461 ** The lowest cost index wins. The cost is an estimate of the amount of |
|
1462 ** CPU and disk I/O need to process the request using the selected index. |
|
1463 ** Factors that influence cost include: |
|
1464 ** |
|
1465 ** * The estimated number of rows that will be retrieved. (The |
|
1466 ** fewer the better.) |
|
1467 ** |
|
1468 ** * Whether or not sorting must occur. |
|
1469 ** |
|
1470 ** * Whether or not there must be separate lookups in the |
|
1471 ** index and in the main table. |
|
1472 ** |
|
1473 */ |
|
1474 static double bestIndex( |
|
1475 Parse *pParse, /* The parsing context */ |
|
1476 WhereClause *pWC, /* The WHERE clause */ |
|
1477 struct SrcList_item *pSrc, /* The FROM clause term to search */ |
|
1478 Bitmask notReady, /* Mask of cursors that are not available */ |
|
1479 ExprList *pOrderBy, /* The order by clause */ |
|
1480 Index **ppIndex, /* Make *ppIndex point to the best index */ |
|
1481 int *pFlags, /* Put flags describing this choice in *pFlags */ |
|
1482 int *pnEq /* Put the number of == or IN constraints here */ |
|
1483 ){ |
|
1484 WhereTerm *pTerm; |
|
1485 Index *bestIdx = 0; /* Index that gives the lowest cost */ |
|
1486 double lowestCost; /* The cost of using bestIdx */ |
|
1487 int bestFlags = 0; /* Flags associated with bestIdx */ |
|
1488 int bestNEq = 0; /* Best value for nEq */ |
|
1489 int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */ |
|
1490 Index *pProbe; /* An index we are evaluating */ |
|
1491 int rev; /* True to scan in reverse order */ |
|
1492 int flags; /* Flags associated with pProbe */ |
|
1493 int nEq; /* Number of == or IN constraints */ |
|
1494 int eqTermMask; /* Mask of valid equality operators */ |
|
1495 double cost; /* Cost of using pProbe */ |
|
1496 |
|
1497 WHERETRACE(("bestIndex: tbl=%s notReady=%llx\n", pSrc->pTab->zName, notReady)); |
|
1498 lowestCost = SQLITE_BIG_DBL; |
|
1499 pProbe = pSrc->pTab->pIndex; |
|
1500 |
|
1501 /* If the table has no indices and there are no terms in the where |
|
1502 ** clause that refer to the ROWID, then we will never be able to do |
|
1503 ** anything other than a full table scan on this table. We might as |
|
1504 ** well put it first in the join order. That way, perhaps it can be |
|
1505 ** referenced by other tables in the join. |
|
1506 */ |
|
1507 if( pProbe==0 && |
|
1508 findTerm(pWC, iCur, -1, 0, WO_EQ|WO_IN|WO_LT|WO_LE|WO_GT|WO_GE,0)==0 && |
|
1509 (pOrderBy==0 || !sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev)) ){ |
|
1510 *pFlags = 0; |
|
1511 *ppIndex = 0; |
|
1512 *pnEq = 0; |
|
1513 return 0.0; |
|
1514 } |
|
1515 |
|
1516 /* Check for a rowid=EXPR or rowid IN (...) constraints |
|
1517 */ |
|
1518 pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0); |
|
1519 if( pTerm ){ |
|
1520 Expr *pExpr; |
|
1521 *ppIndex = 0; |
|
1522 bestFlags = WHERE_ROWID_EQ; |
|
1523 if( pTerm->eOperator & WO_EQ ){ |
|
1524 /* Rowid== is always the best pick. Look no further. Because only |
|
1525 ** a single row is generated, output is always in sorted order */ |
|
1526 *pFlags = WHERE_ROWID_EQ | WHERE_UNIQUE; |
|
1527 *pnEq = 1; |
|
1528 WHERETRACE(("... best is rowid\n")); |
|
1529 return 0.0; |
|
1530 }else if( (pExpr = pTerm->pExpr)->pList!=0 ){ |
|
1531 /* Rowid IN (LIST): cost is NlogN where N is the number of list |
|
1532 ** elements. */ |
|
1533 lowestCost = pExpr->pList->nExpr; |
|
1534 lowestCost *= estLog(lowestCost); |
|
1535 }else{ |
|
1536 /* Rowid IN (SELECT): cost is NlogN where N is the number of rows |
|
1537 ** in the result of the inner select. We have no way to estimate |
|
1538 ** that value so make a wild guess. */ |
|
1539 lowestCost = 200; |
|
1540 } |
|
1541 WHERETRACE(("... rowid IN cost: %.9g\n", lowestCost)); |
|
1542 } |
|
1543 |
|
1544 /* Estimate the cost of a table scan. If we do not know how many |
|
1545 ** entries are in the table, use 1 million as a guess. |
|
1546 */ |
|
1547 cost = pProbe ? pProbe->aiRowEst[0] : 1000000; |
|
1548 WHERETRACE(("... table scan base cost: %.9g\n", cost)); |
|
1549 flags = WHERE_ROWID_RANGE; |
|
1550 |
|
1551 /* Check for constraints on a range of rowids in a table scan. |
|
1552 */ |
|
1553 pTerm = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE|WO_GT|WO_GE, 0); |
|
1554 if( pTerm ){ |
|
1555 if( findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0) ){ |
|
1556 flags |= WHERE_TOP_LIMIT; |
|
1557 cost /= 3; /* Guess that rowid<EXPR eliminates two-thirds or rows */ |
|
1558 } |
|
1559 if( findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0) ){ |
|
1560 flags |= WHERE_BTM_LIMIT; |
|
1561 cost /= 3; /* Guess that rowid>EXPR eliminates two-thirds of rows */ |
|
1562 } |
|
1563 WHERETRACE(("... rowid range reduces cost to %.9g\n", cost)); |
|
1564 }else{ |
|
1565 flags = 0; |
|
1566 } |
|
1567 |
|
1568 /* If the table scan does not satisfy the ORDER BY clause, increase |
|
1569 ** the cost by NlogN to cover the expense of sorting. */ |
|
1570 if( pOrderBy ){ |
|
1571 if( sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev) ){ |
|
1572 flags |= WHERE_ORDERBY|WHERE_ROWID_RANGE; |
|
1573 if( rev ){ |
|
1574 flags |= WHERE_REVERSE; |
|
1575 } |
|
1576 }else{ |
|
1577 cost += cost*estLog(cost); |
|
1578 WHERETRACE(("... sorting increases cost to %.9g\n", cost)); |
|
1579 } |
|
1580 } |
|
1581 if( cost<lowestCost ){ |
|
1582 lowestCost = cost; |
|
1583 bestFlags = flags; |
|
1584 } |
|
1585 |
|
1586 /* If the pSrc table is the right table of a LEFT JOIN then we may not |
|
1587 ** use an index to satisfy IS NULL constraints on that table. This is |
|
1588 ** because columns might end up being NULL if the table does not match - |
|
1589 ** a circumstance which the index cannot help us discover. Ticket #2177. |
|
1590 */ |
|
1591 if( (pSrc->jointype & JT_LEFT)!=0 ){ |
|
1592 eqTermMask = WO_EQ|WO_IN; |
|
1593 }else{ |
|
1594 eqTermMask = WO_EQ|WO_IN|WO_ISNULL; |
|
1595 } |
|
1596 |
|
1597 /* Look at each index. |
|
1598 */ |
|
1599 for(; pProbe; pProbe=pProbe->pNext){ |
|
1600 int i; /* Loop counter */ |
|
1601 double inMultiplier = 1; |
|
1602 |
|
1603 WHERETRACE(("... index %s:\n", pProbe->zName)); |
|
1604 |
|
1605 /* Count the number of columns in the index that are satisfied |
|
1606 ** by x=EXPR constraints or x IN (...) constraints. |
|
1607 */ |
|
1608 flags = 0; |
|
1609 for(i=0; i<pProbe->nColumn; i++){ |
|
1610 int j = pProbe->aiColumn[i]; |
|
1611 pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pProbe); |
|
1612 if( pTerm==0 ) break; |
|
1613 flags |= WHERE_COLUMN_EQ; |
|
1614 if( pTerm->eOperator & WO_IN ){ |
|
1615 Expr *pExpr = pTerm->pExpr; |
|
1616 flags |= WHERE_COLUMN_IN; |
|
1617 if( pExpr->pSelect!=0 ){ |
|
1618 inMultiplier *= 25; |
|
1619 }else if( ALWAYS(pExpr->pList) ){ |
|
1620 inMultiplier *= pExpr->pList->nExpr + 1; |
|
1621 } |
|
1622 } |
|
1623 } |
|
1624 cost = pProbe->aiRowEst[i] * inMultiplier * estLog(inMultiplier); |
|
1625 nEq = i; |
|
1626 if( pProbe->onError!=OE_None && (flags & WHERE_COLUMN_IN)==0 |
|
1627 && nEq==pProbe->nColumn ){ |
|
1628 flags |= WHERE_UNIQUE; |
|
1629 } |
|
1630 WHERETRACE(("...... nEq=%d inMult=%.9g cost=%.9g\n",nEq,inMultiplier,cost)); |
|
1631 |
|
1632 /* Look for range constraints |
|
1633 */ |
|
1634 if( nEq<pProbe->nColumn ){ |
|
1635 int j = pProbe->aiColumn[nEq]; |
|
1636 pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe); |
|
1637 if( pTerm ){ |
|
1638 flags |= WHERE_COLUMN_RANGE; |
|
