persistentstorage/sql/SQLite364/expr.c
changeset 0 08ec8eefde2f
equal deleted inserted replaced
-1:000000000000 0:08ec8eefde2f
       
     1 /*
       
     2 ** 2001 September 15
       
     3 **
       
     4 ** The author disclaims copyright to this source code.  In place of
       
     5 ** a legal notice, here is a blessing:
       
     6 **
       
     7 **    May you do good and not evil.
       
     8 **    May you find forgiveness for yourself and forgive others.
       
     9 **    May you share freely, never taking more than you give.
       
    10 **
       
    11 *************************************************************************
       
    12 ** This file contains routines used for analyzing expressions and
       
    13 ** for generating VDBE code that evaluates expressions in SQLite.
       
    14 **
       
    15 ** $Id: expr.c,v 1.399 2008/10/11 16:47:36 drh Exp $
       
    16 */
       
    17 #include "sqliteInt.h"
       
    18 #include <ctype.h>
       
    19 
       
    20 /*
       
    21 ** Return the 'affinity' of the expression pExpr if any.
       
    22 **
       
    23 ** If pExpr is a column, a reference to a column via an 'AS' alias,
       
    24 ** or a sub-select with a column as the return value, then the 
       
    25 ** affinity of that column is returned. Otherwise, 0x00 is returned,
       
    26 ** indicating no affinity for the expression.
       
    27 **
       
    28 ** i.e. the WHERE clause expresssions in the following statements all
       
    29 ** have an affinity:
       
    30 **
       
    31 ** CREATE TABLE t1(a);
       
    32 ** SELECT * FROM t1 WHERE a;
       
    33 ** SELECT a AS b FROM t1 WHERE b;
       
    34 ** SELECT * FROM t1 WHERE (select a from t1);
       
    35 */
       
    36 char sqlite3ExprAffinity(Expr *pExpr){
       
    37   int op = pExpr->op;
       
    38   if( op==TK_SELECT ){
       
    39     return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr);
       
    40   }
       
    41 #ifndef SQLITE_OMIT_CAST
       
    42   if( op==TK_CAST ){
       
    43     return sqlite3AffinityType(&pExpr->token);
       
    44   }
       
    45 #endif
       
    46   if( (op==TK_COLUMN || op==TK_REGISTER) && pExpr->pTab!=0 ){
       
    47     /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
       
    48     ** a TK_COLUMN but was previously evaluated and cached in a register */
       
    49     int j = pExpr->iColumn;
       
    50     if( j<0 ) return SQLITE_AFF_INTEGER;
       
    51     assert( pExpr->pTab && j<pExpr->pTab->nCol );
       
    52     return pExpr->pTab->aCol[j].affinity;
       
    53   }
       
    54   return pExpr->affinity;
       
    55 }
       
    56 
       
    57 /*
       
    58 ** Set the collating sequence for expression pExpr to be the collating
       
    59 ** sequence named by pToken.   Return a pointer to the revised expression.
       
    60 ** The collating sequence is marked as "explicit" using the EP_ExpCollate
       
    61 ** flag.  An explicit collating sequence will override implicit
       
    62 ** collating sequences.
       
    63 */
       
    64 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pCollName){
       
    65   char *zColl = 0;            /* Dequoted name of collation sequence */
       
    66   CollSeq *pColl;
       
    67   sqlite3 *db = pParse->db;
       
    68   zColl = sqlite3NameFromToken(db, pCollName);
       
    69   if( pExpr && zColl ){
       
    70     pColl = sqlite3LocateCollSeq(pParse, zColl, -1);
       
    71     if( pColl ){
       
    72       pExpr->pColl = pColl;
       
    73       pExpr->flags |= EP_ExpCollate;
       
    74     }
       
    75   }
       
    76   sqlite3DbFree(db, zColl);
       
    77   return pExpr;
       
    78 }
       
    79 
       
    80 /*
       
    81 ** Return the default collation sequence for the expression pExpr. If
       
    82 ** there is no default collation type, return 0.
       
    83 */
       
    84 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
       
    85   CollSeq *pColl = 0;
       
    86   Expr *p = pExpr;
       
    87   while( p ){
       
    88     int op;
       
    89     pColl = p->pColl;
       
    90     if( pColl ) break;
       
    91     op = p->op;
       
    92     if( (op==TK_COLUMN || op==TK_REGISTER) && p->pTab!=0 ){
       
    93       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
       
    94       ** a TK_COLUMN but was previously evaluated and cached in a register */
       
    95       const char *zColl;
       
    96       int j = p->iColumn;
       
    97       if( j>=0 ){
       
    98         sqlite3 *db = pParse->db;
       
    99         zColl = p->pTab->aCol[j].zColl;
       
   100         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, -1, 0);
       
   101         pExpr->pColl = pColl;
       
   102       }
       
   103       break;
       
   104     }
       
   105     if( op!=TK_CAST && op!=TK_UPLUS ){
       
   106       break;
       
   107     }
       
   108     p = p->pLeft;
       
   109   }
       
   110   if( sqlite3CheckCollSeq(pParse, pColl) ){ 
       
   111     pColl = 0;
       
   112   }
       
   113   return pColl;
       
   114 }
       
   115 
       
   116 /*
       
   117 ** pExpr is an operand of a comparison operator.  aff2 is the
       
   118 ** type affinity of the other operand.  This routine returns the
       
   119 ** type affinity that should be used for the comparison operator.
       
   120 */
       
   121 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
       
   122   char aff1 = sqlite3ExprAffinity(pExpr);
       
   123   if( aff1 && aff2 ){
       
   124     /* Both sides of the comparison are columns. If one has numeric
       
   125     ** affinity, use that. Otherwise use no affinity.
       
   126     */
       
   127     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
       
   128       return SQLITE_AFF_NUMERIC;
       
   129     }else{
       
   130       return SQLITE_AFF_NONE;
       
   131     }
       
   132   }else if( !aff1 && !aff2 ){
       
   133     /* Neither side of the comparison is a column.  Compare the
       
   134     ** results directly.
       
   135     */
       
   136     return SQLITE_AFF_NONE;
       
   137   }else{
       
   138     /* One side is a column, the other is not. Use the columns affinity. */
       
   139     assert( aff1==0 || aff2==0 );
       
   140     return (aff1 + aff2);
       
   141   }
       
   142 }
       
   143 
       
   144 /*
       
   145 ** pExpr is a comparison operator.  Return the type affinity that should
       
   146 ** be applied to both operands prior to doing the comparison.
       
   147 */
       
   148 static char comparisonAffinity(Expr *pExpr){
       
   149   char aff;
       
   150   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
       
   151           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
       
   152           pExpr->op==TK_NE );
       
   153   assert( pExpr->pLeft );
       
   154   aff = sqlite3ExprAffinity(pExpr->pLeft);
       
   155   if( pExpr->pRight ){
       
   156     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
       
   157   }
       
   158   else if( pExpr->pSelect ){
       
   159     aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff);
       
   160   }
       
   161   else if( !aff ){
       
   162     aff = SQLITE_AFF_NONE;
       
   163   }
       
   164   return aff;
       
   165 }
       
   166 
       
   167 /*
       
   168 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
       
   169 ** idx_affinity is the affinity of an indexed column. Return true
       
   170 ** if the index with affinity idx_affinity may be used to implement
       
   171 ** the comparison in pExpr.
       
   172 */
       
   173 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
       
   174   char aff = comparisonAffinity(pExpr);
       
   175   switch( aff ){
       
   176     case SQLITE_AFF_NONE:
       
   177       return 1;
       
   178     case SQLITE_AFF_TEXT:
       
   179       return idx_affinity==SQLITE_AFF_TEXT;
       
   180     default:
       
   181       return sqlite3IsNumericAffinity(idx_affinity);
       
   182   }
       
   183 }
       
   184 
       
   185 /*
       
   186 ** Return the P5 value that should be used for a binary comparison
       
   187 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
       
   188 */
       
   189 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
       
   190   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
       
   191   aff = sqlite3CompareAffinity(pExpr1, aff) | jumpIfNull;
       
   192   return aff;
       
   193 }
       
   194 
       
   195 /*
       
   196 ** Return a pointer to the collation sequence that should be used by
       
   197 ** a binary comparison operator comparing pLeft and pRight.
       
   198 **
       
   199 ** If the left hand expression has a collating sequence type, then it is
       
   200 ** used. Otherwise the collation sequence for the right hand expression
       
   201 ** is used, or the default (BINARY) if neither expression has a collating
       
   202 ** type.
       
   203 **
       
   204 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
       
   205 ** it is not considered.
       
   206 */
       
   207 CollSeq *sqlite3BinaryCompareCollSeq(
       
   208   Parse *pParse, 
       
   209   Expr *pLeft, 
       
   210   Expr *pRight
       
   211 ){
       
   212   CollSeq *pColl;
       
   213   assert( pLeft );
       
   214   if( pLeft->flags & EP_ExpCollate ){
       
   215     assert( pLeft->pColl );
       
   216     pColl = pLeft->pColl;
       
   217   }else if( pRight && pRight->flags & EP_ExpCollate ){
       
   218     assert( pRight->pColl );
       
   219     pColl = pRight->pColl;
       
   220   }else{
       
   221     pColl = sqlite3ExprCollSeq(pParse, pLeft);
       
   222     if( !pColl ){
       
   223       pColl = sqlite3ExprCollSeq(pParse, pRight);
       
   224     }
       
   225   }
       
   226   return pColl;
       
   227 }
       
   228 
       
   229 /*
       
   230 ** Generate the operands for a comparison operation.  Before
       
   231 ** generating the code for each operand, set the EP_AnyAff
       
   232 ** flag on the expression so that it will be able to used a
       
   233 ** cached column value that has previously undergone an
       
   234 ** affinity change.
       
   235 */
       
   236 static void codeCompareOperands(
       
   237   Parse *pParse,    /* Parsing and code generating context */
       
   238   Expr *pLeft,      /* The left operand */
       
   239   int *pRegLeft,    /* Register where left operand is stored */
       
   240   int *pFreeLeft,   /* Free this register when done */
       
   241   Expr *pRight,     /* The right operand */
       
   242   int *pRegRight,   /* Register where right operand is stored */
       
   243   int *pFreeRight   /* Write temp register for right operand there */
       
   244 ){
       
   245   while( pLeft->op==TK_UPLUS ) pLeft = pLeft->pLeft;
       
   246   pLeft->flags |= EP_AnyAff;
       
   247   *pRegLeft = sqlite3ExprCodeTemp(pParse, pLeft, pFreeLeft);
       
   248   while( pRight->op==TK_UPLUS ) pRight = pRight->pLeft;
       
   249   pRight->flags |= EP_AnyAff;
       
   250   *pRegRight = sqlite3ExprCodeTemp(pParse, pRight, pFreeRight);
       
   251 }
       
   252 
       
   253 /*
       
   254 ** Generate code for a comparison operator.
       
   255 */
       
   256 static int codeCompare(
       
   257   Parse *pParse,    /* The parsing (and code generating) context */
       
   258   Expr *pLeft,      /* The left operand */
       
   259   Expr *pRight,     /* The right operand */
       
   260   int opcode,       /* The comparison opcode */
       
   261   int in1, int in2, /* Register holding operands */
       
   262   int dest,         /* Jump here if true.  */
       
   263   int jumpIfNull    /* If true, jump if either operand is NULL */
       
   264 ){
       
   265   int p5;
       
   266   int addr;
       
   267   CollSeq *p4;
       
   268 
       
   269   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
       
   270   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
       
   271   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
       
   272                            (void*)p4, P4_COLLSEQ);
       
   273   sqlite3VdbeChangeP5(pParse->pVdbe, p5);
       
   274   if( (p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_NONE ){
       
   275     sqlite3ExprCacheAffinityChange(pParse, in1, 1);
       
   276     sqlite3ExprCacheAffinityChange(pParse, in2, 1);
       
   277   }
       
   278   return addr;
       
   279 }
       
   280 
       
   281 #if SQLITE_MAX_EXPR_DEPTH>0
       
   282 /*
       
   283 ** Check that argument nHeight is less than or equal to the maximum
       
   284 ** expression depth allowed. If it is not, leave an error message in
       
   285 ** pParse.
       
   286 */
       
   287 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
       
   288   int rc = SQLITE_OK;
       
   289   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
       
   290   if( nHeight>mxHeight ){
       
   291     sqlite3ErrorMsg(pParse, 
       
   292        "Expression tree is too large (maximum depth %d)", mxHeight
       
   293     );
       
   294     rc = SQLITE_ERROR;
       
   295   }
       
   296   return rc;
       
   297 }
       
   298 
       
   299 /* The following three functions, heightOfExpr(), heightOfExprList()
       
   300 ** and heightOfSelect(), are used to determine the maximum height
       
   301 ** of any expression tree referenced by the structure passed as the
       
   302 ** first argument.
       
   303 **
       
   304 ** If this maximum height is greater than the current value pointed
       
   305 ** to by pnHeight, the second parameter, then set *pnHeight to that
       
   306 ** value.
       
   307 */
       
   308 static void heightOfExpr(Expr *p, int *pnHeight){
       
   309   if( p ){
       
   310     if( p->nHeight>*pnHeight ){
       
   311       *pnHeight = p->nHeight;
       
   312     }
       
   313   }
       
   314 }
       
   315 static void heightOfExprList(ExprList *p, int *pnHeight){
       
   316   if( p ){
       
   317     int i;
       
   318     for(i=0; i<p->nExpr; i++){
       
   319       heightOfExpr(p->a[i].pExpr, pnHeight);
       
   320     }
       
   321   }
       
   322 }
       
   323 static void heightOfSelect(Select *p, int *pnHeight){
       
   324   if( p ){
       
   325     heightOfExpr(p->pWhere, pnHeight);
       
   326     heightOfExpr(p->pHaving, pnHeight);
       
   327     heightOfExpr(p->pLimit, pnHeight);
       
   328     heightOfExpr(p->pOffset, pnHeight);
       
   329     heightOfExprList(p->pEList, pnHeight);
       
   330     heightOfExprList(p->pGroupBy, pnHeight);
       
   331     heightOfExprList(p->pOrderBy, pnHeight);
       
   332     heightOfSelect(p->pPrior, pnHeight);
       
   333   }
       
   334 }
       
   335 
       
   336 /*
       
   337 ** Set the Expr.nHeight variable in the structure passed as an 
       
   338 ** argument. An expression with no children, Expr.pList or 
       
   339 ** Expr.pSelect member has a height of 1. Any other expression
       
   340 ** has a height equal to the maximum height of any other 
       
   341 ** referenced Expr plus one.
       
   342 */
       
   343 static void exprSetHeight(Expr *p){
       
   344   int nHeight = 0;
       
   345   heightOfExpr(p->pLeft, &nHeight);
       
   346   heightOfExpr(p->pRight, &nHeight);
       
   347   heightOfExprList(p->pList, &nHeight);
       
   348   heightOfSelect(p->pSelect, &nHeight);
       
   349   p->nHeight = nHeight + 1;
       
   350 }
       
   351 
       
   352 /*
       
   353 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
       
   354 ** the height is greater than the maximum allowed expression depth,
       
   355 ** leave an error in pParse.
       
   356 */
       
   357 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
       
   358   exprSetHeight(p);
       
   359   sqlite3ExprCheckHeight(pParse, p->nHeight);
       
   360 }
       
   361 
       
   362 /*
       
   363 ** Return the maximum height of any expression tree referenced
       
   364 ** by the select statement passed as an argument.
       
   365 */
       
   366 int sqlite3SelectExprHeight(Select *p){
       
   367   int nHeight = 0;
       
   368   heightOfSelect(p, &nHeight);
       
   369   return nHeight;
       
   370 }
       
   371 #else
       
   372   #define exprSetHeight(y)
       
   373 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
       
   374 
       
   375 /*
       
   376 ** Construct a new expression node and return a pointer to it.  Memory
       
   377 ** for this node is obtained from sqlite3_malloc().  The calling function
       
   378 ** is responsible for making sure the node eventually gets freed.
       
   379 */
       
   380 Expr *sqlite3Expr(
       
   381   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
       
   382   int op,                 /* Expression opcode */
       
   383   Expr *pLeft,            /* Left operand */
       
   384   Expr *pRight,           /* Right operand */
       
   385   const Token *pToken     /* Argument token */
       
   386 ){
       
   387   Expr *pNew;
       
   388   pNew = sqlite3DbMallocZero(db, sizeof(Expr));
       
   389   if( pNew==0 ){
       
   390     /* When malloc fails, delete pLeft and pRight. Expressions passed to 
       
   391     ** this function must always be allocated with sqlite3Expr() for this 
       
   392     ** reason. 
       
