|
1 /* |
|
2 ** 2005 July 8 |
|
3 ** |
|
4 ** The author disclaims copyright to this source code. In place of |
|
5 ** a legal notice, here is a blessing: |
|
6 ** |
|
7 ** May you do good and not evil. |
|
8 ** May you find forgiveness for yourself and forgive others. |
|
9 ** May you share freely, never taking more than you give. |
|
10 ** |
|
11 ************************************************************************* |
|
12 ** This file contains code associated with the ANALYZE command. |
|
13 ** |
|
14 ** @(#) $Id: analyze.c,v 1.43 2008/07/28 19:34:53 drh Exp $ |
|
15 */ |
|
16 #ifndef SQLITE_OMIT_ANALYZE |
|
17 #include "sqliteInt.h" |
|
18 |
|
19 /* |
|
20 ** This routine generates code that opens the sqlite_stat1 table on cursor |
|
21 ** iStatCur. |
|
22 ** |
|
23 ** If the sqlite_stat1 tables does not previously exist, it is created. |
|
24 ** If it does previously exist, all entires associated with table zWhere |
|
25 ** are removed. If zWhere==0 then all entries are removed. |
|
26 */ |
|
27 static void openStatTable( |
|
28 Parse *pParse, /* Parsing context */ |
|
29 int iDb, /* The database we are looking in */ |
|
30 int iStatCur, /* Open the sqlite_stat1 table on this cursor */ |
|
31 const char *zWhere /* Delete entries associated with this table */ |
|
32 ){ |
|
33 sqlite3 *db = pParse->db; |
|
34 Db *pDb; |
|
35 int iRootPage; |
|
36 int createStat1 = 0; |
|
37 Table *pStat; |
|
38 Vdbe *v = sqlite3GetVdbe(pParse); |
|
39 |
|
40 if( v==0 ) return; |
|
41 assert( sqlite3BtreeHoldsAllMutexes(db) ); |
|
42 assert( sqlite3VdbeDb(v)==db ); |
|
43 pDb = &db->aDb[iDb]; |
|
44 if( (pStat = sqlite3FindTable(db, "sqlite_stat1", pDb->zName))==0 ){ |
|
45 /* The sqlite_stat1 tables does not exist. Create it. |
|
46 ** Note that a side-effect of the CREATE TABLE statement is to leave |
|
47 ** the rootpage of the new table in register pParse->regRoot. This is |
|
48 ** important because the OpenWrite opcode below will be needing it. */ |
|
49 sqlite3NestedParse(pParse, |
|
50 "CREATE TABLE %Q.sqlite_stat1(tbl,idx,stat)", |
|
51 pDb->zName |
|
52 ); |
|
53 iRootPage = pParse->regRoot; |
|
54 createStat1 = 1; /* Cause rootpage to be taken from top of stack */ |
|
55 }else if( zWhere ){ |
|
56 /* The sqlite_stat1 table exists. Delete all entries associated with |
|
57 ** the table zWhere. */ |
|
58 sqlite3NestedParse(pParse, |
|
59 "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q", |
|
60 pDb->zName, zWhere |
|
61 ); |
|
62 iRootPage = pStat->tnum; |
|
63 }else{ |
|
64 /* The sqlite_stat1 table already exists. Delete all rows. */ |
|
65 iRootPage = pStat->tnum; |
|
66 sqlite3VdbeAddOp2(v, OP_Clear, pStat->tnum, iDb); |
|
67 } |
|
68 |
|
69 /* Open the sqlite_stat1 table for writing. Unless it was created |
|
70 ** by this vdbe program, lock it for writing at the shared-cache level. |
|
71 ** If this vdbe did create the sqlite_stat1 table, then it must have |
|
72 ** already obtained a schema-lock, making the write-lock redundant. |
|
73 */ |
|
74 if( !createStat1 ){ |
|
75 sqlite3TableLock(pParse, iDb, iRootPage, 1, "sqlite_stat1"); |
|
76 } |
|
77 sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, 3); |
|
78 sqlite3VdbeAddOp3(v, OP_OpenWrite, iStatCur, iRootPage, iDb); |