1639 if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){ |
|
1640 flags |= WHERE_TOP_LIMIT; |
|
1641 cost /= 3; |
|
1642 } |
|
1643 if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){ |
|
1644 flags |= WHERE_BTM_LIMIT; |
|
1645 cost /= 3; |
|
1646 } |
|
1647 WHERETRACE(("...... range reduces cost to %.9g\n", cost)); |
|
1648 } |
|
1649 } |
|
1650 |
|
1651 /* Add the additional cost of sorting if that is a factor. |
|
1652 */ |
|
1653 if( pOrderBy ){ |
|
1654 if( (flags & WHERE_COLUMN_IN)==0 && |
|
1655 isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev) ){ |
|
1656 if( flags==0 ){ |
|
1657 flags = WHERE_COLUMN_RANGE; |
|
1658 } |
|
1659 flags |= WHERE_ORDERBY; |
|
1660 if( rev ){ |
|
1661 flags |= WHERE_REVERSE; |
|
1662 } |
|
1663 }else{ |
|
1664 cost += cost*estLog(cost); |
|
1665 WHERETRACE(("...... orderby increases cost to %.9g\n", cost)); |
|
1666 } |
|
1667 } |
|
1668 |
|
1669 /* Check to see if we can get away with using just the index without |
|
1670 ** ever reading the table. If that is the case, then halve the |
|
1671 ** cost of this index. |
|
1672 */ |
|
1673 if( flags && pSrc->colUsed < (((Bitmask)1)<<(BMS-1)) ){ |
|
1674 Bitmask m = pSrc->colUsed; |
|
1675 int j; |
|
1676 for(j=0; j<pProbe->nColumn; j++){ |
|
1677 int x = pProbe->aiColumn[j]; |
|
1678 if( x<BMS-1 ){ |
|
1679 m &= ~(((Bitmask)1)<<x); |
|
1680 } |
|
1681 } |
|
1682 if( m==0 ){ |
|
1683 flags |= WHERE_IDX_ONLY; |
|
1684 cost /= 2; |
|
1685 WHERETRACE(("...... idx-only reduces cost to %.9g\n", cost)); |
|
1686 } |
|
1687 } |
|
1688 |
|
1689 /* If this index has achieved the lowest cost so far, then use it. |
|
1690 */ |
|
1691 if( flags && cost < lowestCost ){ |
|
1692 bestIdx = pProbe; |
|
1693 lowestCost = cost; |
|
1694 bestFlags = flags; |
|
1695 bestNEq = nEq; |
|
1696 } |
|
1697 } |
|
1698 |
|
1699 /* Report the best result |
|
1700 */ |
|
1701 *ppIndex = bestIdx; |
|
1702 WHERETRACE(("best index is %s, cost=%.9g, flags=%x, nEq=%d\n", |
|
1703 bestIdx ? bestIdx->zName : "(none)", lowestCost, bestFlags, bestNEq)); |
|
1704 *pFlags = bestFlags | eqTermMask; |
|
1705 *pnEq = bestNEq; |
|
1706 return lowestCost; |
|
1707 } |
|
1708 |
|
1709 |
|
1710 /* |
|
1711 ** Disable a term in the WHERE clause. Except, do not disable the term |
|
1712 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON |
|
1713 ** or USING clause of that join. |
|
1714 ** |
|
1715 ** Consider the term t2.z='ok' in the following queries: |
|
1716 ** |
|
1717 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' |
|
1718 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' |
|
1719 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' |
|
1720 ** |
|
1721 ** The t2.z='ok' is disabled in the in (2) because it originates |
|
1722 ** in the ON clause. The term is disabled in (3) because it is not part |
|
1723 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. |
|
1724 ** |
|
1725 ** Disabling a term causes that term to not be tested in the inner loop |
|
1726 ** of the join. Disabling is an optimization. When terms are satisfied |
|
1727 ** by indices, we disable them to prevent redundant tests in the inner |
|
1728 ** loop. We would get the correct results if nothing were ever disabled, |
|
1729 ** but joins might run a little slower. The trick is to disable as much |
|
1730 ** as we can without disabling too much. If we disabled in (1), we'd get |
|
1731 ** the wrong answer. See ticket #813. |
|
1732 */ |
|
1733 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ |
|
1734 if( pTerm |
|
1735 && ALWAYS((pTerm->flags & TERM_CODED)==0) |
|
1736 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) |
|
1737 ){ |
|
1738 pTerm->flags |= TERM_CODED; |
|
1739 if( pTerm->iParent>=0 ){ |
|
1740 WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent]; |
|
1741 if( (--pOther->nChild)==0 ){ |
|
1742 disableTerm(pLevel, pOther); |
|
1743 } |
|
1744 } |
|
1745 } |
|
1746 } |
|
1747 |
|
1748 /* |
|
1749 ** Apply the affinities associated with the first n columns of index |
|
1750 ** pIdx to the values in the n registers starting at base. |
|
1751 */ |
|
1752 static void codeApplyAffinity(Parse *pParse, int base, int n, Index *pIdx){ |
|
1753 if( n>0 ){ |
|
1754 Vdbe *v = pParse->pVdbe; |
|
1755 assert( v!=0 ); |
|
1756 sqlite3VdbeAddOp2(v, OP_Affinity, base, n); |
|
1757 sqlite3IndexAffinityStr(v, pIdx); |
|
1758 sqlite3ExprCacheAffinityChange(pParse, base, n); |
|
1759 } |
|
1760 } |
|
1761 |
|
1762 |
|
1763 /* |
|
1764 ** Generate code for a single equality term of the WHERE clause. An equality |
|
1765 ** term can be either X=expr or X IN (...). pTerm is the term to be |
|
1766 ** coded. |
|
1767 ** |
|
1768 ** The current value for the constraint is left in register iReg. |
|
1769 ** |
|
1770 ** For a constraint of the form X=expr, the expression is evaluated and its |
|
1771 ** result is left on the stack. For constraints of the form X IN (...) |
|
1772 ** this routine sets up a loop that will iterate over all values of X. |
|
1773 */ |
|
1774 static int codeEqualityTerm( |
|
1775 Parse *pParse, /* The parsing context */ |
|
1776 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ |
|
1777 WhereLevel *pLevel, /* When level of the FROM clause we are working on */ |
|
1778 int iTarget /* Attempt to leave results in this register */ |
|
1779 ){ |
|
1780 Expr *pX = pTerm->pExpr; |
|
1781 Vdbe *v = pParse->pVdbe; |
|
1782 int iReg; /* Register holding results */ |
|
1783 |
|
1784 if( iTarget<=0 ){ |
|
1785 iReg = iTarget = sqlite3GetTempReg(pParse); |
|
1786 } |
|
1787 if( pX->op==TK_EQ ){ |
|
1788 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); |
|
1789 }else if( pX->op==TK_ISNULL ){ |
|
1790 iReg = iTarget; |
|
1791 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); |
|
1792 #ifndef SQLITE_OMIT_SUBQUERY |
|
1793 }else{ |
|
1794 int eType; |
|
1795 int iTab; |
|
1796 struct InLoop *pIn; |
|
1797 |
|
1798 assert( pX->op==TK_IN ); |
|
1799 iReg = iTarget; |
|
1800 eType = sqlite3FindInIndex(pParse, pX, 0); |
|
1801 iTab = pX->iTable; |
|
1802 sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); |
|
1803 VdbeComment((v, "%.*s", pX->span.n, pX->span.z)); |
|
1804 if( pLevel->nIn==0 ){ |
|
1805 pLevel->nxt = sqlite3VdbeMakeLabel(v); |
|
1806 } |
|
1807 pLevel->nIn++; |
|
1808 pLevel->aInLoop = sqlite3DbReallocOrFree(pParse->db, pLevel->aInLoop, |
|
1809 sizeof(pLevel->aInLoop[0])*pLevel->nIn); |
|
1810 pIn = pLevel->aInLoop; |
|
1811 if( pIn ){ |
|
1812 pIn += pLevel->nIn - 1; |
|
1813 pIn->iCur = iTab; |
|
1814 if( eType==IN_INDEX_ROWID ){ |
|
1815 pIn->topAddr = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg); |
|
1816 }else{ |
|
1817 pIn->topAddr = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg); |
|
1818 } |
|
1819 sqlite3VdbeAddOp1(v, OP_IsNull, iReg); |
|
1820 }else{ |
|
1821 pLevel->nIn = 0; |
|
1822 } |
|
1823 #endif |
|
1824 } |
|
1825 disableTerm(pLevel, pTerm); |
|
1826 return iReg; |
|
1827 } |
|
1828 |
|
1829 /* |
|
1830 ** Generate code that will evaluate all == and IN constraints for an |
|
1831 ** index. The values for all constraints are left on the stack. |
|
1832 ** |
|
1833 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). |
|
1834 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 |
|
1835 ** The index has as many as three equality constraints, but in this |
|
1836 ** example, the third "c" value is an inequality. So only two |
|
1837 ** constraints are coded. This routine will generate code to evaluate |