   393     */
       
   394     sqlite3ExprDelete(db, pLeft);
       
   395     sqlite3ExprDelete(db, pRight);
       
   396     return 0;
       
   397   }
       
   398   pNew->op = op;
       
   399   pNew->pLeft = pLeft;
       
   400   pNew->pRight = pRight;
       
   401   pNew->iAgg = -1;
       
   402   pNew->span.z = (u8*)"";
       
   403   if( pToken ){
       
   404     assert( pToken->dyn==0 );
       
   405     pNew->span = pNew->token = *pToken;
       
   406   }else if( pLeft ){
       
   407     if( pRight ){
       
   408       if( pRight->span.dyn==0 && pLeft->span.dyn==0 ){
       
   409         sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span);
       
   410       }
       
   411       if( pRight->flags & EP_ExpCollate ){
       
   412         pNew->flags |= EP_ExpCollate;
       
   413         pNew->pColl = pRight->pColl;
       
   414       }
       
   415     }
       
   416     if( pLeft->flags & EP_ExpCollate ){
       
   417       pNew->flags |= EP_ExpCollate;
       
   418       pNew->pColl = pLeft->pColl;
       
   419     }
       
   420   }
       
   421 
       
   422   exprSetHeight(pNew);
       
   423   return pNew;
       
   424 }
       
   425 
       
   426 /*
       
   427 ** Works like sqlite3Expr() except that it takes an extra Parse*
       
   428 ** argument and notifies the associated connection object if malloc fails.
       
   429 */
       
   430 Expr *sqlite3PExpr(
       
   431   Parse *pParse,          /* Parsing context */
       
   432   int op,                 /* Expression opcode */
       
   433   Expr *pLeft,            /* Left operand */
       
   434   Expr *pRight,           /* Right operand */
       
   435   const Token *pToken     /* Argument token */
       
   436 ){
       
   437   Expr *p = sqlite3Expr(pParse->db, op, pLeft, pRight, pToken);
       
   438   if( p ){
       
   439     sqlite3ExprCheckHeight(pParse, p->nHeight);
       
   440   }
       
   441   return p;
       
   442 }
       
   443 
       
   444 /*
       
   445 ** When doing a nested parse, you can include terms in an expression
       
   446 ** that look like this:   #1 #2 ...  These terms refer to registers
       
   447 ** in the virtual machine.  #N is the N-th register.
       
   448 **
       
   449 ** This routine is called by the parser to deal with on of those terms.
       
   450 ** It immediately generates code to store the value in a memory location.
       
   451 ** The returns an expression that will code to extract the value from
       
   452 ** that memory location as needed.
       
   453 */
       
   454 Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){
       
   455   Vdbe *v = pParse->pVdbe;
       
   456   Expr *p;
       
   457   if( pParse->nested==0 ){
       
   458     sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken);
       
   459     return sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
       
   460   }
       
   461   if( v==0 ) return 0;
       
   462   p = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, pToken);
       
   463   if( p==0 ){
       
   464     return 0;  /* Malloc failed */
       
   465   }
       
   466   p->iTable = atoi((char*)&pToken->z[1]);
       
   467   return p;
       
   468 }
       
   469 
       
   470 /*
       
   471 ** Join two expressions using an AND operator.  If either expression is
       
   472 ** NULL, then just return the other expression.
       
   473 */
       
   474 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
       
   475   if( pLeft==0 ){
       
   476     return pRight;
       
   477   }else if( pRight==0 ){
       
   478     return pLeft;
       
   479   }else{
       
   480     return sqlite3Expr(db, TK_AND, pLeft, pRight, 0);
       
   481   }
       
   482 }
       
   483 
       
   484 /*
       
   485 ** Set the Expr.span field of the given expression to span all
       
   486 ** text between the two given tokens.  Both tokens must be pointing
       
   487 ** at the same string.
       
   488 */
       
   489 void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){
       
   490   assert( pRight!=0 );
       
   491   assert( pLeft!=0 );
       
   492   if( pExpr ){
       
   493     pExpr->span.z = pLeft->z;
       
   494     pExpr->span.n = pRight->n + (pRight->z - pLeft->z);
       
   495   }
       
   496 }
       
   497 
       
   498 /*
       
   499 ** Construct a new expression node for a function with multiple
       
   500 ** arguments.
       
   501 */
       
   502 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
       
   503   Expr *pNew;
       
   504   sqlite3 *db = pParse->db;
       
   505   assert( pToken );
       
   506   pNew = sqlite3DbMallocZero(db, sizeof(Expr) );
       
   507   if( pNew==0 ){
       
   508     sqlite3ExprListDelete(db, pList); /* Avoid leaking memory when malloc fails */
       
   509     return 0;
       
   510   }
       
   511   pNew->op = TK_FUNCTION;
       
   512   pNew->pList = pList;
       
   513   assert( pToken->dyn==0 );
       
   514   pNew->token = *pToken;
       
   515   pNew->span = pNew->token;
       
   516 
       
   517   sqlite3ExprSetHeight(pParse, pNew);
       
   518   return pNew;
       
   519 }
       
   520 
       
   521 /*
       
   522 ** Assign a variable number to an expression that encodes a wildcard
       
   523 ** in the original SQL statement.  
       
   524 **
       
   525 ** Wildcards consisting of a single "?" are assigned the next sequential
       
   526 ** variable number.
       
   527 **
       
   528 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
       
   529 ** sure "nnn" is not too be to avoid a denial of service attack when
       
   530 ** the SQL statement comes from an external source.
       
   531 **
       
   532 ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number
       
   533 ** as the previous instance of the same wildcard.  Or if this is the first
       
   534 ** instance of the wildcard, the next sequenial variable number is
       
   535 ** assigned.
       
   536 */
       
   537 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
       
   538   Token *pToken;
       
   539   sqlite3 *db = pParse->db;
       
   540 
       
   541   if( pExpr==0 ) return;
       
   542   pToken = &pExpr->token;
       
   543   assert( pToken->n>=1 );
       
   544   assert( pToken->z!=0 );
       
   545   assert( pToken->z[0]!=0 );
       
   546   if( pToken->n==1 ){
       
   547     /* Wildcard of the form "?".  Assign the next variable number */
       
   548     pExpr->iTable = ++pParse->nVar;
       
   549   }else if( pToken->z[0]=='?' ){
       
   550     /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
       
   551     ** use it as the variable number */
       
   552     int i;
       
   553     pExpr->iTable = i = atoi((char*)&pToken->z[1]);
       
   554     testcase( i==0 );
       
   555     testcase( i==1 );
       
   556     testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
       
   557     testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
       
   558     if( i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
       
   559       sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
       
   560           db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
       
   561     }
       
   562     if( i>pParse->nVar ){
       
   563       pParse->nVar = i;
       
   564     }
       
   565   }else{
       
   566     /* Wildcards of the form ":aaa" or "$aaa".  Reuse the same variable
       
   567     ** number as the prior appearance of the same name, or if the name
       
   568     ** has never appeared before, reuse the same variable number
       
   569     */
       
   570     int i, n;
       
   571     n = pToken->n;
       
   572     for(i=0; i<pParse->nVarExpr; i++){
       
   573       Expr *pE;
       
   574       if( (pE = pParse->apVarExpr[i])!=0
       
   575           && pE->token.n==n
       
   576           && memcmp(pE->token.z, pToken->z, n)==0 ){
       
   577         pExpr->iTable = pE->iTable;
       
   578         break;
       
   579       }
       
   580     }
       
   581     if( i>=pParse->nVarExpr ){
       
   582       pExpr->iTable = ++pParse->nVar;
       
   583       if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
       
   584         pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
       
   585         pParse->apVarExpr =
       
   586             sqlite3DbReallocOrFree(
       
   587               db,
       
   588               pParse->apVarExpr,
       
   589               pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0])
       
   590             );
       
   591       }
       
   592       if( !db->mallocFailed ){
       
   593         assert( pParse->apVarExpr!=0 );
       
   594         pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
       
   595       }
       
   596     }
       
   597   } 
       
   598   if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
       
   599     sqlite3ErrorMsg(pParse, "too many SQL variables");
       
   600   }
       
   601 }
       
   602 
       
   603 /*
       
   604 ** Clear an expression structure without deleting the structure itself.
       
   605 ** Substructure is deleted.
       
   606 */
       
   607 void sqlite3ExprClear(sqlite3 *db, Expr *p){
       
   608   if( p->span.dyn ) sqlite3DbFree(db, (char*)p->span.z);
       
   609   if( p->token.dyn ) sqlite3DbFree(db, (char*)p->token.z);
       
   610   sqlite3ExprDelete(db, p->pLeft);
       
   611   sqlite3ExprDelete(db, p->pRight);
       
   612   sqlite3ExprListDelete(db, p->pList);
       
   613   sqlite3SelectDelete(db, p->pSelect);
       
   614 }
       
   615 
       
   616 /*
       
   617 ** Recursively delete an expression tree.
       
   618 */
       
   619 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
       
   620   if( p==0 ) return;
       
   621   sqlite3ExprClear(db, p);
       
   622   sqlite3DbFree(db, p);
       
   623 }
       
   624 
       
   625 /*
       
   626 ** The Expr.token field might be a string literal that is quoted.
       
   627 ** If so, remove the quotation marks.
       
   628 */
       
   629 void sqlite3DequoteExpr(sqlite3 *db, Expr *p){
       
   630   if( ExprHasAnyProperty(p, EP_Dequoted) ){
       
   631     return;
       
   632   }
       
   633   ExprSetProperty(p, EP_Dequoted);
       
   634   if( p->token.dyn==0 ){
       
   635     sqlite3TokenCopy(db, &p->token, &p->token);
       
   636   }
       
   637   sqlite3Dequote((char*)p->token.z);
       
   638 }
       
   639 
       
   640 /*
       
   641 ** The following group of routines make deep copies of expressions,
       
   642 ** expression lists, ID lists, and select statements.  The copies can
       
   643 ** be deleted (by being passed to their respective ...Delete() routines)
       
   644 ** without effecting the originals.
       
   645 **
       
   646 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
       
   647 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 
       
   648 ** by subsequent calls to sqlite*ListAppend() routines.
       
   649 **
       
   650 ** Any tables that the SrcList might point to are not duplicated.
       
   651 */
       
   652 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p){
       
   653   Expr *pNew;
       
   654   if( p==0 ) return 0;
       
   655   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
       
   656   if( pNew==0 ) return 0;
       
   657   memcpy(pNew, p, sizeof(*pNew));
       
   658   if( p->token.z!=0 ){
       
   659     pNew->token.z = (u8*)sqlite3DbStrNDup(db, (char*)p->token.z, p->token.n);
       
   660     pNew->token.dyn = 1;
       
   661   }else{
       
   662     assert( pNew->token.z==0 );
       
   663   }
       
   664   pNew->span.z = 0;
       
   665   pNew->pLeft = sqlite3ExprDup(db, p->pLeft);
       
   666   pNew->pRight = sqlite3ExprDup(db, p->pRight);
       
   667   pNew->pList = sqlite3ExprListDup(db, p->pList);
       
   668   pNew->pSelect = sqlite3SelectDup(db, p->pSelect);
       
   669   return pNew;
       
   670 }
       
   671 void sqlite3TokenCopy(sqlite3 *db, Token *pTo, Token *pFrom){
       
   672   if( pTo->dyn ) sqlite3DbFree(db, (char*)pTo->z);
       
   673   if( pFrom->z ){
       
   674     pTo->n = pFrom->n;
       
   675     pTo->z = (u8*)sqlite3DbStrNDup(db, (char*)pFrom->z, pFrom->n);
       
   676     pTo->dyn = 1;
       
   677   }else{
       
   678     pTo->z = 0;
       
   679   }
       
   680 }
       
   681 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p){
       
   682   ExprList *pNew;
       
   683   struct ExprList_item *pItem, *pOldItem;
       
   684   int i;
       
   685   if( p==0 ) return 0;
       
   686   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
       
   687   if( pNew==0 ) return 0;
       
   688   pNew->iECursor = 0;
       
   689   pNew->nExpr = pNew->nAlloc = p->nExpr;
       
   690   pNew->a = pItem = sqlite3DbMallocRaw(db,  p->nExpr*sizeof(p->a[0]) );
       
   691   if( pItem==0 ){
       
   692     sqlite3DbFree(db, pNew);
       
   693     return 0;
       
   694   } 
       
   695   pOldItem = p->a;
       
   696   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
       
   697     Expr *pNewExpr, *pOldExpr;
       
   698     pItem->pExpr = pNewExpr = sqlite3ExprDup(db, pOldExpr = pOldItem->pExpr);
       
   699     if( pOldExpr->span.z!=0 && pNewExpr ){
       
   700       /* Always make a copy of the span for top-level expressions in the
       
   701       ** expression list.  The logic in SELECT processing that determines
       
   702       ** the names of columns in the result set needs this information */
       
   703       sqlite3TokenCopy(db, &pNewExpr->span, &pOldExpr->span);
       
   704     }
       
   705     assert( pNewExpr==0 || pNewExpr->span.z!=0 
       
   706             || pOldExpr->span.z==0
       
   707             || db->mallocFailed );
       
   708     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
       
   709     pItem->sortOrder = pOldItem->sortOrder;
       
   710     pItem->done = 0;
       
   711     pItem->iCol = pOldItem->iCol;
       
   712     pItem->iAlias = pOldItem->iAlias;
       
   713   }
       
   714   return pNew;
       
   715 }
       
   716 
       
   717 /*
       
   718 ** If cursors, triggers, views and subqueries are all omitted from
       
   719 ** the build, then none of the following routines, except for 
       
   720 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
       
   721 ** called with a NULL argument.
       
   722 */
       
   723 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
       
   724  || !defined(SQLITE_OMIT_SUBQUERY)
       
   725 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p){
       
   726   SrcList *pNew;
       
   727   int i;
       
   728   int nByte;
       
   729   if( p==0 ) return 0;
       
   730   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
       
   731   pNew = sqlite3DbMallocRaw(db, nByte );
       
   732   if( pNew==0 ) return 0;
       
   733   pNew->nSrc = pNew->nAlloc = p->nSrc;
       
   734   for(i=0; i<p->nSrc; i++){
       
   735     struct SrcList_item *pNewItem = &pNew->a[i];
       
   736     struct SrcList_item *pOldItem = &p->a[i];
       
   737     Table *pTab;
       
   738     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
       
   739     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
       
   740     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
       
   741     pNewItem->jointype = pOldItem->jointype;
       
   742     pNewItem->iCursor = pOldItem->iCursor;
       
   743     pNewItem->isPopulated = pOldItem->isPopulated;
       
   744     pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
       
   745     pNewItem->notIndexed = pOldItem->notIndexed;
       
   746     pNewItem->pIndex = pOldItem->pIndex;
       
   747     pTab = pNewItem->pTab = pOldItem->pTab;
       
   748     if( pTab ){
       
   749       pTab->nRef++;
       
   750     }
       
   751     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect);
       
   752     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn);
       
   753     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
       
   754     pNewItem->colUsed = pOldItem->colUsed;
       
   755   }
       
   756   return pNew;
       
   757 }
       
   758 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
       
   759   IdList *pNew;
       
   760   int i;
       
   761   if( p==0 ) return 0;
       
   762   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
       
   763   if( pNew==0 ) return 0;
       
   764   pNew->nId = pNew->nAlloc = p->nId;
       
   765   pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
       
   766   if( pNew->a==0 ){
       
   767     sqlite3DbFree(db, pNew);
       
   768     return 0;
       
   769   }
       
   770   for(i=0; i<p->nId; i++){
       
   771     struct IdList_item *pNewItem = &pNew->a[i];
       
   772     struct IdList_item *pOldItem = &p->a[i];
       
   773     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
       
   774     pNewItem->idx = pOldItem->idx;
       
   775   }
       
   776   return pNew;
       
   777 }
       
   778 Select *sqlite3SelectDup(sqlite3 *db, Select *p){
       
   779   Select *pNew;
       
   780   if( p==0 ) return 0;
       
   781   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
       
   782   if( pNew==0 ) return 0;
       
   783   pNew->pEList = sqlite3ExprListDup(db, p->pEList);
       
   784   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc);
       
   785   pNew->pWhere = sqlite3ExprDup(db, p->pWhere);
       
   786   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy);
       
   787   pNew->pHaving = sqlite3ExprDup(db, p->pHaving);
       
   788   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy);
       
   789   pNew->op = p->op;
       
   790   pNew->pPrior = sqlite3SelectDup(db, p->pPrior);
       
   791   pNew->pLimit = sqlite3ExprDup(db, p->pLimit);
       
   792   pNew->pOffset = sqlite3ExprDup(db, p->pOffset);
       
   793   pNew->iLimit = 0;
       
   794   pNew->iOffset = 0;
       
   795   pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
       
   796   pNew->pRightmost = 0;
       
   797   pNew->addrOpenEphm[0] = -1;
       
   798   pNew->addrOpenEphm[1] = -1;
       
   799   pNew->addrOpenEphm[2] = -1;
       
   800   return pNew;
       
   801 }
       
   802 #else
       
   803 Select *sqlite3SelectDup(sqlite3 *db, Select *p){
       
   804   assert( p==0 );
       
   805   return 0;
       
   806 }
       
   807 #endif
       
   808 
       
   809 
       
   810 /*
       
   811 ** Add a new element to the end of an expression list.  If pList is
       
   812 ** initially NULL, then create a new expression list.
       