|
79 sqlite3VdbeChangeP5(v, createStat1); |
|
80 } |
|
81 |
|
82 /* |
|
83 ** Generate code to do an analysis of all indices associated with |
|
84 ** a single table. |
|
85 */ |
|
86 static void analyzeOneTable( |
|
87 Parse *pParse, /* Parser context */ |
|
88 Table *pTab, /* Table whose indices are to be analyzed */ |
|
89 int iStatCur, /* Cursor that writes to the sqlite_stat1 table */ |
|
90 int iMem /* Available memory locations begin here */ |
|
91 ){ |
|
92 Index *pIdx; /* An index to being analyzed */ |
|
93 int iIdxCur; /* Cursor number for index being analyzed */ |
|
94 int nCol; /* Number of columns in the index */ |
|
95 Vdbe *v; /* The virtual machine being built up */ |
|
96 int i; /* Loop counter */ |
|
97 int topOfLoop; /* The top of the loop */ |
|
98 int endOfLoop; /* The end of the loop */ |
|
99 int addr; /* The address of an instruction */ |
|
100 int iDb; /* Index of database containing pTab */ |
|
101 |
|
102 v = sqlite3GetVdbe(pParse); |
|
103 if( v==0 || pTab==0 || pTab->pIndex==0 ){ |
|
104 /* Do no analysis for tables that have no indices */ |
|
105 return; |
|
106 } |
|
107 assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); |
|
108 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); |
|
109 assert( iDb>=0 ); |
|
110 #ifndef SQLITE_OMIT_AUTHORIZATION |
|
111 if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0, |
|
112 pParse->db->aDb[iDb].zName ) ){ |
|
113 return; |
|
114 } |
|
115 #endif |
|
116 |
|
117 /* Establish a read-lock on the table at the shared-cache level. */ |
|
118 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); |
|
119 |
|
120 iIdxCur = pParse->nTab; |
|
121 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
|
122 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); |
|
123 int regFields; /* Register block for building records */ |
|
124 int regRec; /* Register holding completed record */ |
|
125 int regTemp; /* Temporary use register */ |
|
126 int regCol; /* Content of a column from the table being analyzed */ |
|
127 int regRowid; /* Rowid for the inserted record */ |
|
128 int regF2; |
|
129 |
|
130 /* Open a cursor to the index to be analyzed |
|
131 */ |
|
132 assert( iDb==sqlite3SchemaToIndex(pParse->db, pIdx->pSchema) ); |
|
133 nCol = pIdx->nColumn; |
|
134 sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, nCol+1); |
|
135 sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb, |
|
136 (char *)pKey, P4_KEYINFO_HANDOFF); |
|
137 VdbeComment((v, "%s", pIdx->zName)); |
|
138 regFields = iMem+nCol*2; |
|
139 regTemp = regRowid = regCol = regFields+3; |
|
140 regRec = regCol+1; |
|
141 if( regRec>pParse->nMem ){ |
|
142 pParse->nMem = regRec; |
|
143 } |
|
144 |
|
145 /* Memory cells are used as follows: |
|
146 ** |
|
147 ** mem[iMem]: The total number of rows in the table. |
|
148 ** mem[iMem+1]: Number of distinct values in column 1 |
|
149 ** ... |
|
150 ** mem[iMem+nCol]: Number of distinct values in column N |
|
151 ** mem[iMem+nCol+1] Last observed value of column 1 |
|
152 ** ... |
|
153 ** mem[iMem+nCol+nCol]: Last observed value of column N |
|
154 ** |
|
155 ** Cells iMem through iMem+nCol are initialized to 0. The others |
|
156 ** are initialized to NULL. |
|
157 */ |
|