|
1838 ** a==5 and b IN (1,2,3). The current values for a and b will be left |
|
1839 ** on the stack - a is the deepest and b the shallowest. |
|
1840 ** |
|
1841 ** In the example above nEq==2. But this subroutine works for any value |
|
1842 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. |
|
1843 ** The only thing it does is allocate the pLevel->iMem memory cell. |
|
1844 ** |
|
1845 ** This routine always allocates at least one memory cell and puts |
|
1846 ** the address of that memory cell in pLevel->iMem. The code that |
|
1847 ** calls this routine will use pLevel->iMem to store the termination |
|
1848 ** key value of the loop. If one or more IN operators appear, then |
|
1849 ** this routine allocates an additional nEq memory cells for internal |
|
1850 ** use. |
|
1851 */ |
|
1852 static int codeAllEqualityTerms( |
|
1853 Parse *pParse, /* Parsing context */ |
|
1854 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ |
|
1855 WhereClause *pWC, /* The WHERE clause */ |
|
1856 Bitmask notReady, /* Which parts of FROM have not yet been coded */ |
|
1857 int nExtraReg /* Number of extra registers to allocate */ |
|
1858 ){ |
|
1859 int nEq = pLevel->nEq; /* The number of == or IN constraints to code */ |
|
1860 Vdbe *v = pParse->pVdbe; /* The virtual machine under construction */ |
|
1861 Index *pIdx = pLevel->pIdx; /* The index being used for this loop */ |
|
1862 int iCur = pLevel->iTabCur; /* The cursor of the table */ |
|
1863 WhereTerm *pTerm; /* A single constraint term */ |
|
1864 int j; /* Loop counter */ |
|
1865 int regBase; /* Base register */ |
|
1866 |
|
1867 /* Figure out how many memory cells we will need then allocate them. |
|
1868 ** We always need at least one used to store the loop terminator |
|
1869 ** value. If there are IN operators we'll need one for each == or |
|
1870 ** IN constraint. |
|
1871 */ |
|
1872 pLevel->iMem = pParse->nMem + 1; |
|
1873 regBase = pParse->nMem + 2; |
|
1874 pParse->nMem += pLevel->nEq + 2 + nExtraReg; |
|
1875 |
|
1876 /* Evaluate the equality constraints |
|
1877 */ |
|
1878 assert( pIdx->nColumn>=nEq ); |
|
1879 for(j=0; j<nEq; j++){ |
|
1880 int r1; |
|
1881 int k = pIdx->aiColumn[j]; |
|
1882 pTerm = findTerm(pWC, iCur, k, notReady, pLevel->flags, pIdx); |
|
1883 if( NEVER(pTerm==0) ) break; |
|
1884 assert( (pTerm->flags & TERM_CODED)==0 ); |
|
1885 r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase+j); |
|
1886 if( r1!=regBase+j ){ |
|
1887 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); |
|
1888 } |
|
1889 testcase( pTerm->eOperator & WO_ISNULL ); |
|
1890 testcase( pTerm->eOperator & WO_IN ); |
|
1891 if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){ |
|
1892 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->brk); |
|
1893 } |
|
1894 } |
|
1895 return regBase; |
|
1896 } |
|
1897 |
|
1898 #if defined(SQLITE_TEST) |
|
1899 /* |
|
1900 ** The following variable holds a text description of query plan generated |
|
1901 ** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin |
|
1902 ** overwrites the previous. This information is used for testing and |
|
1903 ** analysis only. |
|
1904 */ |
|
1905 char sqlite3_query_plan[BMS*2*40]; /* Text of the join */ |
|
1906 static int nQPlan = 0; /* Next free slow in _query_plan[] */ |
|
1907 |
|
1908 #endif /* SQLITE_TEST */ |
|
1909 |
|
1910 |
|
1911 /* |
|
1912 ** Free a WhereInfo structure |
|
1913 */ |
|
1914 static void whereInfoFree(WhereInfo *pWInfo){ |
|
1915 if( pWInfo ){ |
|
1916 int i; |
|
1917 sqlite3 *db = pWInfo->pParse->db; |
|
1918 for(i=0; i<pWInfo->nLevel; i++){ |
|
1919 sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo; |
|
1920 if( pInfo ){ |
|
1921 assert( pInfo->needToFreeIdxStr==0 ); |
|
1922 sqlite3DbFree(db, pInfo); |
|
1923 } |
|
1924 } |
|
1925 sqlite3DbFree(db, pWInfo); |
|
1926 } |
|
1927 } |
|
1928 |
|
1929 |
|
1930 /* |
|
1931 ** Generate the beginning of the loop used for WHERE clause processing. |
|
1932 ** The return value is a pointer to an opaque structure that contains |
|
1933 ** information needed to terminate the loop. Later, the calling routine |
|
1934 ** should invoke sqlite3WhereEnd() with the return value of this function |
|
1935 ** in order to complete the WHERE clause processing. |
|
1936 ** |
|
1937 ** If an error occurs, this routine returns NULL. |
|
1938 ** |
|
1939 ** The basic idea is to do a nested loop, one loop for each table in |
|
1940 ** the FROM clause of a select. (INSERT and UPDATE statements are the |
|
1941 ** same as a SELECT with only a single table in the FROM clause.) For |
|
1942 ** example, if the SQL is this: |
|
1943 ** |
|
1944 ** SELECT * FROM t1, t2, t3 WHERE ...; |
|
1945 ** |
|
1946 ** Then the code generated is conceptually like the following: |
|
1947 ** |
|
1948 ** foreach row1 in t1 do \ Code generated |
|
1949 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() |
|
1950 ** foreach row3 in t3 do / |
|
1951 ** ... |
|
1952 ** end \ Code generated |
|
1953 ** end |-- by sqlite3WhereEnd() |
|
1954 ** end / |
|
1955 ** |
|
1956 ** Note that the loops might not be nested in the order in which they |
|
1957 ** appear in the FROM clause if a different order is better able to make |
|
1958 ** use of indices. Note also that when the IN operator appears in |
|
1959 ** the WHERE clause, it might result in additional nested loops for |
|
1960 ** scanning through all values on the right-hand side of the IN. |
|
1961 ** |
|
1962 ** There are Btree cursors associated with each table. t1 uses cursor |
|
1963 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. |
|
1964 ** And so forth. This routine generates code to open those VDBE cursors |
|
1965 ** and sqlite3WhereEnd() generates the code to close them. |
|
1966 ** |
|
1967 ** The code that sqlite3WhereBegin() generates leaves the cursors named |
|
1968 ** in pTabList pointing at their appropriate entries. The [...] code |
|
1969 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract |
|
1970 ** data from the various tables of the loop. |
|
1971 ** |
|
1972 ** If the WHERE clause is empty, the foreach loops must each scan their |
|
1973 ** entire tables. Thus a three-way join is an O(N^3) operation. But if |
|
1974 ** the tables have indices and there are terms in the WHERE clause that |
|
1975 ** refer to those indices, a complete table scan can be avoided and the |
|
1976 ** code will run much faster. Most of the work of this routine is checking |
|
1977 ** to see if there are indices that can be used to speed up the loop. |
|
1978 ** |
|
1979 ** Terms of the WHERE clause are also used to limit which rows actually |
|
1980 ** make it to the "..." in the middle of the loop. After each "foreach", |
|
1981 ** terms of the WHERE clause that use only terms in that loop and outer |
|
1982 ** loops are evaluated and if false a jump is made around all subsequent |
|
1983 ** inner loops (or around the "..." if the test occurs within the inner- |
|
1984 ** most loop) |
|
1985 ** |
|
1986 ** OUTER JOINS |
|
1987 ** |
|
1988 ** An outer join of tables t1 and t2 is conceptally coded as follows: |
|
1989 ** |
|
1990 ** foreach row1 in t1 do |
|
1991 ** flag = 0 |
|
1992 ** foreach row2 in t2 do |
|
1993 ** start: |
|
1994 ** ... |
|
1995 ** flag = 1 |
|
1996 ** end |
|
1997 ** if flag==0 then |
|
1998 ** move the row2 cursor to a null row |
|
1999 ** goto start |
|
2000 ** fi |
|
2001 ** end |