   813 */
       
   814 ExprList *sqlite3ExprListAppend(
       
   815   Parse *pParse,          /* Parsing context */
       
   816   ExprList *pList,        /* List to which to append. Might be NULL */
       
   817   Expr *pExpr,            /* Expression to be appended */
       
   818   Token *pName            /* AS keyword for the expression */
       
   819 ){
       
   820   sqlite3 *db = pParse->db;
       
   821   if( pList==0 ){
       
   822     pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
       
   823     if( pList==0 ){
       
   824       goto no_mem;
       
   825     }
       
   826     assert( pList->nAlloc==0 );
       
   827   }
       
   828   if( pList->nAlloc<=pList->nExpr ){
       
   829     struct ExprList_item *a;
       
   830     int n = pList->nAlloc*2 + 4;
       
   831     a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0]));
       
   832     if( a==0 ){
       
   833       goto no_mem;
       
   834     }
       
   835     pList->a = a;
       
   836     pList->nAlloc = n;
       
   837   }
       
   838   assert( pList->a!=0 );
       
   839   if( pExpr || pName ){
       
   840     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
       
   841     memset(pItem, 0, sizeof(*pItem));
       
   842     pItem->zName = sqlite3NameFromToken(db, pName);
       
   843     pItem->pExpr = pExpr;
       
   844     pItem->iAlias = 0;
       
   845   }
       
   846   return pList;
       
   847 
       
   848 no_mem:     
       
   849   /* Avoid leaking memory if malloc has failed. */
       
   850   sqlite3ExprDelete(db, pExpr);
       
   851   sqlite3ExprListDelete(db, pList);
       
   852   return 0;
       
   853 }
       
   854 
       
   855 /*
       
   856 ** If the expression list pEList contains more than iLimit elements,
       
   857 ** leave an error message in pParse.
       
   858 */
       
   859 void sqlite3ExprListCheckLength(
       
   860   Parse *pParse,
       
   861   ExprList *pEList,
       
   862   const char *zObject
       
   863 ){
       
   864   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
       
   865   testcase( pEList && pEList->nExpr==mx );
       
   866   testcase( pEList && pEList->nExpr==mx+1 );
       
   867   if( pEList && pEList->nExpr>mx ){
       
   868     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
       
   869   }
       
   870 }
       
   871 
       
   872 /*
       
   873 ** Delete an entire expression list.
       
   874 */
       
   875 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
       
   876   int i;
       
   877   struct ExprList_item *pItem;
       
   878   if( pList==0 ) return;
       
   879   assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
       
   880   assert( pList->nExpr<=pList->nAlloc );
       
   881   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
       
   882     sqlite3ExprDelete(db, pItem->pExpr);
       
   883     sqlite3DbFree(db, pItem->zName);
       
   884   }
       
   885   sqlite3DbFree(db, pList->a);
       
   886   sqlite3DbFree(db, pList);
       
   887 }
       
   888 
       
   889 /*
       
   890 ** These routines are Walker callbacks.  Walker.u.pi is a pointer
       
   891 ** to an integer.  These routines are checking an expression to see
       
   892 ** if it is a constant.  Set *Walker.u.pi to 0 if the expression is
       
   893 ** not constant.
       
   894 **
       
   895 ** These callback routines are used to implement the following:
       
   896 **
       
   897 **     sqlite3ExprIsConstant()
       
   898 **     sqlite3ExprIsConstantNotJoin()
       
   899 **     sqlite3ExprIsConstantOrFunction()
       
   900 **
       
   901 */
       
   902 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
       
   903 
       
   904   /* If pWalker->u.i is 3 then any term of the expression that comes from
       
   905   ** the ON or USING clauses of a join disqualifies the expression
       
   906   ** from being considered constant. */
       
   907   if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
       
   908     pWalker->u.i = 0;
       
   909     return WRC_Abort;
       
   910   }
       
   911 
       
   912   switch( pExpr->op ){
       
   913     /* Consider functions to be constant if all their arguments are constant
       
   914     ** and pWalker->u.i==2 */
       
   915     case TK_FUNCTION:
       
   916       if( pWalker->u.i==2 ) return 0;
       
   917       /* Fall through */
       
   918     case TK_ID:
       
   919     case TK_COLUMN:
       
   920     case TK_DOT:
       
   921     case TK_AGG_FUNCTION:
       
   922     case TK_AGG_COLUMN:
       
   923 #ifndef SQLITE_OMIT_SUBQUERY
       
   924     case TK_SELECT:
       
   925     case TK_EXISTS:
       
   926       testcase( pExpr->op==TK_SELECT );
       
   927       testcase( pExpr->op==TK_EXISTS );
       
   928 #endif
       
   929       testcase( pExpr->op==TK_ID );
       
   930       testcase( pExpr->op==TK_COLUMN );
       
   931       testcase( pExpr->op==TK_DOT );
       
   932       testcase( pExpr->op==TK_AGG_FUNCTION );
       
   933       testcase( pExpr->op==TK_AGG_COLUMN );
       
   934       pWalker->u.i = 0;
       
   935       return WRC_Abort;
       
   936     default:
       
   937       return WRC_Continue;
       
   938   }
       
   939 }
       
   940 static int selectNodeIsConstant(Walker *pWalker, Select *pSelect){
       
   941   pWalker->u.i = 0;
       
   942   return WRC_Abort;
       
   943 }
       
   944 static int exprIsConst(Expr *p, int initFlag){
       
   945   Walker w;
       
   946   w.u.i = initFlag;
       
   947   w.xExprCallback = exprNodeIsConstant;
       
   948   w.xSelectCallback = selectNodeIsConstant;
       
   949   sqlite3WalkExpr(&w, p);
       
   950   return w.u.i;
       
   951 }
       
   952 
       
   953 /*
       
   954 ** Walk an expression tree.  Return 1 if the expression is constant
       
   955 ** and 0 if it involves variables or function calls.
       
   956 **
       
   957 ** For the purposes of this function, a double-quoted string (ex: "abc")
       
   958 ** is considered a variable but a single-quoted string (ex: 'abc') is
       
   959 ** a constant.
       
   960 */
       
   961 int sqlite3ExprIsConstant(Expr *p){
       
   962   return exprIsConst(p, 1);
       
   963 }
       
   964 
       
   965 /*
       
   966 ** Walk an expression tree.  Return 1 if the expression is constant
       
   967 ** that does no originate from the ON or USING clauses of a join.
       
   968 ** Return 0 if it involves variables or function calls or terms from
       
   969 ** an ON or USING clause.
       
   970 */
       
   971 int sqlite3ExprIsConstantNotJoin(Expr *p){
       
   972   return exprIsConst(p, 3);
       
   973 }
       
   974 
       
   975 /*
       
   976 ** Walk an expression tree.  Return 1 if the expression is constant
       
   977 ** or a function call with constant arguments.  Return and 0 if there
       
   978 ** are any variables.
       
   979 **
       
   980 ** For the purposes of this function, a double-quoted string (ex: "abc")
       
   981 ** is considered a variable but a single-quoted string (ex: 'abc') is
       
   982 ** a constant.
       
   983 */
       
   984 int sqlite3ExprIsConstantOrFunction(Expr *p){
       
   985   return exprIsConst(p, 2);
       
   986 }
       
   987 
       
   988 /*
       
   989 ** If the expression p codes a constant integer that is small enough
       
   990 ** to fit in a 32-bit integer, return 1 and put the value of the integer
       
   991 ** in *pValue.  If the expression is not an integer or if it is too big
       
   992 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
       
   993 */
       
   994 int sqlite3ExprIsInteger(Expr *p, int *pValue){
       
   995   int rc = 0;
       
   996   if( p->flags & EP_IntValue ){
       
   997     *pValue = p->iTable;
       
   998     return 1;
       
   999   }
       
  1000   switch( p->op ){
       
  1001     case TK_INTEGER: {
       
  1002       rc = sqlite3GetInt32((char*)p->token.z, pValue);
       
  1003       break;
       
  1004     }
       
  1005     case TK_UPLUS: {
       
  1006       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
       
  1007       break;
       
  1008     }
       
  1009     case TK_UMINUS: {
       
  1010       int v;
       
  1011       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
       
  1012         *pValue = -v;
       
  1013         rc = 1;
       
  1014       }
       
  1015       break;
       
  1016     }
       
  1017     default: break;
       
  1018   }
       
  1019   if( rc ){
       
  1020     p->op = TK_INTEGER;
       
  1021     p->flags |= EP_IntValue;
       
  1022     p->iTable = *pValue;
       
  1023   }
       
  1024   return rc;
       
  1025 }
       
  1026 
       
  1027 /*
       
  1028 ** Return TRUE if the given string is a row-id column name.
       
  1029 */
       
  1030 int sqlite3IsRowid(const char *z){
       
  1031   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
       
  1032   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
       
  1033   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
       
  1034   return 0;
       
  1035 }
       
  1036 
       
  1037 #ifdef SQLITE_TEST
       
  1038   int sqlite3_enable_in_opt = 1;
       
  1039 #else
       
  1040   #define sqlite3_enable_in_opt 1
       
  1041 #endif
       
  1042 
       
  1043 /*
       
  1044 ** Return true if the IN operator optimization is enabled and
       
  1045 ** the SELECT statement p exists and is of the
       
  1046 ** simple form:
       
  1047 **
       
  1048 **     SELECT <column> FROM <table>
       
  1049 **
       
  1050 ** If this is the case, it may be possible to use an existing table
       
  1051 ** or index instead of generating an epheremal table.
       
  1052 */
       
  1053 #ifndef SQLITE_OMIT_SUBQUERY
       
  1054 static int isCandidateForInOpt(Select *p){
       
  1055   SrcList *pSrc;
       
  1056   ExprList *pEList;
       
  1057   Table *pTab;
       
  1058   if( !sqlite3_enable_in_opt ) return 0; /* IN optimization must be enabled */
       
  1059   if( p==0 ) return 0;                   /* right-hand side of IN is SELECT */
       
  1060   if( p->pPrior ) return 0;              /* Not a compound SELECT */
       
  1061   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
       
  1062       return 0; /* No DISTINCT keyword and no aggregate functions */
       
  1063   }
       
  1064   if( p->pGroupBy ) return 0;            /* Has no GROUP BY clause */
       
  1065   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
       
  1066   if( p->pOffset ) return 0;
       
  1067   if( p->pWhere ) return 0;              /* Has no WHERE clause */
       
  1068   pSrc = p->pSrc;
       
  1069   if( pSrc==0 ) return 0;                /* A single table in the FROM clause */
       
  1070   if( pSrc->nSrc!=1 ) return 0;
       
  1071   if( pSrc->a[0].pSelect ) return 0;     /* FROM clause is not a subquery */
       
  1072   pTab = pSrc->a[0].pTab;
       
  1073   if( pTab==0 ) return 0;
       
  1074   if( pTab->pSelect ) return 0;          /* FROM clause is not a view */
       
  1075   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
       
  1076   pEList = p->pEList;
       
  1077   if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
       
  1078   if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
       
  1079   return 1;
       
  1080 }
       
  1081 #endif /* SQLITE_OMIT_SUBQUERY */
       
  1082 
       
  1083 /*
       
  1084 ** This function is used by the implementation of the IN (...) operator.
       
  1085 ** It's job is to find or create a b-tree structure that may be used
       
  1086 ** either to test for membership of the (...) set or to iterate through
       
  1087 ** its members, skipping duplicates.
       
  1088 **
       
  1089 ** The cursor opened on the structure (database table, database index 
       
  1090 ** or ephermal table) is stored in pX->iTable before this function returns.
       
  1091 ** The returned value indicates the structure type, as follows:
       
  1092 **
       
  1093 **   IN_INDEX_ROWID - The cursor was opened on a database table.
       
  1094 **   IN_INDEX_INDEX - The cursor was opened on a database index.
       
  1095 **   IN_INDEX_EPH -   The cursor was opened on a specially created and
       
  1096 **                    populated epheremal table.
       
  1097 **
       
  1098 ** An existing structure may only be used if the SELECT is of the simple
       
  1099 ** form:
       
  1100 **
       
  1101 **     SELECT <column> FROM <table>
       
  1102 **
       
  1103 ** If prNotFound parameter is 0, then the structure will be used to iterate
       
  1104 ** through the set members, skipping any duplicates. In this case an
       
  1105 ** epheremal table must be used unless the selected <column> is guaranteed
       
  1106 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
       
  1107 ** is unique by virtue of a constraint or implicit index.
       
  1108 **
       
  1109 ** If the prNotFound parameter is not 0, then the structure will be used 
       
  1110 ** for fast set membership tests. In this case an epheremal table must 
       
  1111 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 
       
  1112 ** be found with <column> as its left-most column.
       
  1113 **
       
  1114 ** When the structure is being used for set membership tests, the user
       
  1115 ** needs to know whether or not the structure contains an SQL NULL 
       
  1116 ** value in order to correctly evaluate expressions like "X IN (Y, Z)".
       
  1117 ** If there is a chance that the structure may contain a NULL value at
       
  1118 ** runtime, then a register is allocated and the register number written
       
  1119 ** to *prNotFound. If there is no chance that the structure contains a
       
  1120 ** NULL value, then *prNotFound is left unchanged.
       
  1121 **
       
  1122 ** If a register is allocated and its location stored in *prNotFound, then
       
  1123 ** its initial value is NULL. If the structure does not remain constant
       
  1124 ** for the duration of the query (i.e. the set is a correlated sub-select), 
       
  1125 ** the value of the allocated register is reset to NULL each time the 
       
  1126 ** structure is repopulated. This allows the caller to use vdbe code 
       
  1127 ** equivalent to the following:
       
  1128 **
       
  1129 **   if( register==NULL ){
       
  1130 **     has_null = <test if data structure contains null>
       
  1131 **     register = 1
       
  1132 **   }
       
  1133 **
       
  1134 ** in order to avoid running the <test if data structure contains null>
       
  1135 ** test more often than is necessary.
       
  1136 */
       
  1137 #ifndef SQLITE_OMIT_SUBQUERY
       
  1138 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
       
  1139   Select *p;
       
  1140   int eType = 0;
       
  1141   int iTab = pParse->nTab++;
       
  1142   int mustBeUnique = !prNotFound;
       
  1143 
       
  1144   /* The follwing if(...) expression is true if the SELECT is of the 
       
  1145   ** simple form:
       
  1146   **
       
  1147   **     SELECT <column> FROM <table>
       
  1148   **
       
  1149   ** If this is the case, it may be possible to use an existing table
       
  1150   ** or index instead of generating an epheremal table.
       
  1151   */
       
  1152   p = pX->pSelect;
       
  1153   if( isCandidateForInOpt(p) ){
       
  1154     sqlite3 *db = pParse->db;
       
  1155     Index *pIdx;
       
  1156     Expr *pExpr = p->pEList->a[0].pExpr;
       
  1157     int iCol = pExpr->iColumn;
       
  1158     Vdbe *v = sqlite3GetVdbe(pParse);
       
  1159 
       
  1160     /* This function is only called from two places. In both cases the vdbe
       
  1161     ** has already been allocated. So assume sqlite3GetVdbe() is always
       
  1162     ** successful here.
       