158 for(i=0; i<=nCol; i++){ |
|
159 sqlite3VdbeAddOp2(v, OP_Integer, 0, iMem+i); |
|
160 } |
|
161 for(i=0; i<nCol; i++){ |
|
162 sqlite3VdbeAddOp2(v, OP_Null, 0, iMem+nCol+i+1); |
|
163 } |
|
164 |
|
165 /* Do the analysis. |
|
166 */ |
|
167 endOfLoop = sqlite3VdbeMakeLabel(v); |
|
168 sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur, endOfLoop); |
|
169 topOfLoop = sqlite3VdbeCurrentAddr(v); |
|
170 sqlite3VdbeAddOp2(v, OP_AddImm, iMem, 1); |
|
171 for(i=0; i<nCol; i++){ |
|
172 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regCol); |
|
173 sqlite3VdbeAddOp3(v, OP_Ne, regCol, 0, iMem+nCol+i+1); |
|
174 /**** TODO: add collating sequence *****/ |
|
175 sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); |
|
176 } |
|
177 sqlite3VdbeAddOp2(v, OP_Goto, 0, endOfLoop); |
|
178 for(i=0; i<nCol; i++){ |
|
179 sqlite3VdbeJumpHere(v, topOfLoop + 2*(i + 1)); |
|
180 sqlite3VdbeAddOp2(v, OP_AddImm, iMem+i+1, 1); |
|
181 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, iMem+nCol+i+1); |
|
182 } |
|
183 sqlite3VdbeResolveLabel(v, endOfLoop); |
|
184 sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, topOfLoop); |
|
185 sqlite3VdbeAddOp1(v, OP_Close, iIdxCur); |
|
186 |
|
187 /* Store the results. |
|
188 ** |
|
189 ** The result is a single row of the sqlite_stat1 table. The first |
|
190 ** two columns are the names of the table and index. The third column |
|
191 ** is a string composed of a list of integer statistics about the |
|
192 ** index. The first integer in the list is the total number of entires |
|
193 ** in the index. There is one additional integer in the list for each |
|
194 ** column of the table. This additional integer is a guess of how many |
|
195 ** rows of the table the index will select. If D is the count of distinct |
|
196 ** values and K is the total number of rows, then the integer is computed |
|
197 ** as: |
|
198 ** |
|
199 ** I = (K+D-1)/D |
|
200 ** |
|
201 ** If K==0 then no entry is made into the sqlite_stat1 table. |
|
202 ** If K>0 then it is always the case the D>0 so division by zero |
|
203 ** is never possible. |
|
204 */ |
|
205 addr = sqlite3VdbeAddOp1(v, OP_IfNot, iMem); |
|
206 sqlite3VdbeAddOp4(v, OP_String8, 0, regFields, 0, pTab->zName, 0); |
|
207 sqlite3VdbeAddOp4(v, OP_String8, 0, regFields+1, 0, pIdx->zName, 0); |
|
208 regF2 = regFields+2; |
|
209 sqlite3VdbeAddOp2(v, OP_SCopy, iMem, regF2); |
|
210 for(i=0; i<nCol; i++){ |
|
211 sqlite3VdbeAddOp4(v, OP_String8, 0, regTemp, 0, " ", 0); |
|
212 sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regF2, regF2); |
|
213 sqlite3VdbeAddOp3(v, OP_Add, iMem, iMem+i+1, regTemp); |
|
214 sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1); |
|
215 sqlite3VdbeAddOp3(v, OP_Divide, iMem+i+1, regTemp, regTemp); |
|
216 sqlite3VdbeAddOp1(v, OP_ToInt, regTemp); |
|
217 sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regF2, regF2); |
|
218 } |
|
219 sqlite3VdbeAddOp4(v, OP_MakeRecord, regFields, 3, regRec, "aaa", 0); |
|
220 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regRowid); |
|
221 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regRowid); |
|
222 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); |
|
223 sqlite3VdbeJumpHere(v, addr); |
|