|
2002 ** |
|
2003 ** ORDER BY CLAUSE PROCESSING |
|
2004 ** |
|
2005 ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement, |
|
2006 ** if there is one. If there is no ORDER BY clause or if this routine |
|
2007 ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL. |
|
2008 ** |
|
2009 ** If an index can be used so that the natural output order of the table |
|
2010 ** scan is correct for the ORDER BY clause, then that index is used and |
|
2011 ** *ppOrderBy is set to NULL. This is an optimization that prevents an |
|
2012 ** unnecessary sort of the result set if an index appropriate for the |
|
2013 ** ORDER BY clause already exists. |
|
2014 ** |
|
2015 ** If the where clause loops cannot be arranged to provide the correct |
|
2016 ** output order, then the *ppOrderBy is unchanged. |
|
2017 */ |
|
2018 WhereInfo *sqlite3WhereBegin( |
|
2019 Parse *pParse, /* The parser context */ |
|
2020 SrcList *pTabList, /* A list of all tables to be scanned */ |
|
2021 Expr *pWhere, /* The WHERE clause */ |
|
2022 ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */ |
|
2023 u8 wflags /* One of the WHERE_* flags defined in sqliteInt.h */ |
|
2024 ){ |
|
2025 int i; /* Loop counter */ |
|
2026 WhereInfo *pWInfo; /* Will become the return value of this function */ |
|
2027 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ |
|
2028 int brk, cont = 0; /* Addresses used during code generation */ |
|
2029 Bitmask notReady; /* Cursors that are not yet positioned */ |
|
2030 WhereTerm *pTerm; /* A single term in the WHERE clause */ |
|
2031 ExprMaskSet maskSet; /* The expression mask set */ |
|
2032 WhereClause wc; /* The WHERE clause is divided into these terms */ |
|
2033 struct SrcList_item *pTabItem; /* A single entry from pTabList */ |
|
2034 WhereLevel *pLevel; /* A single level in the pWInfo list */ |
|
2035 int iFrom; /* First unused FROM clause element */ |
|
2036 int andFlags; /* AND-ed combination of all wc.a[].flags */ |
|
2037 sqlite3 *db; /* Database connection */ |
|
2038 ExprList *pOrderBy = 0; |
|
2039 |
|
2040 /* The number of tables in the FROM clause is limited by the number of |
|
2041 ** bits in a Bitmask |
|
2042 */ |
|
2043 if( pTabList->nSrc>BMS ){ |
|
2044 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); |
|
2045 return 0; |
|
2046 } |
|
2047 |
|
2048 if( ppOrderBy ){ |
|
2049 pOrderBy = *ppOrderBy; |
|
2050 } |
|
2051 |
|
2052 /* Split the WHERE clause into separate subexpressions where each |
|
2053 ** subexpression is separated by an AND operator. |
|
2054 */ |
|
2055 initMaskSet(&maskSet); |
|
2056 whereClauseInit(&wc, pParse, &maskSet); |
|
2057 sqlite3ExprCodeConstants(pParse, pWhere); |
|
2058 whereSplit(&wc, pWhere, TK_AND); |
|
2059 |
|
2060 /* Allocate and initialize the WhereInfo structure that will become the |
|
2061 ** return value. |
|
2062 */ |
|
2063 db = pParse->db; |
|
2064 pWInfo = sqlite3DbMallocZero(db, |
|
2065 sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel)); |
|
2066 if( db->mallocFailed ){ |
|
2067 goto whereBeginNoMem; |
|
2068 } |
|
2069 pWInfo->nLevel = pTabList->nSrc; |
|
2070 pWInfo->pParse = pParse; |
|
2071 pWInfo->pTabList = pTabList; |
|
2072 pWInfo->iBreak = sqlite3VdbeMakeLabel(v); |
|
2073 |
|
2074 /* Special case: a WHERE clause that is constant. Evaluate the |
|
2075 ** expression and either jump over all of the code or fall thru. |
|
2076 */ |
|
2077 if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){ |
|
2078 sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL); |
|
2079 pWhere = 0; |
|
2080 } |
|
2081 |
|
2082 /* Assign a bit from the bitmask to every term in the FROM clause. |
|
2083 ** |
|
2084 ** When assigning bitmask values to FROM clause cursors, it must be |
|
2085 ** the case that if X is the bitmask for the N-th FROM clause term then |
|
2086 ** the bitmask for all FROM clause terms to the left of the N-th term |
|
2087 ** is (X-1). An expression from the ON clause of a LEFT JOIN can use |
|
2088 ** its Expr.iRightJoinTable value to find the bitmask of the right table |
|
2089 ** of the join. Subtracting one from the right table bitmask gives a |
|
2090 ** bitmask for all tables to the left of the join. Knowing the bitmask |
|
2091 ** for all tables to the left of a left join is important. Ticket #3015. |
|
2092 */ |
|
2093 for(i=0; i<pTabList->nSrc; i++){ |
|
2094 createMask(&maskSet, pTabList->a[i].iCursor); |
|
2095 } |
|
2096 #ifndef NDEBUG |
|
2097 { |
|
2098 Bitmask toTheLeft = 0; |
|
2099 for(i=0; i<pTabList->nSrc; i++){ |
|
2100 Bitmask m = getMask(&maskSet, pTabList->a[i].iCursor); |
|
2101 assert( (m-1)==toTheLeft ); |
|
2102 toTheLeft |= m; |
|
2103 } |
|
2104 } |
|
2105 #endif |
|
2106 |
|
2107 /* Analyze all of the subexpressions. Note that exprAnalyze() might |
|
2108 ** add new virtual terms onto the end of the WHERE clause. We do not |
|
2109 ** want to analyze these virtual terms, so start analyzing at the end |
|
2110 ** and work forward so that the added virtual terms are never processed. |
|
2111 */ |
|
2112 exprAnalyzeAll(pTabList, &wc); |
|
2113 if( db->mallocFailed ){ |
|
2114 goto whereBeginNoMem; |
|
2115 } |
|
2116 |
|
2117 /* Chose the best index to use for each table in the FROM clause. |
|
2118 ** |
|
2119 ** This loop fills in the following fields: |
|
2120 ** |
|
2121 ** pWInfo->a[].pIdx The index to use for this level of the loop. |
|
2122 ** pWInfo->a[].flags WHERE_xxx flags associated with pIdx |
|
2123 ** pWInfo->a[].nEq The number of == and IN constraints |
|
2124 ** pWInfo->a[].iFrom When term of the FROM clause is being coded |
|
2125 ** pWInfo->a[].iTabCur The VDBE cursor for the database table |
|
2126 ** pWInfo->a[].iIdxCur The VDBE cursor for the index |
|
2127 ** |
|
2128 ** This loop also figures out the nesting order of tables in the FROM |
|
2129 ** clause. |
|
2130 */ |
|
2131 notReady = ~(Bitmask)0; |
|
2132 pTabItem = pTabList->a; |
|
2133 pLevel = pWInfo->a; |
|
2134 andFlags = ~0; |
|
2135 WHERETRACE(("*** Optimizer Start ***\n")); |
|
2136 for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ |
|
2137 Index *pIdx; /* Index for FROM table at pTabItem */ |
|
2138 int flags; /* Flags asssociated with pIdx */ |
|
2139 int nEq; /* Number of == or IN constraints */ |
|
2140 double cost; /* The cost for pIdx */ |
|
2141 int j; /* For looping over FROM tables */ |
|
2142 Index *pBest = 0; /* The best index seen so far */ |
|
2143 int bestFlags = 0; /* Flags associated with pBest */ |
|
2144 int bestNEq = 0; /* nEq associated with pBest */ |
|
2145 double lowestCost; /* Cost of the pBest */ |
|
2146 int bestJ = 0; /* The value of j */ |
|
2147 Bitmask m; /* Bitmask value for j or bestJ */ |
|
2148 int once = 0; /* True when first table is seen */ |
|
2149 sqlite3_index_info *pIndex; /* Current virtual index */ |
|
2150 |
|
2151 lowestCost = SQLITE_BIG_DBL; |
|
2152 for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){ |
|
2153 int doNotReorder; /* True if this table should not be reordered */ |
|
2154 |
|
2155 doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0; |
|
2156 if( once && doNotReorder ) break; |
|
2157 m = getMask(&maskSet, pTabItem->iCursor); |
|
2158 if( (m & notReady)==0 ){ |
|
2159 if( j==iFrom ) iFrom++; |
|
2160 continue; |
|
2161 } |
|
2162 assert( pTabItem->pTab ); |
|
2163 #ifndef SQLITE_OMIT_VIRTUALTABLE |
|
2164 if( IsVirtual(pTabItem->pTab) ){ |
|
2165 sqlite3_index_info **ppIdxInfo = &pWInfo->a[j].pIdxInfo; |