  1163     */
       
  1164     assert(v);
       
  1165     if( iCol<0 ){
       
  1166       int iMem = ++pParse->nMem;
       
  1167       int iAddr;
       
  1168       Table *pTab = p->pSrc->a[0].pTab;
       
  1169       int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
       
  1170       sqlite3VdbeUsesBtree(v, iDb);
       
  1171 
       
  1172       iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
       
  1173       sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
       
  1174 
       
  1175       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
       
  1176       eType = IN_INDEX_ROWID;
       
  1177 
       
  1178       sqlite3VdbeJumpHere(v, iAddr);
       
  1179     }else{
       
  1180       /* The collation sequence used by the comparison. If an index is to 
       
  1181       ** be used in place of a temp-table, it must be ordered according
       
  1182       ** to this collation sequence.
       
  1183       */
       
  1184       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
       
  1185 
       
  1186       /* Check that the affinity that will be used to perform the 
       
  1187       ** comparison is the same as the affinity of the column. If
       
  1188       ** it is not, it is not possible to use any index.
       
  1189       */
       
  1190       Table *pTab = p->pSrc->a[0].pTab;
       
  1191       char aff = comparisonAffinity(pX);
       
  1192       int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE);
       
  1193 
       
  1194       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
       
  1195         if( (pIdx->aiColumn[0]==iCol)
       
  1196          && (pReq==sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], -1, 0))
       
  1197          && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
       
  1198         ){
       
  1199           int iDb;
       
  1200           int iMem = ++pParse->nMem;
       
  1201           int iAddr;
       
  1202           char *pKey;
       
  1203   
       
  1204           pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
       
  1205           iDb = sqlite3SchemaToIndex(db, pIdx->pSchema);
       
  1206           sqlite3VdbeUsesBtree(v, iDb);
       
  1207 
       
  1208           iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
       
  1209           sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
       
  1210   
       
  1211           sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pIdx->nColumn);
       
  1212           sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
       
  1213                                pKey,P4_KEYINFO_HANDOFF);
       
  1214           VdbeComment((v, "%s", pIdx->zName));
       
  1215           eType = IN_INDEX_INDEX;
       
  1216 
       
  1217           sqlite3VdbeJumpHere(v, iAddr);
       
  1218           if( prNotFound && !pTab->aCol[iCol].notNull ){
       
  1219             *prNotFound = ++pParse->nMem;
       
  1220           }
       
  1221         }
       
  1222       }
       
  1223     }
       
  1224   }
       
  1225 
       
  1226   if( eType==0 ){
       
  1227     int rMayHaveNull = 0;
       
  1228     eType = IN_INDEX_EPH;
       
  1229     if( prNotFound ){
       
  1230       *prNotFound = rMayHaveNull = ++pParse->nMem;
       
  1231     }else if( pX->pLeft->iColumn<0 && pX->pSelect==0 ){
       
  1232       eType = IN_INDEX_ROWID;
       
  1233     }
       
  1234     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
       
  1235   }else{
       
  1236     pX->iTable = iTab;
       
  1237   }
       
  1238   return eType;
       
  1239 }
       
  1240 #endif
       
  1241 
       
  1242 /*
       
  1243 ** Generate code for scalar subqueries used as an expression
       
  1244 ** and IN operators.  Examples:
       
  1245 **
       
  1246 **     (SELECT a FROM b)          -- subquery
       
  1247 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
       
  1248 **     x IN (4,5,11)              -- IN operator with list on right-hand side
       
  1249 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
       
  1250 **
       
  1251 ** The pExpr parameter describes the expression that contains the IN
       
  1252 ** operator or subquery.
       
  1253 **
       
  1254 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
       
  1255 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
       
  1256 ** to some integer key column of a table B-Tree. In this case, use an
       
  1257 ** intkey B-Tree to store the set of IN(...) values instead of the usual
       
  1258 ** (slower) variable length keys B-Tree.
       
  1259 */
       
  1260 #ifndef SQLITE_OMIT_SUBQUERY
       
  1261 void sqlite3CodeSubselect(
       
  1262   Parse *pParse, 
       
  1263   Expr *pExpr, 
       
  1264   int rMayHaveNull,
       
  1265   int isRowid
       
  1266 ){
       
  1267   int testAddr = 0;                       /* One-time test address */
       
  1268   Vdbe *v = sqlite3GetVdbe(pParse);
       
  1269   if( v==0 ) return;
       
  1270 
       
  1271 
       
  1272   /* This code must be run in its entirety every time it is encountered
       
  1273   ** if any of the following is true:
       
  1274   **
       
  1275   **    *  The right-hand side is a correlated subquery
       
  1276   **    *  The right-hand side is an expression list containing variables
       
  1277   **    *  We are inside a trigger
       
  1278   **
       
  1279   ** If all of the above are false, then we can run this code just once
       
  1280   ** save the results, and reuse the same result on subsequent invocations.
       
  1281   */
       
  1282   if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){
       
  1283     int mem = ++pParse->nMem;
       
  1284     sqlite3VdbeAddOp1(v, OP_If, mem);
       
  1285     testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem);
       
  1286     assert( testAddr>0 || pParse->db->mallocFailed );
       
  1287   }
       
  1288 
       
  1289   switch( pExpr->op ){
       
  1290     case TK_IN: {
       
  1291       char affinity;
       
  1292       KeyInfo keyInfo;
       
  1293       int addr;        /* Address of OP_OpenEphemeral instruction */
       
  1294       Expr *pLeft = pExpr->pLeft;
       
  1295 
       
  1296       if( rMayHaveNull ){
       
  1297         sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
       
  1298       }
       
  1299 
       
  1300       affinity = sqlite3ExprAffinity(pLeft);
       
  1301 
       
  1302       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
       
  1303       ** expression it is handled the same way. A virtual table is 
       
  1304       ** filled with single-field index keys representing the results
       
  1305       ** from the SELECT or the <exprlist>.
       
  1306       **
       
  1307       ** If the 'x' expression is a column value, or the SELECT...
       
  1308       ** statement returns a column value, then the affinity of that
       
  1309       ** column is used to build the index keys. If both 'x' and the
       
  1310       ** SELECT... statement are columns, then numeric affinity is used
       
  1311       ** if either column has NUMERIC or INTEGER affinity. If neither
       
  1312       ** 'x' nor the SELECT... statement are columns, then numeric affinity
       
  1313       ** is used.
       
  1314       */
       
  1315       pExpr->iTable = pParse->nTab++;
       
  1316       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
       
  1317       memset(&keyInfo, 0, sizeof(keyInfo));
       
  1318       keyInfo.nField = 1;
       
  1319 
       
  1320       if( pExpr->pSelect ){
       
  1321         /* Case 1:     expr IN (SELECT ...)
       
  1322         **
       
  1323         ** Generate code to write the results of the select into the temporary
       
  1324         ** table allocated and opened above.
       
  1325         */
       
  1326         SelectDest dest;
       
  1327         ExprList *pEList;
       
  1328 
       
  1329         assert( !isRowid );
       
  1330         sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
       
  1331         dest.affinity = (int)affinity;
       
  1332         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
       
  1333         if( sqlite3Select(pParse, pExpr->pSelect, &dest) ){
       
  1334           return;
       
  1335         }
       
  1336         pEList = pExpr->pSelect->pEList;
       
  1337         if( pEList && pEList->nExpr>0 ){ 
       
  1338           keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
       
  1339               pEList->a[0].pExpr);
       
  1340         }
       
  1341       }else if( pExpr->pList ){
       
  1342         /* Case 2:     expr IN (exprlist)
       
  1343         **
       
  1344         ** For each expression, build an index key from the evaluation and
       
  1345         ** store it in the temporary table. If <expr> is a column, then use
       
  1346         ** that columns affinity when building index keys. If <expr> is not
       
  1347         ** a column, use numeric affinity.
       
  1348         */
       
  1349         int i;
       
  1350         ExprList *pList = pExpr->pList;
       
  1351         struct ExprList_item *pItem;
       
  1352         int r1, r2, r3;
       
  1353 
       
  1354         if( !affinity ){
       
  1355           affinity = SQLITE_AFF_NONE;
       
  1356         }
       
  1357         keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
       
  1358 
       
  1359         /* Loop through each expression in <exprlist>. */
       
  1360         r1 = sqlite3GetTempReg(pParse);
       
  1361         r2 = sqlite3GetTempReg(pParse);
       
  1362         sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
       
  1363         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
       
  1364           Expr *pE2 = pItem->pExpr;
       
  1365 
       
  1366           /* If the expression is not constant then we will need to
       
  1367           ** disable the test that was generated above that makes sure
       
  1368           ** this code only executes once.  Because for a non-constant
       
  1369           ** expression we need to rerun this code each time.
       
  1370           */
       
  1371           if( testAddr && !sqlite3ExprIsConstant(pE2) ){
       
  1372             sqlite3VdbeChangeToNoop(v, testAddr-1, 2);
       
  1373             testAddr = 0;
       
  1374           }
       
  1375 
       
  1376           /* Evaluate the expression and insert it into the temp table */
       
  1377           pParse->disableColCache++;
       
  1378           r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
       
  1379           assert( pParse->disableColCache>0 );
       
  1380           pParse->disableColCache--;
       
  1381 
       
  1382           if( isRowid ){
       
  1383             sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, sqlite3VdbeCurrentAddr(v)+2);
       
  1384             sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
       
  1385           }else{
       
  1386             sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
       
  1387             sqlite3ExprCacheAffinityChange(pParse, r3, 1);
       
  1388             sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
       
  1389           }
       
  1390         }
       
  1391         sqlite3ReleaseTempReg(pParse, r1);
       
  1392         sqlite3ReleaseTempReg(pParse, r2);
       
  1393       }
       
  1394       if( !isRowid ){
       
  1395         sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO);
       
  1396       }
       
  1397       break;
       
  1398     }
       
  1399 
       
  1400     case TK_EXISTS:
       
  1401     case TK_SELECT: {
       
  1402       /* This has to be a scalar SELECT.  Generate code to put the
       
  1403       ** value of this select in a memory cell and record the number
       
  1404       ** of the memory cell in iColumn.
       
  1405       */
       
  1406       static const Token one = { (u8*)"1", 0, 1 };
       
  1407       Select *pSel;
       
  1408       SelectDest dest;
       
  1409 
       
  1410       pSel = pExpr->pSelect;
       
  1411       sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
       
  1412       if( pExpr->op==TK_SELECT ){
       
  1413         dest.eDest = SRT_Mem;
       
  1414         sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm);
       
  1415         VdbeComment((v, "Init subquery result"));
       
  1416       }else{
       
  1417         dest.eDest = SRT_Exists;
       
  1418         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm);
       
  1419         VdbeComment((v, "Init EXISTS result"));
       
  1420       }
       
  1421       sqlite3ExprDelete(pParse->db, pSel->pLimit);
       
  1422       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one);
       
  1423       if( sqlite3Select(pParse, pSel, &dest) ){
       
  1424         return;
       
  1425       }
       
  1426       pExpr->iColumn = dest.iParm;
       
  1427       break;
       
  1428     }
       
  1429   }
       
  1430 
       
  1431   if( testAddr ){
       
  1432     sqlite3VdbeJumpHere(v, testAddr-1);
       
  1433   }
       
  1434 
       
  1435   return;
       
  1436 }
       
  1437 #endif /* SQLITE_OMIT_SUBQUERY */
       
  1438 
       
  1439 /*
       
  1440 ** Duplicate an 8-byte value
       
  1441 */
       
  1442 static char *dup8bytes(Vdbe *v, const char *in){
       
  1443   char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
       
  1444   if( out ){
       
  1445     memcpy(out, in, 8);
       
  1446   }
       
  1447   return out;
       
  1448 }
       
  1449 
       
  1450 /*
       
  1451 ** Generate an instruction that will put the floating point
       
  1452 ** value described by z[0..n-1] into register iMem.
       
  1453 **
       
  1454 ** The z[] string will probably not be zero-terminated.  But the 
       
  1455 ** z[n] character is guaranteed to be something that does not look
       
  1456 ** like the continuation of the number.
       
  1457 */
       
  1458 static void codeReal(Vdbe *v, const char *z, int n, int negateFlag, int iMem){
       
  1459   assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed );
       
  1460   if( z ){
       
  1461     double value;
       
  1462     char *zV;
       
  1463     assert( !isdigit(z[n]) );
       
  1464     sqlite3AtoF(z, &value);
       
  1465     if( sqlite3IsNaN(value) ){
       
  1466       sqlite3VdbeAddOp2(v, OP_Null, 0, iMem);
       
  1467     }else{
       
  1468       if( negateFlag ) value = -value;
       
  1469       zV = dup8bytes(v, (char*)&value);
       
  1470       sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
       
  1471     }
       
  1472   }
       
  1473 }
       
  1474 
       
  1475 
       
  1476 /*
       
  1477 ** Generate an instruction that will put the integer describe by
       
  1478 ** text z[0..n-1] into register iMem.
       
  1479 **
       
  1480 ** The z[] string will probably not be zero-terminated.  But the 
       
  1481 ** z[n] character is guaranteed to be something that does not look
       
  1482 ** like the continuation of the number.
       
  1483 */
       
  1484 static void codeInteger(Vdbe *v, Expr *pExpr, int negFlag, int iMem){
       
  1485   const char *z;
       
  1486   if( pExpr->flags & EP_IntValue ){
       
  1487     int i = pExpr->iTable;
       
  1488     if( negFlag ) i = -i;
       
  1489     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
       
  1490   }else if( (z = (char*)pExpr->token.z)!=0 ){
       
  1491     int i;
       
  1492     int n = pExpr->token.n;
       
  1493     assert( !isdigit(z[n]) );
       
  1494     if( sqlite3GetInt32(z, &i) ){
       
  1495       if( negFlag ) i = -i;
       
  1496       sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
       
  1497     }else if( sqlite3FitsIn64Bits(z, negFlag) ){
       
  1498       i64 value;
       
  1499       char *zV;
       
  1500       sqlite3Atoi64(z, &value);
       
  1501       if( negFlag ) value = -value;
       
  1502       zV = dup8bytes(v, (char*)&value);
       
  1503       sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
       
  1504     }else{
       
  1505       codeReal(v, z, n, negFlag, iMem);
       
  1506     }
       
  1507   }
       
  1508 }
       
  1509 
       
  1510 
       
  1511 /*
       
  1512 ** Generate code that will extract the iColumn-th column from
       
  1513 ** table pTab and store the column value in a register.  An effort
       
  1514 ** is made to store the column value in register iReg, but this is
       
  1515 ** not guaranteed.  The location of the column value is returned.
       
  1516 **
       
  1517 ** There must be an open cursor to pTab in iTable when this routine
       
  1518 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
       
  1519 **
       
  1520 ** This routine might attempt to reuse the value of the column that
       
  1521 ** has already been loaded into a register.  The value will always
       
  1522 ** be used if it has not undergone any affinity changes.  But if
       
  1523 ** an affinity change has occurred, then the cached value will only be
       
  1524 ** used if allowAffChng is true.
       