224 } |
|
225 } |
|
226 |
|
227 /* |
|
228 ** Generate code that will cause the most recent index analysis to |
|
229 ** be laoded into internal hash tables where is can be used. |
|
230 */ |
|
231 static void loadAnalysis(Parse *pParse, int iDb){ |
|
232 Vdbe *v = sqlite3GetVdbe(pParse); |
|
233 if( v ){ |
|
234 sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb); |
|
235 } |
|
236 } |
|
237 |
|
238 /* |
|
239 ** Generate code that will do an analysis of an entire database |
|
240 */ |
|
241 static void analyzeDatabase(Parse *pParse, int iDb){ |
|
242 sqlite3 *db = pParse->db; |
|
243 Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */ |
|
244 HashElem *k; |
|
245 int iStatCur; |
|
246 int iMem; |
|
247 |
|
248 sqlite3BeginWriteOperation(pParse, 0, iDb); |
|
249 iStatCur = pParse->nTab++; |
|
250 openStatTable(pParse, iDb, iStatCur, 0); |
|
251 iMem = pParse->nMem+1; |
|
252 for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){ |
|
253 Table *pTab = (Table*)sqliteHashData(k); |
|
254 analyzeOneTable(pParse, pTab, iStatCur, iMem); |
|
255 } |
|
256 loadAnalysis(pParse, iDb); |
|
257 } |
|
258 |
|
259 /* |
|
260 ** Generate code that will do an analysis of a single table in |
|
261 ** a database. |
|
262 */ |
|
263 static void analyzeTable(Parse *pParse, Table *pTab){ |
|
264 int iDb; |
|
265 int iStatCur; |
|
266 |
|
267 assert( pTab!=0 ); |
|
268 assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); |
|
269 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); |
|
270 sqlite3BeginWriteOperation(pParse, 0, iDb); |
|
271 iStatCur = pParse->nTab++; |
|
272 openStatTable(pParse, iDb, iStatCur, pTab->zName); |
|
273 analyzeOneTable(pParse, pTab, iStatCur, pParse->nMem+1); |
|
274 loadAnalysis(pParse, iDb); |
|
275 } |
|
276 |
|
277 /* |
|
278 ** Generate code for the ANALYZE command. The parser calls this routine |
|
279 ** when it recognizes an ANALYZE command. |
|
280 ** |
|
281 ** ANALYZE -- 1 |
|
282 ** ANALYZE <database> -- 2 |
|
283 ** ANALYZE ?<database>.?<tablename> -- 3 |
|
284 ** |
|
285 ** Form 1 causes all indices in all attached databases to be analyzed. |
|
286 ** Form 2 analyzes all indices the single database named. |
|
287 ** Form 3 analyzes all indices associated with the named table. |
|
288 */ |
|
289 void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){ |
|
290 sqlite3 *db = pParse->db; |
|
291 int iDb; |
|
292 int i; |
|
293 char *z, *zDb; |
|
294 Table *pTab; |
|
295 Token *pTableName; |
|
296 |
|
297 /* Read the database schema. If an error occurs, leave an error message |
|
298 ** and code in pParse and return NULL. */ |
|
299 assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); |
|
300 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ |
|
301 return; |
|
302 } |
|
303 |
|
304 if( pName1==0 ){ |
|
305 /* Form 1: Analyze everything */ |
|
306 for(i=0; i<db->nDb; i++){ |
|
307 if( i==1 ) continue; /* Do not analyze the TEMP database */ |
|
308 analyzeDatabase(pParse, i); |
|
309 } |
|
310 }else if( pName2==0 || pName2->n==0 ){ |
|
311 /* Form 2: Analyze the database or table named */ |
|
312 iDb = sqlite3FindDb(db, pName1); |
|
313 if( iDb>=0 ){ |
|
314 analyzeDatabase(pParse, iDb); |
|
315 }else{ |
|
316 z = sqlite3NameFromToken(db, pName1); |