|
2166 cost = bestVirtualIndex(pParse, &wc, pTabItem, notReady, |
|
2167 ppOrderBy ? *ppOrderBy : 0, i==0, |
|
2168 ppIdxInfo); |
|
2169 flags = WHERE_VIRTUALTABLE; |
|
2170 pIndex = *ppIdxInfo; |
|
2171 if( pIndex && pIndex->orderByConsumed ){ |
|
2172 flags = WHERE_VIRTUALTABLE | WHERE_ORDERBY; |
|
2173 } |
|
2174 pIdx = 0; |
|
2175 nEq = 0; |
|
2176 if( (SQLITE_BIG_DBL/2.0)<cost ){ |
|
2177 /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the |
|
2178 ** inital value of lowestCost in this loop. If it is, then |
|
2179 ** the (cost<lowestCost) test below will never be true and |
|
2180 ** pLevel->pBestIdx never set. |
|
2181 */ |
|
2182 cost = (SQLITE_BIG_DBL/2.0); |
|
2183 } |
|
2184 }else |
|
2185 #endif |
|
2186 { |
|
2187 cost = bestIndex(pParse, &wc, pTabItem, notReady, |
|
2188 (i==0 && ppOrderBy) ? *ppOrderBy : 0, |
|
2189 &pIdx, &flags, &nEq); |
|
2190 pIndex = 0; |
|
2191 } |
|
2192 if( cost<lowestCost ){ |
|
2193 once = 1; |
|
2194 lowestCost = cost; |
|
2195 pBest = pIdx; |
|
2196 bestFlags = flags; |
|
2197 bestNEq = nEq; |
|
2198 bestJ = j; |
|
2199 pLevel->pBestIdx = pIndex; |
|
2200 } |
|
2201 if( doNotReorder ) break; |
|
2202 } |
|
2203 WHERETRACE(("*** Optimizer selects table %d for loop %d\n", bestJ, |
|
2204 pLevel-pWInfo->a)); |
|
2205 if( (bestFlags & WHERE_ORDERBY)!=0 ){ |
|
2206 *ppOrderBy = 0; |
|
2207 } |
|
2208 andFlags &= bestFlags; |
|
2209 pLevel->flags = bestFlags; |
|
2210 pLevel->pIdx = pBest; |
|
2211 pLevel->nEq = bestNEq; |
|
2212 pLevel->aInLoop = 0; |
|
2213 pLevel->nIn = 0; |
|
2214 if( pBest ){ |
|
2215 pLevel->iIdxCur = pParse->nTab++; |
|
2216 }else{ |
|
2217 pLevel->iIdxCur = -1; |
|
2218 } |
|
2219 notReady &= ~getMask(&maskSet, pTabList->a[bestJ].iCursor); |
|
2220 pLevel->iFrom = bestJ; |
|
2221 } |
|
2222 WHERETRACE(("*** Optimizer Finished ***\n")); |
|
2223 |
|
2224 /* If the total query only selects a single row, then the ORDER BY |
|
2225 ** clause is irrelevant. |
|
2226 */ |
|
2227 if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){ |
|
2228 *ppOrderBy = 0; |
|
2229 } |
|
2230 |
|
2231 /* If the caller is an UPDATE or DELETE statement that is requesting |
|
2232 ** to use a one-pass algorithm, determine if this is appropriate. |
|
2233 ** The one-pass algorithm only works if the WHERE clause constraints |
|
2234 ** the statement to update a single row. |
|
2235 */ |
|
2236 assert( (wflags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); |
|
2237 if( (wflags & WHERE_ONEPASS_DESIRED)!=0 && (andFlags & WHERE_UNIQUE)!=0 ){ |
|
2238 pWInfo->okOnePass = 1; |
|
2239 pWInfo->a[0].flags &= ~WHERE_IDX_ONLY; |
|
2240 } |
|
2241 |
|
2242 /* Open all tables in the pTabList and any indices selected for |
|
2243 ** searching those tables. |
|
2244 */ |
|
2245 sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */ |
|
2246 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ |
|
2247 Table *pTab; /* Table to open */ |
|
2248 Index *pIx; /* Index used to access pTab (if any) */ |
|
2249 int iDb; /* Index of database containing table/index */ |
|
2250 int iIdxCur = pLevel->iIdxCur; |
|
2251 |
|
2252 #ifndef SQLITE_OMIT_EXPLAIN |
|
2253 if( pParse->explain==2 ){ |
|
2254 char *zMsg; |
|
2255 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; |
|
2256 zMsg = sqlite3MPrintf(db, "TABLE %s", pItem->zName); |
|
2257 if( pItem->zAlias ){ |
|
2258 zMsg = sqlite3MAppendf(db, zMsg, "%s AS %s", zMsg, pItem->zAlias); |
|
2259 } |
|
2260 if( (pIx = pLevel->pIdx)!=0 ){ |
|
2261 zMsg = sqlite3MAppendf(db, zMsg, "%s WITH INDEX %s", zMsg, pIx->zName); |
|
2262 }else if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ |
|
2263 zMsg = sqlite3MAppendf(db, zMsg, "%s USING PRIMARY KEY", zMsg); |
|
2264 } |
|
2265 #ifndef SQLITE_OMIT_VIRTUALTABLE |
|
2266 else if( pLevel->pBestIdx ){ |
|
2267 sqlite3_index_info *pBestIdx = pLevel->pBestIdx; |
|
2268 zMsg = sqlite3MAppendf(db, zMsg, "%s VIRTUAL TABLE INDEX %d:%s", zMsg, |
|
2269 pBestIdx->idxNum, pBestIdx->idxStr); |
|
2270 } |
|
2271 #endif |
|
2272 if( pLevel->flags & WHERE_ORDERBY ){ |
|
2273 zMsg = sqlite3MAppendf(db, zMsg, "%s ORDER BY", zMsg); |
|
2274 } |
|
2275 sqlite3VdbeAddOp4(v, OP_Explain, i, pLevel->iFrom, 0, zMsg, P4_DYNAMIC); |
|
2276 } |
|
2277 #endif /* SQLITE_OMIT_EXPLAIN */ |
|
2278 pTabItem = &pTabList->a[pLevel->iFrom]; |
|
2279 pTab = pTabItem->pTab; |
|
2280 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); |
|
2281 if( pTab->isEphem || pTab->pSelect ) continue; |
|
2282 #ifndef SQLITE_OMIT_VIRTUALTABLE |
|
2283 if( pLevel->pBestIdx ){ |
|
2284 int iCur = pTabItem->iCursor; |
|
2285 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, |
|
2286 (const char*)pTab->pVtab, P4_VTAB); |
|
2287 }else |
|
2288 #endif |
|
2289 if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){ |
|
2290 int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead; |
|
2291 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); |
|
2292 if( !pWInfo->okOnePass && pTab->nCol<(sizeof(Bitmask)*8) ){ |
|
2293 Bitmask b = pTabItem->colUsed; |
|
2294 int n = 0; |
|
2295 for(; b; b=b>>1, n++){} |
|
2296 sqlite3VdbeChangeP2(v, sqlite3VdbeCurrentAddr(v)-2, n); |
|
2297 assert( n<=pTab->nCol ); |
|
2298 } |
|
2299 }else{ |
|
2300 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); |
|
2301 } |
|
2302 pLevel->iTabCur = pTabItem->iCursor; |
|
2303 if( (pIx = pLevel->pIdx)!=0 ){ |
|
2304 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx); |
|
2305 assert( pIx->pSchema==pTab->pSchema ); |
|
2306 sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pIx->nColumn+1); |
|
2307 sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIx->tnum, iDb, |
|
2308 (char*)pKey, P4_KEYINFO_HANDOFF); |
|
2309 VdbeComment((v, "%s", pIx->zName)); |
|
2310 } |
|
2311 sqlite3CodeVerifySchema(pParse, iDb); |
|
2312 } |
|
2313 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); |
|
2314 |
|
2315 /* Generate the code to do the search. Each iteration of the for |
|
2316 ** loop below generates code for a single nested loop of the VM |
|
2317 ** program. |
|
2318 */ |
|
2319 notReady = ~(Bitmask)0; |
|
2320 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ |
|
2321 int j; |
|
2322 int iCur = pTabItem->iCursor; /* The VDBE cursor for the table */ |
|
2323 Index *pIdx; /* The index we will be using */ |
|
2324 int nxt; /* Where to jump to continue with the next IN case */ |
|
2325 int iIdxCur; /* The VDBE cursor for the index */ |
|
2326 int omitTable; /* True if we use the index only */ |
|
2327 int bRev; /* True if we need to scan in reverse order */ |
|
2328 |
|
2329 pTabItem = &pTabList->a[pLevel->iFrom]; |
|
2330 iCur = pTabItem->iCursor; |
|
2331 pIdx = pLevel->pIdx; |
|
2332 iIdxCur = pLevel->iIdxCur; |
|
2333 bRev = (pLevel->flags & WHERE_REVERSE)!=0; |
|
2334 omitTable = (pLevel->flags & WHERE_IDX_ONLY)!=0; |
|
2335 |
|
2336 /* Create labels for the "break" and "continue" instructions |
|
2337 ** for the current loop. Jump to brk to break out of a loop. |
|
2338 ** Jump to cont to go immediately to the next iteration of the |
|
2339 ** loop. |
|
2340 ** |
|
2341 ** When there is an IN operator, we also have a "nxt" label that |
|
2342 ** means to continue with the next IN value combination. When |
|
2343 ** there are no IN operators in the constraints, the "nxt" label |
|
2344 ** is the same as "brk". |
|
2345 */ |
|
2346 brk = pLevel->brk = pLevel->nxt = sqlite3VdbeMakeLabel(v); |
|