  1525 */
       
  1526 int sqlite3ExprCodeGetColumn(
       
  1527   Parse *pParse,   /* Parsing and code generating context */
       
  1528   Table *pTab,     /* Description of the table we are reading from */
       
  1529   int iColumn,     /* Index of the table column */
       
  1530   int iTable,      /* The cursor pointing to the table */
       
  1531   int iReg,        /* Store results here */
       
  1532   int allowAffChng /* True if prior affinity changes are OK */
       
  1533 ){
       
  1534   Vdbe *v = pParse->pVdbe;
       
  1535   int i;
       
  1536   struct yColCache *p;
       
  1537 
       
  1538   for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
       
  1539     if( p->iTable==iTable && p->iColumn==iColumn
       
  1540            && (!p->affChange || allowAffChng) ){
       
  1541 #if 0
       
  1542       sqlite3VdbeAddOp0(v, OP_Noop);
       
  1543       VdbeComment((v, "OPT: tab%d.col%d -> r%d", iTable, iColumn, p->iReg));
       
  1544 #endif
       
  1545       return p->iReg;
       
  1546     }
       
  1547   }  
       
  1548   assert( v!=0 );
       
  1549   if( iColumn<0 ){
       
  1550     int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid;
       
  1551     sqlite3VdbeAddOp2(v, op, iTable, iReg);
       
  1552   }else if( pTab==0 ){
       
  1553     sqlite3VdbeAddOp3(v, OP_Column, iTable, iColumn, iReg);
       
  1554   }else{
       
  1555     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
       
  1556     sqlite3VdbeAddOp3(v, op, iTable, iColumn, iReg);
       
  1557     sqlite3ColumnDefault(v, pTab, iColumn);
       
  1558 #ifndef SQLITE_OMIT_FLOATING_POINT
       
  1559     if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){
       
  1560       sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
       
  1561     }
       
  1562 #endif
       
  1563   }
       
  1564   if( pParse->disableColCache==0 ){
       
  1565     i = pParse->iColCache;
       
  1566     p = &pParse->aColCache[i];
       
  1567     p->iTable = iTable;
       
  1568     p->iColumn = iColumn;
       
  1569     p->iReg = iReg;
       
  1570     p->affChange = 0;
       
  1571     i++;
       
  1572     if( i>=ArraySize(pParse->aColCache) ) i = 0;
       
  1573     if( i>pParse->nColCache ) pParse->nColCache = i;
       
  1574     pParse->iColCache = i;
       
  1575   }
       
  1576   return iReg;
       
  1577 }
       
  1578 
       
  1579 /*
       
  1580 ** Clear all column cache entries associated with the vdbe
       
  1581 ** cursor with cursor number iTable.
       
  1582 */
       
  1583 void sqlite3ExprClearColumnCache(Parse *pParse, int iTable){
       
  1584   if( iTable<0 ){
       
  1585     pParse->nColCache = 0;
       
  1586     pParse->iColCache = 0;
       
  1587   }else{
       
  1588     int i;
       
  1589     for(i=0; i<pParse->nColCache; i++){
       
  1590       if( pParse->aColCache[i].iTable==iTable ){
       
  1591         testcase( i==pParse->nColCache-1 );
       
  1592         pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache];
       
  1593         pParse->iColCache = pParse->nColCache;
       
  1594       }
       
  1595     }
       
  1596   }
       
  1597 }
       
  1598 
       
  1599 /*
       
  1600 ** Record the fact that an affinity change has occurred on iCount
       
  1601 ** registers starting with iStart.
       
  1602 */
       
  1603 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
       
  1604   int iEnd = iStart + iCount - 1;
       
  1605   int i;
       
  1606   for(i=0; i<pParse->nColCache; i++){
       
  1607     int r = pParse->aColCache[i].iReg;
       
  1608     if( r>=iStart && r<=iEnd ){
       
  1609       pParse->aColCache[i].affChange = 1;
       
  1610     }
       
  1611   }
       
  1612 }
       
  1613 
       
  1614 /*
       
  1615 ** Generate code to move content from registers iFrom...iFrom+nReg-1
       
  1616 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
       
  1617 */
       
  1618 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
       
  1619   int i;
       
  1620   if( iFrom==iTo ) return;
       
  1621   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
       
  1622   for(i=0; i<pParse->nColCache; i++){
       
  1623     int x = pParse->aColCache[i].iReg;
       
  1624     if( x>=iFrom && x<iFrom+nReg ){
       
  1625       pParse->aColCache[i].iReg += iTo-iFrom;
       
  1626     }
       
  1627   }
       
  1628 }
       
  1629 
       
  1630 /*
       
  1631 ** Generate code to copy content from registers iFrom...iFrom+nReg-1
       
  1632 ** over to iTo..iTo+nReg-1.
       
  1633 */
       
  1634 void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){
       
  1635   int i;
       
  1636   if( iFrom==iTo ) return;
       
  1637   for(i=0; i<nReg; i++){
       
  1638     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i);
       
  1639   }
       
  1640 }
       
  1641 
       
  1642 /*
       
  1643 ** Return true if any register in the range iFrom..iTo (inclusive)
       
  1644 ** is used as part of the column cache.
       
  1645 */
       
  1646 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
       
  1647   int i;
       
  1648   for(i=0; i<pParse->nColCache; i++){
       
  1649     int r = pParse->aColCache[i].iReg;
       
  1650     if( r>=iFrom && r<=iTo ) return 1;
       
  1651   }
       
  1652   return 0;
       
  1653 }
       
  1654 
       
  1655 /*
       
  1656 ** Theres is a value in register iCurrent.  We ultimately want
       
  1657 ** the value to be in register iTarget.  It might be that
       
  1658 ** iCurrent and iTarget are the same register.
       
  1659 **
       
  1660 ** We are going to modify the value, so we need to make sure it
       
  1661 ** is not a cached register.  If iCurrent is a cached register,
       
  1662 ** then try to move the value over to iTarget.  If iTarget is a
       
  1663 ** cached register, then clear the corresponding cache line.
       
  1664 **
       
  1665 ** Return the register that the value ends up in.
       
  1666 */
       
  1667 int sqlite3ExprWritableRegister(Parse *pParse, int iCurrent, int iTarget){
       
  1668   int i;
       
  1669   assert( pParse->pVdbe!=0 );
       
  1670   if( !usedAsColumnCache(pParse, iCurrent, iCurrent) ){
       
  1671     return iCurrent;
       
  1672   }
       
  1673   if( iCurrent!=iTarget ){
       
  1674     sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, iCurrent, iTarget);
       
  1675   }
       
  1676   for(i=0; i<pParse->nColCache; i++){
       
  1677     if( pParse->aColCache[i].iReg==iTarget ){
       
  1678       pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache];
       
  1679       pParse->iColCache = pParse->nColCache;
       
  1680     }
       
  1681   }
       
  1682   return iTarget;
       
  1683 }
       
  1684 
       
  1685 /*
       
  1686 ** If the last instruction coded is an ephemeral copy of any of
       
  1687 ** the registers in the nReg registers beginning with iReg, then
       
  1688 ** convert the last instruction from OP_SCopy to OP_Copy.
       
  1689 */
       
  1690 void sqlite3ExprHardCopy(Parse *pParse, int iReg, int nReg){
       
  1691   int addr;
       
  1692   VdbeOp *pOp;
       
  1693   Vdbe *v;
       
  1694 
       
  1695   v = pParse->pVdbe;
       
  1696   addr = sqlite3VdbeCurrentAddr(v);
       
  1697   pOp = sqlite3VdbeGetOp(v, addr-1);
       
  1698   assert( pOp || pParse->db->mallocFailed );
       
  1699   if( pOp && pOp->opcode==OP_SCopy && pOp->p1>=iReg && pOp->p1<iReg+nReg ){
       
  1700     pOp->opcode = OP_Copy;
       
  1701   }
       
  1702 }
       
  1703 
       
  1704 /*
       
  1705 ** Generate code to store the value of the iAlias-th alias in register
       
  1706 ** target.  The first time this is called, pExpr is evaluated to compute
       
  1707 ** the value of the alias.  The value is stored in an auxiliary register
       
  1708 ** and the number of that register is returned.  On subsequent calls,
       
  1709 ** the register number is returned without generating any code.
       
  1710 **
       
  1711 ** Note that in order for this to work, code must be generated in the
       
  1712 ** same order that it is executed.
       
  1713 **
       
  1714 ** Aliases are numbered starting with 1.  So iAlias is in the range
       
  1715 ** of 1 to pParse->nAlias inclusive.  
       
  1716 **
       
  1717 ** pParse->aAlias[iAlias-1] records the register number where the value
       
  1718 ** of the iAlias-th alias is stored.  If zero, that means that the
       
  1719 ** alias has not yet been computed.
       
  1720 */
       
  1721 static int codeAlias(Parse *pParse, int iAlias, Expr *pExpr, int target){
       
  1722   sqlite3 *db = pParse->db;
       
  1723   int iReg;
       
  1724   if( pParse->nAliasAlloc<pParse->nAlias ){
       
  1725     pParse->aAlias = sqlite3DbReallocOrFree(db, pParse->aAlias,
       
  1726                                   sizeof(pParse->aAlias[0])*pParse->nAlias );
       
  1727     testcase( db->mallocFailed && pParse->nAliasAlloc>0 );
       
  1728     if( db->mallocFailed ) return 0;
       
  1729     memset(&pParse->aAlias[pParse->nAliasAlloc], 0,
       
  1730            (pParse->nAlias-pParse->nAliasAlloc)*sizeof(pParse->aAlias[0]));
       
  1731     pParse->nAliasAlloc = pParse->nAlias;
       
  1732   }
       
  1733   assert( iAlias>0 && iAlias<=pParse->nAlias );
       
  1734   iReg = pParse->aAlias[iAlias-1];
       
  1735   if( iReg==0 ){
       
  1736     if( pParse->disableColCache ){
       
  1737       iReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
       
  1738     }else{
       
  1739       iReg = ++pParse->nMem;
       
  1740       sqlite3ExprCode(pParse, pExpr, iReg);
       
  1741       pParse->aAlias[iAlias-1] = iReg;
       
  1742     }
       
  1743   }
       
  1744   return iReg;
       
  1745 }
       
  1746 
       
  1747 /*
       
  1748 ** Generate code into the current Vdbe to evaluate the given
       
  1749 ** expression.  Attempt to store the results in register "target".
       
  1750 ** Return the register where results are stored.
       
  1751 **
       
  1752 ** With this routine, there is no guarantee that results will
       
  1753 ** be stored in target.  The result might be stored in some other
       
  1754 ** register if it is convenient to do so.  The calling function
       
  1755 ** must check the return code and move the results to the desired
       
  1756 ** register.
       
  1757 */
       
  1758 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
       
  1759   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
       
  1760   int op;                   /* The opcode being coded */
       
  1761   int inReg = target;       /* Results stored in register inReg */
       
  1762   int regFree1 = 0;         /* If non-zero free this temporary register */
       
  1763   int regFree2 = 0;         /* If non-zero free this temporary register */
       
  1764   int r1, r2, r3, r4;       /* Various register numbers */
       
  1765   sqlite3 *db;
       
  1766 
       
  1767   db = pParse->db;
       
  1768   assert( v!=0 || db->mallocFailed );
       
  1769   assert( target>0 && target<=pParse->nMem );
       
  1770   if( v==0 ) return 0;
       
  1771 
       
  1772   if( pExpr==0 ){
       
  1773     op = TK_NULL;
       
  1774   }else{
       
  1775     op = pExpr->op;
       
  1776   }
       
  1777   switch( op ){
       
  1778     case TK_AGG_COLUMN: {
       
  1779       AggInfo *pAggInfo = pExpr->pAggInfo;
       
  1780       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
       
  1781       if( !pAggInfo->directMode ){
       
  1782         assert( pCol->iMem>0 );
       
  1783         inReg = pCol->iMem;
       
  1784         break;
       
  1785       }else if( pAggInfo->useSortingIdx ){
       
  1786         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx,
       
  1787                               pCol->iSorterColumn, target);
       
  1788         break;
       
  1789       }
       
  1790       /* Otherwise, fall thru into the TK_COLUMN case */
       
  1791     }
       
  1792     case TK_COLUMN: {
       
  1793       if( pExpr->iTable<0 ){
       
  1794         /* This only happens when coding check constraints */
       
  1795         assert( pParse->ckBase>0 );
       
  1796         inReg = pExpr->iColumn + pParse->ckBase;
       
  1797       }else{
       
  1798         testcase( (pExpr->flags & EP_AnyAff)!=0 );
       
  1799         inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
       
  1800                                  pExpr->iColumn, pExpr->iTable, target,
       
  1801                                  pExpr->flags & EP_AnyAff);
       
  1802       }
       
  1803       break;
       
  1804     }
       
  1805     case TK_INTEGER: {
       
  1806       codeInteger(v, pExpr, 0, target);
       
  1807       break;
       
  1808     }
       
  1809     case TK_FLOAT: {
       
  1810       codeReal(v, (char*)pExpr->token.z, pExpr->token.n, 0, target);
       
  1811       break;
       
  1812     }
       
  1813     case TK_STRING: {
       
  1814       sqlite3DequoteExpr(db, pExpr);
       
  1815       sqlite3VdbeAddOp4(v,OP_String8, 0, target, 0,
       
  1816                         (char*)pExpr->token.z, pExpr->token.n);
       
  1817       break;
       
  1818     }
       
  1819     case TK_NULL: {
       
  1820       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
       
  1821       break;
       
  1822     }
       
  1823 #ifndef SQLITE_OMIT_BLOB_LITERAL
       
  1824     case TK_BLOB: {
       
  1825       int n;
       
  1826       const char *z;
       
  1827       char *zBlob;
       
  1828       assert( pExpr->token.n>=3 );
       
  1829       assert( pExpr->token.z[0]=='x' || pExpr->token.z[0]=='X' );
       
  1830       assert( pExpr->token.z[1]=='\'' );
       
  1831       assert( pExpr->token.z[pExpr->token.n-1]=='\'' );
       
  1832       n = pExpr->token.n - 3;
       
  1833       z = (char*)pExpr->token.z + 2;
       
  1834       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
       
  1835       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
       
  1836       break;
       
  1837     }
       
  1838 #endif
       
  1839     case TK_VARIABLE: {
       
  1840       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iTable, target);
       
  1841       if( pExpr->token.n>1 ){
       
  1842         sqlite3VdbeChangeP4(v, -1, (char*)pExpr->token.z, pExpr->token.n);
       
  1843       }
       
  1844       break;
       
  1845     }
       
  1846     case TK_REGISTER: {
       
  1847       inReg = pExpr->iTable;
       
  1848       break;
       
  1849     }
       
  1850     case TK_AS: {
       
  1851       inReg = codeAlias(pParse, pExpr->iTable, pExpr->pLeft, target);
       
  1852       break;
       
  1853     }
       
  1854 #ifndef SQLITE_OMIT_CAST
       
  1855     case TK_CAST: {
       
  1856       /* Expressions of the form:   CAST(pLeft AS token) */
       
  1857       int aff, to_op;
       
  1858       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
       
  1859       aff = sqlite3AffinityType(&pExpr->token);
       
  1860       to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
       
  1861       assert( to_op==OP_ToText    || aff!=SQLITE_AFF_TEXT    );
       
  1862       assert( to_op==OP_ToBlob    || aff!=SQLITE_AFF_NONE    );
       
  1863       assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
       
  1864       assert( to_op==OP_ToInt     || aff!=SQLITE_AFF_INTEGER );
       
  1865       assert( to_op==OP_ToReal    || aff!=SQLITE_AFF_REAL    );
       
  1866       testcase( to_op==OP_ToText );
       
  1867       testcase( to_op==OP_ToBlob );
       
  1868       testcase( to_op==OP_ToNumeric );
       
  1869       testcase( to_op==OP_ToInt );
       
  1870       testcase( to_op==OP_ToReal );
       
  1871       if( inReg!=target ){
       
  1872         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
       
  1873         inReg = target;
       
  1874       }
       
  1875       sqlite3VdbeAddOp1(v, to_op, inReg);
       
  1876       testcase( usedAsColumnCache(pParse, inReg, inReg) );
       
  1877       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
       
  1878       break;
       
  1879     }
       
  1880 #endif /* SQLITE_OMIT_CAST */
       
  1881     case TK_LT:
       
  1882     case TK_LE:
       
  1883     case TK_GT:
       
  1884     case TK_GE:
       
  1885     case TK_NE:
       
  1886     case TK_EQ: {
       
  1887       assert( TK_LT==OP_Lt );
       
  1888       assert( TK_LE==OP_Le );
       
  1889       assert( TK_GT==OP_Gt );
       
  1890       assert( TK_GE==OP_Ge );
       
  1891       assert( TK_EQ==OP_Eq );
       
  1892       assert( TK_NE==OP_Ne );
       
  1893       testcase( op==TK_LT );
       
  1894       testcase( op==TK_LE );
       
  1895       testcase( op==TK_GT );
       
  1896       testcase( op==TK_GE );
       
  1897       testcase( op==TK_EQ );
       
  1898       testcase( op==TK_NE );
       
  1899       codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
       
  1900                                   pExpr->pRight, &r2, &regFree2);
       
  1901       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
       
  1902                   r1, r2, inReg, SQLITE_STOREP2);
       
  1903       testcase( regFree1==0 );
       
  1904       testcase( regFree2==0 );
       
  1905       break;
       