|
317 if( z ){ |
|
318 pTab = sqlite3LocateTable(pParse, 0, z, 0); |
|
319 sqlite3DbFree(db, z); |
|
320 if( pTab ){ |
|
321 analyzeTable(pParse, pTab); |
|
322 } |
|
323 } |
|
324 } |
|
325 }else{ |
|
326 /* Form 3: Analyze the fully qualified table name */ |
|
327 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName); |
|
328 if( iDb>=0 ){ |
|
329 zDb = db->aDb[iDb].zName; |
|
330 z = sqlite3NameFromToken(db, pTableName); |
|
331 if( z ){ |
|
332 pTab = sqlite3LocateTable(pParse, 0, z, zDb); |
|
333 sqlite3DbFree(db, z); |
|
334 if( pTab ){ |
|
335 analyzeTable(pParse, pTab); |
|
336 } |
|
337 } |
|
338 } |
|
339 } |
|
340 } |
|
341 |
|
342 /* |
|
343 ** Used to pass information from the analyzer reader through to the |
|
344 ** callback routine. |
|
345 */ |
|
346 typedef struct analysisInfo analysisInfo; |
|
347 struct analysisInfo { |
|
348 sqlite3 *db; |
|
349 const char *zDatabase; |
|
350 }; |
|
351 |
|
352 /* |
|
353 ** This callback is invoked once for each index when reading the |
|
354 ** sqlite_stat1 table. |
|
355 ** |
|
356 ** argv[0] = name of the index |
|
357 ** argv[1] = results of analysis - on integer for each column |
|
358 */ |
|
359 static int analysisLoader(void *pData, int argc, char **argv, char **azNotUsed){ |
|
360 analysisInfo *pInfo = (analysisInfo*)pData; |
|
361 Index *pIndex; |
|
362 int i, c; |
|
363 unsigned int v; |
|
364 const char *z; |
|
365 |
|
366 assert( argc==2 ); |
|
367 if( argv==0 || argv[0]==0 || argv[1]==0 ){ |
|
368 return 0; |
|
369 } |
|
370 pIndex = sqlite3FindIndex(pInfo->db, argv[0], pInfo->zDatabase); |
|
371 if( pIndex==0 ){ |
|
372 return 0; |
|
373 } |
|
374 z = argv[1]; |
|
375 for(i=0; *z && i<=pIndex->nColumn; i++){ |
|
376 v = 0; |
|
377 while( (c=z[0])>='0' && c<='9' ){ |
|
378 v = v*10 + c - '0'; |
|
379 z++; |
|
380 } |
|
381 pIndex->aiRowEst[i] = v; |
|
382 if( *z==' ' ) z++; |
|
383 } |
|
384 return 0; |
|
385 } |
|
386 |
|
387 /* |
|
388 ** Load the content of the sqlite_stat1 table into the index hash tables. |
|
389 */ |
|
390 int sqlite3AnalysisLoad(sqlite3 *db, int iDb){ |
|
391 analysisInfo sInfo; |
|
392 HashElem *i; |
|
393 char *zSql; |
|
394 int rc; |
|
395 |
|
396 assert( iDb>=0 && iDb<db->nDb ); |
|
397 assert( db->aDb[iDb].pBt!=0 ); |
|
398 assert( sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); |
|
399 |
|
400 /* Clear any prior statistics */ |
|
401 for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){ |
|
402 Index *pIdx = sqliteHashData(i); |
|
403 sqlite3DefaultRowEst(pIdx); |
|
404 } |
|
405 |
|
406 /* Check to make sure the sqlite_stat1 table existss */ |
|
407 sInfo.db = db; |
|
408 sInfo.zDatabase = db->aDb[iDb].zName; |
|
409 if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){ |
|
410 return SQLITE_ERROR; |
|
411 } |
|
412 |
|
413 |
|
414 /* Load new statistics out of the sqlite_stat1 table */ |
|
415 zSql = sqlite3MPrintf(db, "SELECT idx, stat FROM %Q.sqlite_stat1", |
|
416 sInfo.zDatabase); |
|
417 (void)sqlite3SafetyOff(db); |
|
418 rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0); |
|
419 (void)sqlite3SafetyOn(db); |
|
420 sqlite3DbFree(db, zSql); |
|
421 return rc; |
|
422 } |
|
423 |
|
424 |
|
425 #endif /* SQLITE_OMIT_ANALYZE */ |