2347 cont = pLevel->cont = sqlite3VdbeMakeLabel(v); |
|
2348 |
|
2349 /* If this is the right table of a LEFT OUTER JOIN, allocate and |
|
2350 ** initialize a memory cell that records if this table matches any |
|
2351 ** row of the left table of the join. |
|
2352 */ |
|
2353 if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){ |
|
2354 pLevel->iLeftJoin = ++pParse->nMem; |
|
2355 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); |
|
2356 VdbeComment((v, "init LEFT JOIN no-match flag")); |
|
2357 } |
|
2358 |
|
2359 #ifndef SQLITE_OMIT_VIRTUALTABLE |
|
2360 if( pLevel->pBestIdx ){ |
|
2361 /* Case 0: The table is a virtual-table. Use the VFilter and VNext |
|
2362 ** to access the data. |
|
2363 */ |
|
2364 int j; |
|
2365 int iReg; /* P3 Value for OP_VFilter */ |
|
2366 sqlite3_index_info *pBestIdx = pLevel->pBestIdx; |
|
2367 int nConstraint = pBestIdx->nConstraint; |
|
2368 struct sqlite3_index_constraint_usage *aUsage = |
|
2369 pBestIdx->aConstraintUsage; |
|
2370 const struct sqlite3_index_constraint *aConstraint = |
|
2371 pBestIdx->aConstraint; |
|
2372 |
|
2373 iReg = sqlite3GetTempRange(pParse, nConstraint+2); |
|
2374 pParse->disableColCache++; |
|
2375 for(j=1; j<=nConstraint; j++){ |
|
2376 int k; |
|
2377 for(k=0; k<nConstraint; k++){ |
|
2378 if( aUsage[k].argvIndex==j ){ |
|
2379 int iTerm = aConstraint[k].iTermOffset; |
|
2380 assert( pParse->disableColCache ); |
|
2381 sqlite3ExprCode(pParse, wc.a[iTerm].pExpr->pRight, iReg+j+1); |
|
2382 break; |
|
2383 } |
|
2384 } |
|
2385 if( k==nConstraint ) break; |
|
2386 } |
|
2387 assert( pParse->disableColCache ); |
|
2388 pParse->disableColCache--; |
|
2389 sqlite3VdbeAddOp2(v, OP_Integer, pBestIdx->idxNum, iReg); |
|
2390 sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1); |
|
2391 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, brk, iReg, pBestIdx->idxStr, |
|
2392 pBestIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC); |
|
2393 sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); |
|
2394 pBestIdx->needToFreeIdxStr = 0; |
|
2395 for(j=0; j<nConstraint; j++){ |
|
2396 if( aUsage[j].omit ){ |
|
2397 int iTerm = aConstraint[j].iTermOffset; |
|
2398 disableTerm(pLevel, &wc.a[iTerm]); |
|
2399 } |
|
2400 } |
|
2401 pLevel->op = OP_VNext; |
|
2402 pLevel->p1 = iCur; |
|
2403 pLevel->p2 = sqlite3VdbeCurrentAddr(v); |
|
2404 }else |
|
2405 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
|
2406 |
|
2407 if( pLevel->flags & WHERE_ROWID_EQ ){ |
|
2408 /* Case 1: We can directly reference a single row using an |
|
2409 ** equality comparison against the ROWID field. Or |
|
2410 ** we reference multiple rows using a "rowid IN (...)" |
|
2411 ** construct. |
|
2412 */ |
|
2413 int r1; |
|
2414 pTerm = findTerm(&wc, iCur, -1, notReady, WO_EQ|WO_IN, 0); |
|
2415 assert( pTerm!=0 ); |
|
2416 assert( pTerm->pExpr!=0 ); |
|
2417 assert( pTerm->leftCursor==iCur ); |
|
2418 assert( omitTable==0 ); |
|
2419 r1 = codeEqualityTerm(pParse, pTerm, pLevel, 0); |
|
2420 nxt = pLevel->nxt; |
|
2421 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, nxt); |
|
2422 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, nxt, r1); |
|
2423 VdbeComment((v, "pk")); |
|
2424 pLevel->op = OP_Noop; |
|
2425 }else if( pLevel->flags & WHERE_ROWID_RANGE ){ |
|
2426 /* Case 2: We have an inequality comparison against the ROWID field. |
|
2427 */ |
|
2428 int testOp = OP_Noop; |
|
2429 int start; |
|
2430 WhereTerm *pStart, *pEnd; |
|
2431 |
|
2432 assert( omitTable==0 ); |
|
2433 pStart = findTerm(&wc, iCur, -1, notReady, WO_GT|WO_GE, 0); |
|
2434 pEnd = findTerm(&wc, iCur, -1, notReady, WO_LT|WO_LE, 0); |
|
2435 if( bRev ){ |
|
2436 pTerm = pStart; |
|
2437 pStart = pEnd; |
|
2438 pEnd = pTerm; |
|
2439 } |
|
2440 if( pStart ){ |
|
2441 Expr *pX; |
|
2442 int r1, regFree1; |
|
2443 pX = pStart->pExpr; |
|
2444 assert( pX!=0 ); |
|
2445 assert( pStart->leftCursor==iCur ); |
|
2446 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, ®Free1); |
|
2447 sqlite3VdbeAddOp3(v, OP_ForceInt, r1, brk, |
|
2448 pX->op==TK_LE || pX->op==TK_GT); |
|
2449 sqlite3VdbeAddOp3(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk, r1); |
|
2450 VdbeComment((v, "pk")); |
|
2451 sqlite3ReleaseTempReg(pParse, regFree1); |
|
2452 disableTerm(pLevel, pStart); |
|
2453 }else{ |
|
2454 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, brk); |
|
2455 } |
|
2456 if( pEnd ){ |
|
2457 Expr *pX; |
|
2458 pX = pEnd->pExpr; |
|
2459 assert( pX!=0 ); |
|
2460 assert( pEnd->leftCursor==iCur ); |
|
2461 pLevel->iMem = ++pParse->nMem; |
|
2462 sqlite3ExprCode(pParse, pX->pRight, pLevel->iMem); |
|
2463 if( pX->op==TK_LT || pX->op==TK_GT ){ |
|
2464 testOp = bRev ? OP_Le : OP_Ge; |
|
2465 }else{ |
|
2466 testOp = bRev ? OP_Lt : OP_Gt; |
|
2467 } |
|
2468 disableTerm(pLevel, pEnd); |
|
2469 } |
|
2470 start = sqlite3VdbeCurrentAddr(v); |
|
2471 pLevel->op = bRev ? OP_Prev : OP_Next; |
|
2472 pLevel->p1 = iCur; |
|
2473 pLevel->p2 = start; |
|
2474 if( testOp!=OP_Noop ){ |
|
2475 int r1 = sqlite3GetTempReg(pParse); |
|
2476 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, r1); |
|
2477 /* sqlite3VdbeAddOp2(v, OP_SCopy, pLevel->iMem, 0); */ |
|
2478 sqlite3VdbeAddOp3(v, testOp, pLevel->iMem, brk, r1); |
|
2479 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); |
|
2480 sqlite3ReleaseTempReg(pParse, r1); |
|
2481 } |
|
2482 }else if( pLevel->flags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ) ){ |
|
2483 /* Case 3: A scan using an index. |
|
2484 ** |
|
2485 ** The WHERE clause may contain zero or more equality |
|
2486 ** terms ("==" or "IN" operators) that refer to the N |
|
2487 ** left-most columns of the index. It may also contain |
|
2488 ** inequality constraints (>, <, >= or <=) on the indexed |
|
2489 ** column that immediately follows the N equalities. Only |
|
2490 ** the right-most column can be an inequality - the rest must |
|
2491 ** use the "==" and "IN" operators. For example, if the |
|
2492 ** index is on (x,y,z), then the following clauses are all |
|
2493 ** optimized: |
|
2494 ** |
|
2495 ** x=5 |
|
2496 ** x=5 AND y=10 |
|
2497 ** x=5 AND y<10 |
|
2498 ** x=5 AND y>5 AND y<10 |
|
2499 ** x=5 AND y=5 AND z<=10 |
|
2500 ** |
|
2501 ** The z<10 term of the following cannot be used, only |
|
2502 ** the x=5 term: |
|
2503 ** |
|
2504 ** x=5 AND z<10 |
|
2505 ** |
|
2506 ** N may be zero if there are inequality constraints. |
|
2507 ** If there are no inequality constraints, then N is at |
|
2508 ** least one. |
|
2509 ** |
|
2510 ** This case is also used when there are no WHERE clause |
|
2511 ** constraints but an index is selected anyway, in order |
|
2512 ** to force the output order to conform to an ORDER BY. |
|
2513 */ |
|
2514 int aStartOp[] = { |
|
2515 0, |
|
2516 0, |
|
2517 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ |
|
2518 OP_Last, /* 3: (!start_constraints && startEq && bRev) */ |
|
2519 OP_MoveGt, /* 4: (start_constraints && !startEq && !bRev) */ |
|
2520 OP_MoveLt, /* 5: (start_constraints && !startEq && bRev) */ |
|
2521 OP_MoveGe, /* 6: (start_constraints && startEq && !bRev) */ |
|
2522 OP_MoveLe /* 7: (start_constraints && startEq && bRev) */ |
|
2523 }; |
|
2524 int aEndOp[] = { |
|
2525 OP_Noop, /* 0: (!end_constraints) */ |
|
2526 OP_IdxGE, /* 1: (end_constraints && !bRev) */ |
|
2527 OP_IdxLT /* 2: (end_constraints && bRev) */ |
|
2528 }; |
|
2529 int nEq = pLevel->nEq; |
|