  1906     }
       
  1907     case TK_AND:
       
  1908     case TK_OR:
       
  1909     case TK_PLUS:
       
  1910     case TK_STAR:
       
  1911     case TK_MINUS:
       
  1912     case TK_REM:
       
  1913     case TK_BITAND:
       
  1914     case TK_BITOR:
       
  1915     case TK_SLASH:
       
  1916     case TK_LSHIFT:
       
  1917     case TK_RSHIFT: 
       
  1918     case TK_CONCAT: {
       
  1919       assert( TK_AND==OP_And );
       
  1920       assert( TK_OR==OP_Or );
       
  1921       assert( TK_PLUS==OP_Add );
       
  1922       assert( TK_MINUS==OP_Subtract );
       
  1923       assert( TK_REM==OP_Remainder );
       
  1924       assert( TK_BITAND==OP_BitAnd );
       
  1925       assert( TK_BITOR==OP_BitOr );
       
  1926       assert( TK_SLASH==OP_Divide );
       
  1927       assert( TK_LSHIFT==OP_ShiftLeft );
       
  1928       assert( TK_RSHIFT==OP_ShiftRight );
       
  1929       assert( TK_CONCAT==OP_Concat );
       
  1930       testcase( op==TK_AND );
       
  1931       testcase( op==TK_OR );
       
  1932       testcase( op==TK_PLUS );
       
  1933       testcase( op==TK_MINUS );
       
  1934       testcase( op==TK_REM );
       
  1935       testcase( op==TK_BITAND );
       
  1936       testcase( op==TK_BITOR );
       
  1937       testcase( op==TK_SLASH );
       
  1938       testcase( op==TK_LSHIFT );
       
  1939       testcase( op==TK_RSHIFT );
       
  1940       testcase( op==TK_CONCAT );
       
  1941       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
       
  1942       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
       
  1943       sqlite3VdbeAddOp3(v, op, r2, r1, target);
       
  1944       testcase( regFree1==0 );
       
  1945       testcase( regFree2==0 );
       
  1946       break;
       
  1947     }
       
  1948     case TK_UMINUS: {
       
  1949       Expr *pLeft = pExpr->pLeft;
       
  1950       assert( pLeft );
       
  1951       if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){
       
  1952         if( pLeft->op==TK_FLOAT ){
       
  1953           codeReal(v, (char*)pLeft->token.z, pLeft->token.n, 1, target);
       
  1954         }else{
       
  1955           codeInteger(v, pLeft, 1, target);
       
  1956         }
       
  1957       }else{
       
  1958         regFree1 = r1 = sqlite3GetTempReg(pParse);
       
  1959         sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
       
  1960         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
       
  1961         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
       
  1962         testcase( regFree2==0 );
       
  1963       }
       
  1964       inReg = target;
       
  1965       break;
       
  1966     }
       
  1967     case TK_BITNOT:
       
  1968     case TK_NOT: {
       
  1969       assert( TK_BITNOT==OP_BitNot );
       
  1970       assert( TK_NOT==OP_Not );
       
  1971       testcase( op==TK_BITNOT );
       
  1972       testcase( op==TK_NOT );
       
  1973       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
       
  1974       testcase( regFree1==0 );
       
  1975       inReg = target;
       
  1976       sqlite3VdbeAddOp2(v, op, r1, inReg);
       
  1977       break;
       
  1978     }
       
  1979     case TK_ISNULL:
       
  1980     case TK_NOTNULL: {
       
  1981       int addr;
       
  1982       assert( TK_ISNULL==OP_IsNull );
       
  1983       assert( TK_NOTNULL==OP_NotNull );
       
  1984       testcase( op==TK_ISNULL );
       
  1985       testcase( op==TK_NOTNULL );
       
  1986       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
       
  1987       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
       
  1988       testcase( regFree1==0 );
       
  1989       addr = sqlite3VdbeAddOp1(v, op, r1);
       
  1990       sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
       
  1991       sqlite3VdbeJumpHere(v, addr);
       
  1992       break;
       
  1993     }
       
  1994     case TK_AGG_FUNCTION: {
       
  1995       AggInfo *pInfo = pExpr->pAggInfo;
       
  1996       if( pInfo==0 ){
       
  1997         sqlite3ErrorMsg(pParse, "misuse of aggregate: %T",
       
  1998             &pExpr->span);
       
  1999       }else{
       
  2000         inReg = pInfo->aFunc[pExpr->iAgg].iMem;
       
  2001       }
       
  2002       break;
       
  2003     }
       
  2004     case TK_CONST_FUNC:
       
  2005     case TK_FUNCTION: {
       
  2006       ExprList *pList = pExpr->pList;
       
  2007       int nExpr = pList ? pList->nExpr : 0;
       
  2008       FuncDef *pDef;
       
  2009       int nId;
       
  2010       const char *zId;
       
  2011       int constMask = 0;
       
  2012       int i;
       
  2013       u8 enc = ENC(db);
       
  2014       CollSeq *pColl = 0;
       
  2015 
       
  2016       testcase( op==TK_CONST_FUNC );
       
  2017       testcase( op==TK_FUNCTION );
       
  2018       zId = (char*)pExpr->token.z;
       
  2019       nId = pExpr->token.n;
       
  2020       pDef = sqlite3FindFunction(db, zId, nId, nExpr, enc, 0);
       
  2021       assert( pDef!=0 );
       
  2022       if( pList ){
       
  2023         nExpr = pList->nExpr;
       
  2024         r1 = sqlite3GetTempRange(pParse, nExpr);
       
  2025         sqlite3ExprCodeExprList(pParse, pList, r1, 1);
       
  2026       }else{
       
  2027         nExpr = r1 = 0;
       
  2028       }
       
  2029 #ifndef SQLITE_OMIT_VIRTUALTABLE
       
  2030       /* Possibly overload the function if the first argument is
       
  2031       ** a virtual table column.
       
  2032       **
       
  2033       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
       
  2034       ** second argument, not the first, as the argument to test to
       
  2035       ** see if it is a column in a virtual table.  This is done because
       
  2036       ** the left operand of infix functions (the operand we want to
       
  2037       ** control overloading) ends up as the second argument to the
       
  2038       ** function.  The expression "A glob B" is equivalent to 
       
  2039       ** "glob(B,A).  We want to use the A in "A glob B" to test
       
  2040       ** for function overloading.  But we use the B term in "glob(B,A)".
       
  2041       */
       
  2042       if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){
       
  2043         pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[1].pExpr);
       
  2044       }else if( nExpr>0 ){
       
  2045         pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[0].pExpr);
       
  2046       }
       
  2047 #endif
       
  2048       for(i=0; i<nExpr && i<32; i++){
       
  2049         if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){
       
  2050           constMask |= (1<<i);
       
  2051         }
       
  2052         if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
       
  2053           pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
       
  2054         }
       
  2055       }
       
  2056       if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){
       
  2057         if( !pColl ) pColl = db->pDfltColl; 
       
  2058         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
       
  2059       }
       
  2060       sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
       
  2061                         (char*)pDef, P4_FUNCDEF);
       
  2062       sqlite3VdbeChangeP5(v, nExpr);
       
  2063       if( nExpr ){
       
  2064         sqlite3ReleaseTempRange(pParse, r1, nExpr);
       
  2065       }
       
  2066       sqlite3ExprCacheAffinityChange(pParse, r1, nExpr);
       
  2067       break;
       
  2068     }
       
  2069 #ifndef SQLITE_OMIT_SUBQUERY
       
  2070     case TK_EXISTS:
       
  2071     case TK_SELECT: {
       
  2072       testcase( op==TK_EXISTS );
       
  2073       testcase( op==TK_SELECT );
       
  2074       if( pExpr->iColumn==0 ){
       
  2075         sqlite3CodeSubselect(pParse, pExpr, 0, 0);
       
  2076       }
       
  2077       inReg = pExpr->iColumn;
       
  2078       break;
       
  2079     }
       
  2080     case TK_IN: {
       
  2081       int rNotFound = 0;
       
  2082       int rMayHaveNull = 0;
       
  2083       int j2, j3, j4, j5;
       
  2084       char affinity;
       
  2085       int eType;
       
  2086 
       
  2087       VdbeNoopComment((v, "begin IN expr r%d", target));
       
  2088       eType = sqlite3FindInIndex(pParse, pExpr, &rMayHaveNull);
       
  2089       if( rMayHaveNull ){
       
  2090         rNotFound = ++pParse->nMem;
       
  2091       }
       
  2092 
       
  2093       /* Figure out the affinity to use to create a key from the results
       
  2094       ** of the expression. affinityStr stores a static string suitable for
       
  2095       ** P4 of OP_MakeRecord.
       
  2096       */
       
  2097       affinity = comparisonAffinity(pExpr);
       
  2098 
       
  2099 
       
  2100       /* Code the <expr> from "<expr> IN (...)". The temporary table
       
  2101       ** pExpr->iTable contains the values that make up the (...) set.
       
  2102       */
       
  2103       pParse->disableColCache++;
       
  2104       sqlite3ExprCode(pParse, pExpr->pLeft, target);
       
  2105       pParse->disableColCache--;
       
  2106       j2 = sqlite3VdbeAddOp1(v, OP_IsNull, target);
       
  2107       if( eType==IN_INDEX_ROWID ){
       
  2108         j3 = sqlite3VdbeAddOp1(v, OP_MustBeInt, target);
       
  2109         j4 = sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, 0, target);
       
  2110         sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
       
  2111         j5 = sqlite3VdbeAddOp0(v, OP_Goto);
       
  2112         sqlite3VdbeJumpHere(v, j3);
       
  2113         sqlite3VdbeJumpHere(v, j4);
       
  2114         sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
       
  2115       }else{
       
  2116         r2 = regFree2 = sqlite3GetTempReg(pParse);
       
  2117 
       
  2118         /* Create a record and test for set membership. If the set contains
       
  2119         ** the value, then jump to the end of the test code. The target
       
  2120         ** register still contains the true (1) value written to it earlier.
       
  2121         */
       
  2122         sqlite3VdbeAddOp4(v, OP_MakeRecord, target, 1, r2, &affinity, 1);
       
  2123         sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
       
  2124         j5 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, r2);
       
  2125 
       
  2126         /* If the set membership test fails, then the result of the 
       
  2127         ** "x IN (...)" expression must be either 0 or NULL. If the set
       
  2128         ** contains no NULL values, then the result is 0. If the set 
       
  2129         ** contains one or more NULL values, then the result of the
       
  2130         ** expression is also NULL.
       
  2131         */
       
  2132         if( rNotFound==0 ){
       
  2133           /* This branch runs if it is known at compile time (now) that 
       
  2134           ** the set contains no NULL values. This happens as the result
       
  2135           ** of a "NOT NULL" constraint in the database schema. No need
       
  2136           ** to test the data structure at runtime in this case.
       
  2137           */
       
  2138           sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
       
  2139         }else{
       
  2140           /* This block populates the rNotFound register with either NULL
       
  2141           ** or 0 (an integer value). If the data structure contains one
       
  2142           ** or more NULLs, then set rNotFound to NULL. Otherwise, set it
       
  2143           ** to 0. If register rMayHaveNull is already set to some value
       
  2144           ** other than NULL, then the test has already been run and 
       
  2145           ** rNotFound is already populated.
       
  2146           */
       
  2147           static const char nullRecord[] = { 0x02, 0x00 };
       
  2148           j3 = sqlite3VdbeAddOp1(v, OP_NotNull, rMayHaveNull);
       
  2149           sqlite3VdbeAddOp2(v, OP_Null, 0, rNotFound);
       
  2150           sqlite3VdbeAddOp4(v, OP_Blob, 2, rMayHaveNull, 0, 
       
  2151                              nullRecord, P4_STATIC);
       
  2152           j4 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, rMayHaveNull);
       
  2153           sqlite3VdbeAddOp2(v, OP_Integer, 0, rNotFound);
       
  2154           sqlite3VdbeJumpHere(v, j4);
       
  2155           sqlite3VdbeJumpHere(v, j3);
       
  2156 
       
  2157           /* Copy the value of register rNotFound (which is either NULL or 0)
       
  2158           ** into the target register. This will be the result of the
       
  2159           ** expression.
       
  2160           */
       
  2161           sqlite3VdbeAddOp2(v, OP_Copy, rNotFound, target);
       
  2162         }
       
  2163       }
       
  2164       sqlite3VdbeJumpHere(v, j2);
       
  2165       sqlite3VdbeJumpHere(v, j5);
       
  2166       VdbeComment((v, "end IN expr r%d", target));
       
  2167       break;
       
  2168     }
       
  2169 #endif
       
  2170     /*
       
  2171     **    x BETWEEN y AND z
       
  2172     **
       
  2173     ** This is equivalent to
       
  2174     **
       
  2175     **    x>=y AND x<=z
       
  2176     **
       
  2177     ** X is stored in pExpr->pLeft.
       
  2178     ** Y is stored in pExpr->pList->a[0].pExpr.
       
  2179     ** Z is stored in pExpr->pList->a[1].pExpr.
       
  2180     */
       
  2181     case TK_BETWEEN: {
       
  2182       Expr *pLeft = pExpr->pLeft;
       
  2183       struct ExprList_item *pLItem = pExpr->pList->a;
       
  2184       Expr *pRight = pLItem->pExpr;
       
  2185 
       
  2186       codeCompareOperands(pParse, pLeft, &r1, &regFree1,
       
  2187                                   pRight, &r2, &regFree2);
       
  2188       testcase( regFree1==0 );
       
  2189       testcase( regFree2==0 );
       
  2190       r3 = sqlite3GetTempReg(pParse);
       
  2191       r4 = sqlite3GetTempReg(pParse);
       
  2192       codeCompare(pParse, pLeft, pRight, OP_Ge,
       
  2193                   r1, r2, r3, SQLITE_STOREP2);
       
  2194       pLItem++;
       
  2195       pRight = pLItem->pExpr;
       
  2196       sqlite3ReleaseTempReg(pParse, regFree2);
       
  2197       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
       
  2198       testcase( regFree2==0 );
       
  2199       codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
       
  2200       sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
       
  2201       sqlite3ReleaseTempReg(pParse, r3);
       
  2202       sqlite3ReleaseTempReg(pParse, r4);
       
  2203       break;
       
  2204     }
       
  2205     case TK_UPLUS: {
       
  2206       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
       
  2207       break;
       
  2208     }
       
  2209 
       
  2210     /*
       
  2211     ** Form A:
       
  2212     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
       
  2213     **
       
  2214     ** Form B:
       
  2215     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
       
  2216     **
       
  2217     ** Form A is can be transformed into the equivalent form B as follows:
       
  2218     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
       
  2219     **        WHEN x=eN THEN rN ELSE y END
       
  2220     **
       
  2221     ** X (if it exists) is in pExpr->pLeft.
       
  2222     ** Y is in pExpr->pRight.  The Y is also optional.  If there is no
       
  2223     ** ELSE clause and no other term matches, then the result of the
       
  2224     ** exprssion is NULL.
       
  2225     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
       
  2226     **
       
  2227     ** The result of the expression is the Ri for the first matching Ei,
       
  2228     ** or if there is no matching Ei, the ELSE term Y, or if there is
       
  2229     ** no ELSE term, NULL.
       