2530 int isMinQuery = 0; /* If this is an optimized SELECT min(x).. */ |
|
2531 int regBase; /* Base register holding constraint values */ |
|
2532 int r1; /* Temp register */ |
|
2533 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ |
|
2534 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ |
|
2535 int startEq; /* True if range start uses ==, >= or <= */ |
|
2536 int endEq; /* True if range end uses ==, >= or <= */ |
|
2537 int start_constraints; /* Start of range is constrained */ |
|
2538 int k = pIdx->aiColumn[nEq]; /* Column for inequality constraints */ |
|
2539 int nConstraint; /* Number of constraint terms */ |
|
2540 int op; |
|
2541 |
|
2542 /* Generate code to evaluate all constraint terms using == or IN |
|
2543 ** and store the values of those terms in an array of registers |
|
2544 ** starting at regBase. |
|
2545 */ |
|
2546 regBase = codeAllEqualityTerms(pParse, pLevel, &wc, notReady, 2); |
|
2547 nxt = pLevel->nxt; |
|
2548 |
|
2549 /* If this loop satisfies a sort order (pOrderBy) request that |
|
2550 ** was passed to this function to implement a "SELECT min(x) ..." |
|
2551 ** query, then the caller will only allow the loop to run for |
|
2552 ** a single iteration. This means that the first row returned |
|
2553 ** should not have a NULL value stored in 'x'. If column 'x' is |
|
2554 ** the first one after the nEq equality constraints in the index, |
|
2555 ** this requires some special handling. |
|
2556 */ |
|
2557 if( (wflags&WHERE_ORDERBY_MIN)!=0 |
|
2558 && (pLevel->flags&WHERE_ORDERBY) |
|
2559 && (pIdx->nColumn>nEq) |
|
2560 ){ |
|
2561 assert( pOrderBy->nExpr==1 ); |
|
2562 assert( pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq] ); |
|
2563 isMinQuery = 1; |
|
2564 } |
|
2565 |
|
2566 /* Find any inequality constraint terms for the start and end |
|
2567 ** of the range. |
|
2568 */ |
|
2569 if( pLevel->flags & WHERE_TOP_LIMIT ){ |
|
2570 pRangeEnd = findTerm(&wc, iCur, k, notReady, (WO_LT|WO_LE), pIdx); |
|
2571 } |
|
2572 if( pLevel->flags & WHERE_BTM_LIMIT ){ |
|
2573 pRangeStart = findTerm(&wc, iCur, k, notReady, (WO_GT|WO_GE), pIdx); |
|
2574 } |
|
2575 |
|
2576 /* If we are doing a reverse order scan on an ascending index, or |
|
2577 ** a forward order scan on a descending index, interchange the |
|
2578 ** start and end terms (pRangeStart and pRangeEnd). |
|
2579 */ |
|
2580 if( bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC) ){ |
|
2581 SWAP(WhereTerm *, pRangeEnd, pRangeStart); |
|
2582 } |
|
2583 |
|
2584 testcase( pRangeStart && pRangeStart->eOperator & WO_LE ); |
|
2585 testcase( pRangeStart && pRangeStart->eOperator & WO_GE ); |
|
2586 testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE ); |
|
2587 testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE ); |
|
2588 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); |
|
2589 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); |
|
2590 start_constraints = pRangeStart || nEq>0; |
|
2591 |
|
2592 /* Seek the index cursor to the start of the range. */ |
|
2593 nConstraint = nEq; |
|
2594 if( pRangeStart ){ |
|
2595 int dcc = pParse->disableColCache; |
|
2596 if( pRangeEnd ){ |
|
2597 pParse->disableColCache++; |
|
2598 } |
|
2599 sqlite3ExprCode(pParse, pRangeStart->pExpr->pRight, regBase+nEq); |
|
2600 pParse->disableColCache = dcc; |
|
2601 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, nxt); |
|
2602 nConstraint++; |
|
2603 }else if( isMinQuery ){ |
|
2604 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); |
|
2605 nConstraint++; |
|
2606 startEq = 0; |
|
2607 start_constraints = 1; |
|
2608 } |
|
2609 codeApplyAffinity(pParse, regBase, nConstraint, pIdx); |
|
2610 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; |
|
2611 assert( op!=0 ); |
|
2612 testcase( op==OP_Rewind ); |
|
2613 testcase( op==OP_Last ); |
|
2614 testcase( op==OP_MoveGt ); |
|
2615 testcase( op==OP_MoveGe ); |
|
2616 testcase( op==OP_MoveLe ); |
|
2617 testcase( op==OP_MoveLt ); |
|
2618 sqlite3VdbeAddOp4(v, op, iIdxCur, nxt, regBase, |
|
2619 SQLITE_INT_TO_PTR(nConstraint), P4_INT32); |
|
2620 |
|
2621 /* Load the value for the inequality constraint at the end of the |
|
2622 ** range (if any). |
|
2623 */ |
|
2624 nConstraint = nEq; |
|
2625 if( pRangeEnd ){ |
|
2626 sqlite3ExprCode(pParse, pRangeEnd->pExpr->pRight, regBase+nEq); |
|
2627 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, nxt); |
|
2628 codeApplyAffinity(pParse, regBase, nEq+1, pIdx); |
|
2629 nConstraint++; |
|
2630 } |
|
2631 |
|
2632 /* Top of the loop body */ |
|
2633 pLevel->p2 = sqlite3VdbeCurrentAddr(v); |
|
2634 |
|
2635 /* Check if the index cursor is past the end of the range. */ |
|
2636 op = aEndOp[(pRangeEnd || nEq) * (1 + bRev)]; |
|
2637 testcase( op==OP_Noop ); |
|
2638 testcase( op==OP_IdxGE ); |
|
2639 testcase( op==OP_IdxLT ); |
|
2640 sqlite3VdbeAddOp4(v, op, iIdxCur, nxt, regBase, |
|
2641 SQLITE_INT_TO_PTR(nConstraint), P4_INT32); |
|
2642 sqlite3VdbeChangeP5(v, endEq!=bRev); |
|
2643 |
|
2644 /* If there are inequality constraints, check that the value |
|
2645 ** of the table column that the inequality contrains is not NULL. |
|
2646 ** If it is, jump to the next iteration of the loop. |
|
2647 */ |
|
2648 r1 = sqlite3GetTempReg(pParse); |
|
2649 testcase( pLevel->flags & WHERE_BTM_LIMIT ); |
|
2650 testcase( pLevel->flags & WHERE_TOP_LIMIT ); |
|
2651 if( pLevel->flags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT) ){ |
|
2652 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1); |
|
2653 sqlite3VdbeAddOp2(v, OP_IsNull, r1, cont); |
|
2654 } |
|
2655 |
|
2656 /* Seek the table cursor, if required */ |
|
2657 if( !omitTable ){ |
|
2658 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, r1); |
|
2659 sqlite3VdbeAddOp3(v, OP_MoveGe, iCur, 0, r1); /* Deferred seek */ |
|
2660 } |
|
2661 sqlite3ReleaseTempReg(pParse, r1); |
|
2662 |
|
2663 /* Record the instruction used to terminate the loop. Disable |
|
2664 ** WHERE clause terms made redundant by the index range scan. |
|
2665 */ |
|
2666 pLevel->op = bRev ? OP_Prev : OP_Next; |
|
2667 pLevel->p1 = iIdxCur; |
|
2668 disableTerm(pLevel, pRangeStart); |
|
2669 disableTerm(pLevel, pRangeEnd); |
|
2670 }else{ |
|
2671 /* Case 4: There is no usable index. We must do a complete |
|
2672 ** scan of the entire table. |
|
2673 */ |
|
2674 assert( omitTable==0 ); |
|
2675 assert( bRev==0 ); |
|
2676 pLevel->op = OP_Next; |
|
2677 pLevel->p1 = iCur; |
|
2678 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, OP_Rewind, iCur, brk); |
|
2679 } |
|
2680 notReady &= ~getMask(&maskSet, iCur); |
|
2681 |
|
2682 /* Insert code to test every subexpression that can be completely |
|
2683 ** computed using the current set of tables. |
|
2684 */ |
|
2685 for(pTerm=wc.a, j=wc.nTerm; j>0; j--, pTerm++){ |
|
2686 Expr *pE; |
|
2687 testcase( pTerm->flags & TERM_VIRTUAL ); |
|
2688 testcase( pTerm->flags & TERM_CODED ); |
|
2689 if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue; |
|
2690 if( (pTerm->prereqAll & notReady)!=0 ) continue; |
|
2691 pE = pTerm->pExpr; |
|
2692 assert( pE!=0 ); |
|
2693 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ |
|
2694 continue; |
|
2695 } |
|
2696 sqlite3ExprIfFalse(pParse, pE, cont, SQLITE_JUMPIFNULL); |
|
2697 pTerm->flags |= TERM_CODED; |
|
2698 } |
|
2699 |
|
2700 /* For a LEFT OUTER JOIN, generate code that will record the fact that |
|
2701 ** at least one row of the right table has matched the left table. |