  2230     */
       
  2231     case TK_CASE: {
       
  2232       int endLabel;                     /* GOTO label for end of CASE stmt */
       
  2233       int nextCase;                     /* GOTO label for next WHEN clause */
       
  2234       int nExpr;                        /* 2x number of WHEN terms */
       
  2235       int i;                            /* Loop counter */
       
  2236       ExprList *pEList;                 /* List of WHEN terms */
       
  2237       struct ExprList_item *aListelem;  /* Array of WHEN terms */
       
  2238       Expr opCompare;                   /* The X==Ei expression */
       
  2239       Expr cacheX;                      /* Cached expression X */
       
  2240       Expr *pX;                         /* The X expression */
       
  2241       Expr *pTest;                      /* X==Ei (form A) or just Ei (form B) */
       
  2242 
       
  2243       assert(pExpr->pList);
       
  2244       assert((pExpr->pList->nExpr % 2) == 0);
       
  2245       assert(pExpr->pList->nExpr > 0);
       
  2246       pEList = pExpr->pList;
       
  2247       aListelem = pEList->a;
       
  2248       nExpr = pEList->nExpr;
       
  2249       endLabel = sqlite3VdbeMakeLabel(v);
       
  2250       if( (pX = pExpr->pLeft)!=0 ){
       
  2251         cacheX = *pX;
       
  2252         testcase( pX->op==TK_COLUMN || pX->op==TK_REGISTER );
       
  2253         cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, &regFree1);
       
  2254         testcase( regFree1==0 );
       
  2255         cacheX.op = TK_REGISTER;
       
  2256         opCompare.op = TK_EQ;
       
  2257         opCompare.pLeft = &cacheX;
       
  2258         pTest = &opCompare;
       
  2259       }
       
  2260       pParse->disableColCache++;
       
  2261       for(i=0; i<nExpr; i=i+2){
       
  2262         if( pX ){
       
  2263           opCompare.pRight = aListelem[i].pExpr;
       
  2264         }else{
       
  2265           pTest = aListelem[i].pExpr;
       
  2266         }
       
  2267         nextCase = sqlite3VdbeMakeLabel(v);
       
  2268         testcase( pTest->op==TK_COLUMN || pTest->op==TK_REGISTER );
       
  2269         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
       
  2270         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
       
  2271         testcase( aListelem[i+1].pExpr->op==TK_REGISTER );
       
  2272         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
       
  2273         sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
       
  2274         sqlite3VdbeResolveLabel(v, nextCase);
       
  2275       }
       
  2276       if( pExpr->pRight ){
       
  2277         sqlite3ExprCode(pParse, pExpr->pRight, target);
       
  2278       }else{
       
  2279         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
       
  2280       }
       
  2281       sqlite3VdbeResolveLabel(v, endLabel);
       
  2282       assert( pParse->disableColCache>0 );
       
  2283       pParse->disableColCache--;
       
  2284       break;
       
  2285     }
       
  2286 #ifndef SQLITE_OMIT_TRIGGER
       
  2287     case TK_RAISE: {
       
  2288       if( !pParse->trigStack ){
       
  2289         sqlite3ErrorMsg(pParse,
       
  2290                        "RAISE() may only be used within a trigger-program");
       
  2291         return 0;
       
  2292       }
       
  2293       if( pExpr->iColumn!=OE_Ignore ){
       
  2294          assert( pExpr->iColumn==OE_Rollback ||
       
  2295                  pExpr->iColumn == OE_Abort ||
       
  2296                  pExpr->iColumn == OE_Fail );
       
  2297          sqlite3DequoteExpr(db, pExpr);
       
  2298          sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, 0,
       
  2299                         (char*)pExpr->token.z, pExpr->token.n);
       
  2300       } else {
       
  2301          assert( pExpr->iColumn == OE_Ignore );
       
  2302          sqlite3VdbeAddOp2(v, OP_ContextPop, 0, 0);
       
  2303          sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->trigStack->ignoreJump);
       
  2304          VdbeComment((v, "raise(IGNORE)"));
       
  2305       }
       
  2306       break;
       
  2307     }
       
  2308 #endif
       
  2309   }
       
  2310   sqlite3ReleaseTempReg(pParse, regFree1);
       
  2311   sqlite3ReleaseTempReg(pParse, regFree2);
       
  2312   return inReg;
       
  2313 }
       
  2314 
       
  2315 /*
       
  2316 ** Generate code to evaluate an expression and store the results
       
  2317 ** into a register.  Return the register number where the results
       
  2318 ** are stored.
       
  2319 **
       
  2320 ** If the register is a temporary register that can be deallocated,
       
  2321 ** then write its number into *pReg.  If the result register is not
       
  2322 ** a temporary, then set *pReg to zero.
       
  2323 */
       
  2324 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
       
  2325   int r1 = sqlite3GetTempReg(pParse);
       
  2326   int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
       
  2327   if( r2==r1 ){
       
  2328     *pReg = r1;
       
  2329   }else{
       
  2330     sqlite3ReleaseTempReg(pParse, r1);
       
  2331     *pReg = 0;
       
  2332   }
       
  2333   return r2;
       
  2334 }
       
  2335 
       
  2336 /*
       
  2337 ** Generate code that will evaluate expression pExpr and store the
       
  2338 ** results in register target.  The results are guaranteed to appear
       
  2339 ** in register target.
       
  2340 */
       
  2341 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
       
  2342   int inReg;
       
  2343 
       
  2344   assert( target>0 && target<=pParse->nMem );
       
  2345   inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
       
  2346   assert( pParse->pVdbe || pParse->db->mallocFailed );
       
  2347   if( inReg!=target && pParse->pVdbe ){
       
  2348     sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
       
  2349   }
       
  2350   return target;
       
  2351 }
       
  2352 
       
  2353 /*
       
  2354 ** Generate code that evalutes the given expression and puts the result
       
  2355 ** in register target.
       
  2356 **
       
  2357 ** Also make a copy of the expression results into another "cache" register
       
  2358 ** and modify the expression so that the next time it is evaluated,
       
  2359 ** the result is a copy of the cache register.
       
  2360 **
       
  2361 ** This routine is used for expressions that are used multiple 
       
  2362 ** times.  They are evaluated once and the results of the expression
       
  2363 ** are reused.
       
  2364 */
       
  2365 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
       
  2366   Vdbe *v = pParse->pVdbe;
       
  2367   int inReg;
       
  2368   inReg = sqlite3ExprCode(pParse, pExpr, target);
       
  2369   assert( target>0 );
       
  2370   if( pExpr->op!=TK_REGISTER ){  
       
  2371     int iMem;
       
  2372     iMem = ++pParse->nMem;
       
  2373     sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
       
  2374     pExpr->iTable = iMem;
       
  2375     pExpr->op = TK_REGISTER;
       
  2376   }
       
  2377   return inReg;
       
  2378 }
       
  2379 
       
  2380 /*
       
  2381 ** Return TRUE if pExpr is an constant expression that is appropriate
       
  2382 ** for factoring out of a loop.  Appropriate expressions are:
       
  2383 **
       
  2384 **    *  Any expression that evaluates to two or more opcodes.
       
  2385 **
       
  2386 **    *  Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null, 
       
  2387 **       or OP_Variable that does not need to be placed in a 
       
  2388 **       specific register.
       
  2389 **
       
  2390 ** There is no point in factoring out single-instruction constant
       
  2391 ** expressions that need to be placed in a particular register.  
       
  2392 ** We could factor them out, but then we would end up adding an
       
  2393 ** OP_SCopy instruction to move the value into the correct register
       
  2394 ** later.  We might as well just use the original instruction and
       
  2395 ** avoid the OP_SCopy.
       
  2396 */
       
  2397 static int isAppropriateForFactoring(Expr *p){
       
  2398   if( !sqlite3ExprIsConstantNotJoin(p) ){
       
  2399     return 0;  /* Only constant expressions are appropriate for factoring */
       
  2400   }
       
  2401   if( (p->flags & EP_FixedDest)==0 ){
       
  2402     return 1;  /* Any constant without a fixed destination is appropriate */
       
  2403   }
       
  2404   while( p->op==TK_UPLUS ) p = p->pLeft;
       
  2405   switch( p->op ){
       
  2406 #ifndef SQLITE_OMIT_BLOB_LITERAL
       
  2407     case TK_BLOB:
       
  2408 #endif
       
  2409     case TK_VARIABLE:
       
  2410     case TK_INTEGER:
       
  2411     case TK_FLOAT:
       
  2412     case TK_NULL:
       
  2413     case TK_STRING: {
       
  2414       testcase( p->op==TK_BLOB );
       
  2415       testcase( p->op==TK_VARIABLE );
       
  2416       testcase( p->op==TK_INTEGER );
       
  2417       testcase( p->op==TK_FLOAT );
       
  2418       testcase( p->op==TK_NULL );
       
  2419       testcase( p->op==TK_STRING );
       
  2420       /* Single-instruction constants with a fixed destination are
       
  2421       ** better done in-line.  If we factor them, they will just end
       
  2422       ** up generating an OP_SCopy to move the value to the destination
       
  2423       ** register. */
       
  2424       return 0;
       
  2425     }
       
  2426     case TK_UMINUS: {
       
  2427        if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){
       
  2428          return 0;
       
  2429        }
       
  2430        break;
       
  2431     }
       
  2432     default: {
       
  2433       break;
       
  2434     }
       
  2435   }
       
  2436   return 1;
       
  2437 }
       
  2438 
       
  2439 /*
       
  2440 ** If pExpr is a constant expression that is appropriate for
       
  2441 ** factoring out of a loop, then evaluate the expression
       
  2442 ** into a register and convert the expression into a TK_REGISTER
       
  2443 ** expression.
       
  2444 */
       
  2445 static int evalConstExpr(Walker *pWalker, Expr *pExpr){
       
  2446   Parse *pParse = pWalker->pParse;
       
  2447   switch( pExpr->op ){
       
  2448     case TK_REGISTER: {
       
  2449       return 1;
       
  2450     }
       
  2451     case TK_FUNCTION:
       
  2452     case TK_AGG_FUNCTION:
       
  2453     case TK_CONST_FUNC: {
       
  2454       /* The arguments to a function have a fixed destination.
       
  2455       ** Mark them this way to avoid generated unneeded OP_SCopy
       
  2456       ** instructions. 
       
  2457       */
       
  2458       ExprList *pList = pExpr->pList;
       
  2459       if( pList ){
       
  2460         int i = pList->nExpr;
       
  2461         struct ExprList_item *pItem = pList->a;
       
  2462         for(; i>0; i--, pItem++){
       
  2463           if( pItem->pExpr ) pItem->pExpr->flags |= EP_FixedDest;
       
  2464         }
       
  2465       }
       
  2466       break;
       
  2467     }
       
  2468   }
       
  2469   if( isAppropriateForFactoring(pExpr) ){
       
  2470     int r1 = ++pParse->nMem;
       
  2471     int r2;
       
  2472     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
       
  2473     if( r1!=r2 ) sqlite3ReleaseTempReg(pParse, r1);
       
  2474     pExpr->op = TK_REGISTER;
       
  2475     pExpr->iTable = r2;
       
  2476     return WRC_Prune;
       
  2477   }
       
  2478   return WRC_Continue;
       
  2479 }
       
  2480 
       
  2481 /*
       
  2482 ** Preevaluate constant subexpressions within pExpr and store the
       
  2483 ** results in registers.  Modify pExpr so that the constant subexpresions
       
  2484 ** are TK_REGISTER opcodes that refer to the precomputed values.
       
  2485 */
       
  2486 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){
       
  2487   Walker w;
       
  2488   w.xExprCallback = evalConstExpr;
       
  2489   w.xSelectCallback = 0;
       
  2490   w.pParse = pParse;
       
  2491   sqlite3WalkExpr(&w, pExpr);
       
  2492 }
       
  2493 
       
  2494 
       
  2495 /*
       
  2496 ** Generate code that pushes the value of every element of the given
       
  2497 ** expression list into a sequence of registers beginning at target.
       
  2498 **
       
  2499 ** Return the number of elements evaluated.
       
  2500 */
       
  2501 int sqlite3ExprCodeExprList(
       
  2502   Parse *pParse,     /* Parsing context */
       
  2503   ExprList *pList,   /* The expression list to be coded */
       
  2504   int target,        /* Where to write results */
       
  2505   int doHardCopy     /* Make a hard copy of every element */
       
  2506 ){
       
  2507   struct ExprList_item *pItem;
       
  2508   int i, n;
       
  2509   assert( pList!=0 );
       
  2510   assert( target>0 );
       
  2511   n = pList->nExpr;
       
  2512   for(pItem=pList->a, i=0; i<n; i++, pItem++){
       
  2513     if( pItem->iAlias ){
       
  2514       int iReg = codeAlias(pParse, pItem->iAlias, pItem->pExpr, target);
       
  2515       Vdbe *v = sqlite3GetVdbe(pParse);
       
  2516       if( iReg!=target+i ){
       
  2517         sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target+i);
       
  2518       }
       
  2519     }else{
       
  2520       sqlite3ExprCode(pParse, pItem->pExpr, target+i);
       
  2521     }
       
  2522     if( doHardCopy ){
       
  2523       sqlite3ExprHardCopy(pParse, target, n);
       
  2524     }
       
  2525   }
       
  2526   return n;
       
  2527 }
       
  2528 
       
  2529 /*
       
  2530 ** Generate code for a boolean expression such that a jump is made
       
  2531 ** to the label "dest" if the expression is true but execution
       
  2532 ** continues straight thru if the expression is false.
       
  2533 **
       
  2534 ** If the expression evaluates to NULL (neither true nor false), then
       
  2535 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
       
  2536 **
       
  2537 ** This code depends on the fact that certain token values (ex: TK_EQ)
       
  2538 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
       
  2539 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
       
  2540 ** the make process cause these values to align.  Assert()s in the code
       
  2541 ** below verify that the numbers are aligned correctly.
       
  2542 */
       
  2543 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
       
  2544   Vdbe *v = pParse->pVdbe;
       
  2545   int op = 0;
       
  2546   int regFree1 = 0;
       
  2547   int regFree2 = 0;
       
  2548   int r1, r2;
       
  2549 
       
  2550   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
       
  2551   if( v==0 || pExpr==0 ) return;
       
  2552   op = pExpr->op;
       
  2553   switch( op ){
       
  2554     case TK_AND: {
       
  2555       int d2 = sqlite3VdbeMakeLabel(v);
       
  2556       testcase( jumpIfNull==0 );
       
  2557       testcase( pParse->disableColCache==0 );
       
  2558       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
       
  2559       pParse->disableColCache++;
       
  2560       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
       
  2561       assert( pParse->disableColCache>0 );
       
  2562       pParse->disableColCache--;
       
  2563       sqlite3VdbeResolveLabel(v, d2);
       
  2564       break;
       
  2565     }
       
  2566     case TK_OR: {
       
  2567       testcase( jumpIfNull==0 );
       
  2568       testcase( pParse->disableColCache==0 );
       
  2569       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
       
  2570       pParse->disableColCache++;
       
  2571       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
       
  2572       assert( pParse->disableColCache>0 );
       
  2573       pParse->disableColCache--;
       
  2574       break;
       
  2575     }
       
  2576     case TK_NOT: {
       
  2577       testcase( jumpIfNull==0 );
       
  2578       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
       
  2579       break;
       
  2580     }
       
  2581     case TK_LT:
       
  2582     case TK_LE:
       
  2583     case TK_GT:
       
  2584     case TK_GE:
       
  2585     case TK_NE:
       
  2586     case TK_EQ: {
       
  2587       assert( TK_LT==OP_Lt );
       
  2588       assert( TK_LE==OP_Le );
       
  2589       assert( TK_GT==OP_Gt );
       
  2590       assert( TK_GE==OP_Ge );
       
  2591       assert( TK_EQ==OP_Eq );
       
  2592       assert( TK_NE==OP_Ne );
       
  2593       testcase( op==TK_LT );
       
  2594       testcase( op==TK_LE );
       
  2595       testcase( op==TK_GT );
       
  2596       testcase( op==TK_GE );
       
  2597       testcase( op==TK_EQ );
       
  2598       testcase( op==TK_NE );
       
  2599       testcase( jumpIfNull==0 );
       
  2600       codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
       
  2601                                   pExpr->pRight, &r2, &regFree2);
       
  2602       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
       
  2603                   r1, r2, dest, jumpIfNull);
       
  2604       testcase( regFree1==0 );
       
  2605       testcase( regFree2==0 );
       
  2606       break;
       
  2607     }
       
  2608     case TK_ISNULL:
       
  2609     case TK_NOTNULL: {
       
  2610       assert( TK_ISNULL==OP_IsNull );
       
  2611       assert( TK_NOTNULL==OP_NotNull );
       
  2612       testcase( op==TK_ISNULL );
       
  2613       testcase( op==TK_NOTNULL );
       
  2614       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
       
  2615       sqlite3VdbeAddOp2(v, op, r1, dest);
       
  2616       testcase( regFree1==0 );
       
  2617       break;
       
  2618     }
       
  2619     case TK_BETWEEN: {
       
  2620       /*    x BETWEEN y AND z
       
  2621       **
       
  2622       ** Is equivalent to 
       
  2623       **
       
  2624       **    x>=y AND x<=z
       
  2625       **
       
  2626       ** Code it as such, taking care to do the common subexpression
       
  2627       ** elementation of x.
       