|
2702 */ |
|
2703 if( pLevel->iLeftJoin ){ |
|
2704 pLevel->top = sqlite3VdbeCurrentAddr(v); |
|
2705 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); |
|
2706 VdbeComment((v, "record LEFT JOIN hit")); |
|
2707 sqlite3ExprClearColumnCache(pParse, pLevel->iTabCur); |
|
2708 sqlite3ExprClearColumnCache(pParse, pLevel->iIdxCur); |
|
2709 for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){ |
|
2710 testcase( pTerm->flags & TERM_VIRTUAL ); |
|
2711 testcase( pTerm->flags & TERM_CODED ); |
|
2712 if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue; |
|
2713 if( (pTerm->prereqAll & notReady)!=0 ) continue; |
|
2714 assert( pTerm->pExpr ); |
|
2715 sqlite3ExprIfFalse(pParse, pTerm->pExpr, cont, SQLITE_JUMPIFNULL); |
|
2716 pTerm->flags |= TERM_CODED; |
|
2717 } |
|
2718 } |
|
2719 } |
|
2720 |
|
2721 #ifdef SQLITE_TEST /* For testing and debugging use only */ |
|
2722 /* Record in the query plan information about the current table |
|
2723 ** and the index used to access it (if any). If the table itself |
|
2724 ** is not used, its name is just '{}'. If no index is used |
|
2725 ** the index is listed as "{}". If the primary key is used the |
|
2726 ** index name is '*'. |
|
2727 */ |
|
2728 for(i=0; i<pTabList->nSrc; i++){ |
|
2729 char *z; |
|
2730 int n; |
|
2731 pLevel = &pWInfo->a[i]; |
|
2732 pTabItem = &pTabList->a[pLevel->iFrom]; |
|
2733 z = pTabItem->zAlias; |
|
2734 if( z==0 ) z = pTabItem->pTab->zName; |
|
2735 n = strlen(z); |
|
2736 if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){ |
|
2737 if( pLevel->flags & WHERE_IDX_ONLY ){ |
|
2738 memcpy(&sqlite3_query_plan[nQPlan], "{}", 2); |
|
2739 nQPlan += 2; |
|
2740 }else{ |
|
2741 memcpy(&sqlite3_query_plan[nQPlan], z, n); |
|
2742 nQPlan += n; |
|
2743 } |
|
2744 sqlite3_query_plan[nQPlan++] = ' '; |
|
2745 } |
|
2746 testcase( pLevel->flags & WHERE_ROWID_EQ ); |
|
2747 testcase( pLevel->flags & WHERE_ROWID_RANGE ); |
|
2748 if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ |
|
2749 memcpy(&sqlite3_query_plan[nQPlan], "* ", 2); |
|
2750 nQPlan += 2; |
|
2751 }else if( pLevel->pIdx==0 ){ |
|
2752 memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3); |
|
2753 nQPlan += 3; |
|
2754 }else{ |
|
2755 n = strlen(pLevel->pIdx->zName); |
|
2756 if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){ |
|
2757 memcpy(&sqlite3_query_plan[nQPlan], pLevel->pIdx->zName, n); |
|
2758 nQPlan += n; |
|
2759 sqlite3_query_plan[nQPlan++] = ' '; |
|
2760 } |
|
2761 } |
|
2762 } |
|
2763 while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){ |
|
2764 sqlite3_query_plan[--nQPlan] = 0; |
|
2765 } |
|
2766 sqlite3_query_plan[nQPlan] = 0; |
|
2767 nQPlan = 0; |
|
2768 #endif /* SQLITE_TEST // Testing and debugging use only */ |
|
2769 |
|
2770 /* Record the continuation address in the WhereInfo structure. Then |
|
2771 ** clean up and return. |
|
2772 */ |
|
2773 pWInfo->iContinue = cont; |
|
2774 whereClauseClear(&wc); |
|
2775 return pWInfo; |
|
2776 |
|
2777 /* Jump here if malloc fails */ |
|
2778 whereBeginNoMem: |
|
2779 whereClauseClear(&wc); |
|
2780 whereInfoFree(pWInfo); |
|
2781 return 0; |
|
2782 } |
|
2783 |
|
2784 /* |
|
2785 ** Generate the end of the WHERE loop. See comments on |
|
2786 ** sqlite3WhereBegin() for additional information. |
|
2787 */ |
|
2788 void sqlite3WhereEnd(WhereInfo *pWInfo){ |
|
2789 Parse *pParse = pWInfo->pParse; |
|
2790 Vdbe *v = pParse->pVdbe; |
|
2791 int i; |
|
2792 WhereLevel *pLevel; |
|
2793 SrcList *pTabList = pWInfo->pTabList; |
|
2794 sqlite3 *db = pParse->db; |
|
2795 |
|
2796 /* Generate loop termination code. |
|
2797 */ |
|
2798 sqlite3ExprClearColumnCache(pParse, -1); |
|
2799 for(i=pTabList->nSrc-1; i>=0; i--){ |
|
2800 pLevel = &pWInfo->a[i]; |
|
2801 sqlite3VdbeResolveLabel(v, pLevel->cont); |
|
2802 if( pLevel->op!=OP_Noop ){ |
|
2803 sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2); |
|
2804 } |
|
2805 if( pLevel->nIn ){ |
|
2806 struct InLoop *pIn; |
|
2807 int j; |
|
2808 sqlite3VdbeResolveLabel(v, pLevel->nxt); |
|
2809 for(j=pLevel->nIn, pIn=&pLevel->aInLoop[j-1]; j>0; j--, pIn--){ |
|
2810 sqlite3VdbeJumpHere(v, pIn->topAddr+1); |
|
2811 sqlite3VdbeAddOp2(v, OP_Next, pIn->iCur, pIn->topAddr); |
|
2812 sqlite3VdbeJumpHere(v, pIn->topAddr-1); |
|
2813 } |
|
2814 sqlite3DbFree(db, pLevel->aInLoop); |
|
2815 } |
|
2816 sqlite3VdbeResolveLabel(v, pLevel->brk); |
|
2817 if( pLevel->iLeftJoin ){ |
|
2818 int addr; |
|
2819 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); |
|
2820 sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor); |
|
2821 if( pLevel->iIdxCur>=0 ){ |
|
2822 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); |
|
2823 } |
|
2824 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->top); |
|
2825 sqlite3VdbeJumpHere(v, addr); |
|
2826 } |
|
2827 } |
|
2828 |
|
2829 /* The "break" point is here, just past the end of the outer loop. |
|
2830 ** Set it. |
|
2831 */ |
|
2832 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); |
|
2833 |
|
2834 /* Close all of the cursors that were opened by sqlite3WhereBegin. |
|
2835 */ |
|
2836 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ |
|
2837 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; |
|
2838 Table *pTab = pTabItem->pTab; |
|
2839 assert( pTab!=0 ); |
|
2840 if( pTab->isEphem || pTab->pSelect ) continue; |
|
2841 if( !pWInfo->okOnePass && (pLevel->flags & WHERE_IDX_ONLY)==0 ){ |
|
2842 sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor); |
|
2843 } |
|
2844 if( pLevel->pIdx!=0 ){ |
|
2845 sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur); |
|
2846 } |
|
2847 |
|
2848 /* If this scan uses an index, make code substitutions to read data |
|
2849 ** from the index in preference to the table. Sometimes, this means |
|
2850 ** the table need never be read from. This is a performance boost, |
|
2851 ** as the vdbe level waits until the table is read before actually |
|
2852 ** seeking the table cursor to the record corresponding to the current |
|
2853 ** position in the index. |
|
2854 ** |
|
2855 ** Calls to the code generator in between sqlite3WhereBegin and |
|
2856 ** sqlite3WhereEnd will have created code that references the table |
|
2857 ** directly. This loop scans all that code looking for opcodes |
|
2858 ** that reference the table and converts them into opcodes that |
|
2859 ** reference the index. |
|
2860 */ |
|
2861 if( pLevel->pIdx ){ |
|
2862 int k, j, last; |
|
2863 VdbeOp *pOp; |
|
2864 Index *pIdx = pLevel->pIdx; |
|
2865 int useIndexOnly = pLevel->flags & WHERE_IDX_ONLY; |
|
2866 |
|
2867 assert( pIdx!=0 ); |
|
2868 pOp = sqlite3VdbeGetOp(v, pWInfo->iTop); |
|
2869 last = sqlite3VdbeCurrentAddr(v); |
|
2870 for(k=pWInfo->iTop; k<last; k++, pOp++){ |
|
2871 if( pOp->p1!=pLevel->iTabCur ) continue; |
|
2872 if( pOp->opcode==OP_Column ){ |
|
2873 for(j=0; j<pIdx->nColumn; j++){ |
|
2874 if( pOp->p2==pIdx->aiColumn[j] ){ |
|
2875 pOp->p2 = j; |
|
2876 pOp->p1 = pLevel->iIdxCur; |
|
2877 break; |
|
2878 } |
|
2879 } |
|
2880 assert(!useIndexOnly || j<pIdx->nColumn); |
|
2881 }else if( pOp->opcode==OP_Rowid ){ |
|
2882 pOp->p1 = pLevel->iIdxCur; |
|
2883 pOp->opcode = OP_IdxRowid; |
|
2884 }else if( pOp->opcode==OP_NullRow && useIndexOnly ){ |
|
2885 pOp->opcode = OP_Noop; |
|
2886 } |
|
2887 } |
|
2888 } |
|
2889 } |
|
2890 |
|
2891 /* Final cleanup |
|
2892 */ |
|
2893 whereInfoFree(pWInfo); |
|
2894 return; |
|
2895 } |