  2628       */
       
  2629       Expr exprAnd;
       
  2630       Expr compLeft;
       
  2631       Expr compRight;
       
  2632       Expr exprX;
       
  2633 
       
  2634       exprX = *pExpr->pLeft;
       
  2635       exprAnd.op = TK_AND;
       
  2636       exprAnd.pLeft = &compLeft;
       
  2637       exprAnd.pRight = &compRight;
       
  2638       compLeft.op = TK_GE;
       
  2639       compLeft.pLeft = &exprX;
       
  2640       compLeft.pRight = pExpr->pList->a[0].pExpr;
       
  2641       compRight.op = TK_LE;
       
  2642       compRight.pLeft = &exprX;
       
  2643       compRight.pRight = pExpr->pList->a[1].pExpr;
       
  2644       exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
       
  2645       testcase( regFree1==0 );
       
  2646       exprX.op = TK_REGISTER;
       
  2647       testcase( jumpIfNull==0 );
       
  2648       sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
       
  2649       break;
       
  2650     }
       
  2651     default: {
       
  2652       r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
       
  2653       sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
       
  2654       testcase( regFree1==0 );
       
  2655       testcase( jumpIfNull==0 );
       
  2656       break;
       
  2657     }
       
  2658   }
       
  2659   sqlite3ReleaseTempReg(pParse, regFree1);
       
  2660   sqlite3ReleaseTempReg(pParse, regFree2);  
       
  2661 }
       
  2662 
       
  2663 /*
       
  2664 ** Generate code for a boolean expression such that a jump is made
       
  2665 ** to the label "dest" if the expression is false but execution
       
  2666 ** continues straight thru if the expression is true.
       
  2667 **
       
  2668 ** If the expression evaluates to NULL (neither true nor false) then
       
  2669 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
       
  2670 ** is 0.
       
  2671 */
       
  2672 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
       
  2673   Vdbe *v = pParse->pVdbe;
       
  2674   int op = 0;
       
  2675   int regFree1 = 0;
       
  2676   int regFree2 = 0;
       
  2677   int r1, r2;
       
  2678 
       
  2679   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
       
  2680   if( v==0 || pExpr==0 ) return;
       
  2681 
       
  2682   /* The value of pExpr->op and op are related as follows:
       
  2683   **
       
  2684   **       pExpr->op            op
       
  2685   **       ---------          ----------
       
  2686   **       TK_ISNULL          OP_NotNull
       
  2687   **       TK_NOTNULL         OP_IsNull
       
  2688   **       TK_NE              OP_Eq
       
  2689   **       TK_EQ              OP_Ne
       
  2690   **       TK_GT              OP_Le
       
  2691   **       TK_LE              OP_Gt
       
  2692   **       TK_GE              OP_Lt
       
  2693   **       TK_LT              OP_Ge
       
  2694   **
       
  2695   ** For other values of pExpr->op, op is undefined and unused.
       
  2696   ** The value of TK_ and OP_ constants are arranged such that we
       
  2697   ** can compute the mapping above using the following expression.
       
  2698   ** Assert()s verify that the computation is correct.
       
  2699   */
       
  2700   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
       
  2701 
       
  2702   /* Verify correct alignment of TK_ and OP_ constants
       
  2703   */
       
  2704   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
       
  2705   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
       
  2706   assert( pExpr->op!=TK_NE || op==OP_Eq );
       
  2707   assert( pExpr->op!=TK_EQ || op==OP_Ne );
       
  2708   assert( pExpr->op!=TK_LT || op==OP_Ge );
       
  2709   assert( pExpr->op!=TK_LE || op==OP_Gt );
       
  2710   assert( pExpr->op!=TK_GT || op==OP_Le );
       
  2711   assert( pExpr->op!=TK_GE || op==OP_Lt );
       
  2712 
       
  2713   switch( pExpr->op ){
       
  2714     case TK_AND: {
       
  2715       testcase( jumpIfNull==0 );
       
  2716       testcase( pParse->disableColCache==0 );
       
  2717       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
       
  2718       pParse->disableColCache++;
       
  2719       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
       
  2720       assert( pParse->disableColCache>0 );
       
  2721       pParse->disableColCache--;
       
  2722       break;
       
  2723     }
       
  2724     case TK_OR: {
       
  2725       int d2 = sqlite3VdbeMakeLabel(v);
       
  2726       testcase( jumpIfNull==0 );
       
  2727       testcase( pParse->disableColCache==0 );
       
  2728       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
       
  2729       pParse->disableColCache++;
       
  2730       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
       
  2731       assert( pParse->disableColCache>0 );
       
  2732       pParse->disableColCache--;
       
  2733       sqlite3VdbeResolveLabel(v, d2);
       
  2734       break;
       
  2735     }
       
  2736     case TK_NOT: {
       
  2737       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
       
  2738       break;
       
  2739     }
       
  2740     case TK_LT:
       
  2741     case TK_LE:
       
  2742     case TK_GT:
       
  2743     case TK_GE:
       
  2744     case TK_NE:
       
  2745     case TK_EQ: {
       
  2746       testcase( op==TK_LT );
       
  2747       testcase( op==TK_LE );
       
  2748       testcase( op==TK_GT );
       
  2749       testcase( op==TK_GE );
       
  2750       testcase( op==TK_EQ );
       
  2751       testcase( op==TK_NE );
       
  2752       testcase( jumpIfNull==0 );
       
  2753       codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
       
  2754                                   pExpr->pRight, &r2, &regFree2);
       
  2755       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
       
  2756                   r1, r2, dest, jumpIfNull);
       
  2757       testcase( regFree1==0 );
       
  2758       testcase( regFree2==0 );
       
  2759       break;
       
  2760     }
       
  2761     case TK_ISNULL:
       
  2762     case TK_NOTNULL: {
       
  2763       testcase( op==TK_ISNULL );
       
  2764       testcase( op==TK_NOTNULL );
       
  2765       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
       
  2766       sqlite3VdbeAddOp2(v, op, r1, dest);
       
  2767       testcase( regFree1==0 );
       
  2768       break;
       
  2769     }
       
  2770     case TK_BETWEEN: {
       
  2771       /*    x BETWEEN y AND z
       
  2772       **
       
  2773       ** Is equivalent to 
       
  2774       **
       
  2775       **    x>=y AND x<=z
       
  2776       **
       
  2777       ** Code it as such, taking care to do the common subexpression
       
  2778       ** elementation of x.
       
  2779       */
       
  2780       Expr exprAnd;
       
  2781       Expr compLeft;
       
  2782       Expr compRight;
       
  2783       Expr exprX;
       
  2784 
       
  2785       exprX = *pExpr->pLeft;
       
  2786       exprAnd.op = TK_AND;
       
  2787       exprAnd.pLeft = &compLeft;
       
  2788       exprAnd.pRight = &compRight;
       
  2789       compLeft.op = TK_GE;
       
  2790       compLeft.pLeft = &exprX;
       
  2791       compLeft.pRight = pExpr->pList->a[0].pExpr;
       
  2792       compRight.op = TK_LE;
       
  2793       compRight.pLeft = &exprX;
       
  2794       compRight.pRight = pExpr->pList->a[1].pExpr;
       
  2795       exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
       
  2796       testcase( regFree1==0 );
       
  2797       exprX.op = TK_REGISTER;
       
  2798       testcase( jumpIfNull==0 );
       
  2799       sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
       
  2800       break;
       
  2801     }
       
  2802     default: {
       
  2803       r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
       
  2804       sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
       
  2805       testcase( regFree1==0 );
       
  2806       testcase( jumpIfNull==0 );
       
  2807       break;
       
  2808     }
       
  2809   }
       
  2810   sqlite3ReleaseTempReg(pParse, regFree1);
       
  2811   sqlite3ReleaseTempReg(pParse, regFree2);
       
  2812 }
       
  2813 
       
  2814 /*
       
  2815 ** Do a deep comparison of two expression trees.  Return TRUE (non-zero)
       
  2816 ** if they are identical and return FALSE if they differ in any way.
       
  2817 **
       
  2818 ** Sometimes this routine will return FALSE even if the two expressions
       
  2819 ** really are equivalent.  If we cannot prove that the expressions are
       
  2820 ** identical, we return FALSE just to be safe.  So if this routine
       
  2821 ** returns false, then you do not really know for certain if the two
       
  2822 ** expressions are the same.  But if you get a TRUE return, then you
       
  2823 ** can be sure the expressions are the same.  In the places where
       
  2824 ** this routine is used, it does not hurt to get an extra FALSE - that
       
  2825 ** just might result in some slightly slower code.  But returning
       
  2826 ** an incorrect TRUE could lead to a malfunction.
       
  2827 */
       
  2828 int sqlite3ExprCompare(Expr *pA, Expr *pB){
       
  2829   int i;
       
  2830   if( pA==0||pB==0 ){
       
  2831     return pB==pA;
       
  2832   }
       
  2833   if( pA->op!=pB->op ) return 0;
       
  2834   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0;
       
  2835   if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0;
       
  2836   if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0;
       
  2837   if( pA->pList ){
       
  2838     if( pB->pList==0 ) return 0;
       
  2839     if( pA->pList->nExpr!=pB->pList->nExpr ) return 0;
       
  2840     for(i=0; i<pA->pList->nExpr; i++){
       
  2841       if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){
       
  2842         return 0;
       
  2843       }
       
  2844     }
       
  2845   }else if( pB->pList ){
       
  2846     return 0;
       
  2847   }
       
  2848   if( pA->pSelect || pB->pSelect ) return 0;
       
  2849   if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
       
  2850   if( pA->op!=TK_COLUMN && pA->token.z ){
       
  2851     if( pB->token.z==0 ) return 0;
       
  2852     if( pB->token.n!=pA->token.n ) return 0;
       
  2853     if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){
       
  2854       return 0;
       
  2855     }
       
  2856   }
       
  2857   return 1;
       
  2858 }
       
  2859 
       
  2860 
       
  2861 /*
       
  2862 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
       
  2863 ** the new element.  Return a negative number if malloc fails.
       
  2864 */
       
  2865 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
       
  2866   int i;
       
  2867   pInfo->aCol = sqlite3ArrayAllocate(
       
  2868        db,
       
  2869        pInfo->aCol,
       
  2870        sizeof(pInfo->aCol[0]),
       
  2871        3,
       
  2872        &pInfo->nColumn,
       
  2873        &pInfo->nColumnAlloc,
       
  2874        &i
       
  2875   );
       
  2876   return i;
       
  2877 }    
       
  2878 
       
  2879 /*
       
  2880 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
       
  2881 ** the new element.  Return a negative number if malloc fails.
       
  2882 */
       
  2883 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
       
  2884   int i;
       
  2885   pInfo->aFunc = sqlite3ArrayAllocate(
       
  2886        db, 
       
  2887        pInfo->aFunc,
       
  2888        sizeof(pInfo->aFunc[0]),
       
  2889        3,
       
  2890        &pInfo->nFunc,
       
  2891        &pInfo->nFuncAlloc,
       
  2892        &i
       
  2893   );
       
  2894   return i;
       
  2895 }    
       
  2896 
       
  2897 /*
       
  2898 ** This is the xExprCallback for a tree walker.  It is used to
       
  2899 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
       
  2900 ** for additional information.
       
  2901 */
       
  2902 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
       
  2903   int i;
       
  2904   NameContext *pNC = pWalker->u.pNC;
       
  2905   Parse *pParse = pNC->pParse;
       
  2906   SrcList *pSrcList = pNC->pSrcList;
       
  2907   AggInfo *pAggInfo = pNC->pAggInfo;
       
  2908 
       
  2909   switch( pExpr->op ){
       
  2910     case TK_AGG_COLUMN:
       
  2911     case TK_COLUMN: {
       
  2912       testcase( pExpr->op==TK_AGG_COLUMN );
       
  2913       testcase( pExpr->op==TK_COLUMN );
       
  2914       /* Check to see if the column is in one of the tables in the FROM
       
  2915       ** clause of the aggregate query */
       
  2916       if( pSrcList ){
       
  2917         struct SrcList_item *pItem = pSrcList->a;
       
  2918         for(i=0; i<pSrcList->nSrc; i++, pItem++){
       
  2919           struct AggInfo_col *pCol;
       
  2920           if( pExpr->iTable==pItem->iCursor ){
       
  2921             /* If we reach this point, it means that pExpr refers to a table
       
  2922             ** that is in the FROM clause of the aggregate query.  
       
  2923             **
       
  2924             ** Make an entry for the column in pAggInfo->aCol[] if there
       
  2925             ** is not an entry there already.
       
  2926             */
       
  2927             int k;
       
  2928             pCol = pAggInfo->aCol;
       
  2929             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
       
  2930               if( pCol->iTable==pExpr->iTable &&
       
  2931                   pCol->iColumn==pExpr->iColumn ){
       
  2932                 break;
       
  2933               }
       
  2934             }
       
  2935             if( (k>=pAggInfo->nColumn)
       
  2936              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 
       
  2937             ){
       
  2938               pCol = &pAggInfo->aCol[k];
       
  2939               pCol->pTab = pExpr->pTab;
       
  2940               pCol->iTable = pExpr->iTable;
       
  2941               pCol->iColumn = pExpr->iColumn;
       
  2942               pCol->iMem = ++pParse->nMem;
       
  2943               pCol->iSorterColumn = -1;
       
  2944               pCol->pExpr = pExpr;
       
  2945               if( pAggInfo->pGroupBy ){
       
  2946                 int j, n;
       
  2947                 ExprList *pGB = pAggInfo->pGroupBy;
       
  2948                 struct ExprList_item *pTerm = pGB->a;
       
  2949                 n = pGB->nExpr;
       
  2950                 for(j=0; j<n; j++, pTerm++){
       
  2951                   Expr *pE = pTerm->pExpr;
       
  2952                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
       
  2953                       pE->iColumn==pExpr->iColumn ){
       
  2954                     pCol->iSorterColumn = j;
       
  2955                     break;
       
  2956                   }
       
  2957                 }
       
  2958               }
       
  2959               if( pCol->iSorterColumn<0 ){
       
  2960                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
       
  2961               }
       
  2962             }
       
  2963             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
       
  2964             ** because it was there before or because we just created it).
       
  2965             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
       
  2966             ** pAggInfo->aCol[] entry.
       
  2967             */
       
  2968             pExpr->pAggInfo = pAggInfo;
       
  2969             pExpr->op = TK_AGG_COLUMN;
       
  2970             pExpr->iAgg = k;
       
  2971             break;
       
  2972           } /* endif pExpr->iTable==pItem->iCursor */
       
  2973         } /* end loop over pSrcList */
       
  2974       }
       
  2975       return WRC_Prune;
       
  2976     }
       
  2977     case TK_AGG_FUNCTION: {
       
  2978       /* The pNC->nDepth==0 test causes aggregate functions in subqueries
       
  2979       ** to be ignored */
       
  2980       if( pNC->nDepth==0 ){
       
  2981         /* Check to see if pExpr is a duplicate of another aggregate 
       
  2982         ** function that is already in the pAggInfo structure
       
  2983         */
       
  2984         struct AggInfo_func *pItem = pAggInfo->aFunc;
       
  2985         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
       
  2986           if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){
       
  2987             break;
       
  2988           }
       
  2989         }
       
  2990         if( i>=pAggInfo->nFunc ){
       
  2991           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
       
  2992           */
       
  2993           u8 enc = ENC(pParse->db);
       
  2994           i = addAggInfoFunc(pParse->db, pAggInfo);
       
  2995           if( i>=0 ){
       
  2996             pItem = &pAggInfo->aFunc[i];
       
  2997             pItem->pExpr = pExpr;
       
  2998             pItem->iMem = ++pParse->nMem;
       
  2999             pItem->pFunc = sqlite3FindFunction(pParse->db,
       
  3000                    (char*)pExpr->token.z, pExpr->token.n,
       
  3001                    pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0);
       
  3002             if( pExpr->flags & EP_Distinct ){
       
  3003               pItem->iDistinct = pParse->nTab++;
       
  3004             }else{
       
  3005               pItem->iDistinct = -1;
       
  3006             }
       
  3007           }
       
  3008         }
       
  3009         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
       
  3010         */
       
  3011         pExpr->iAgg = i;
       
  3012         pExpr->pAggInfo = pAggInfo;
       
  3013         return WRC_Prune;
       
  3014       }
       
  3015     }
       
  3016   }
       
  3017   return WRC_Continue;
       
  3018 }
       
  3019 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
       
  3020   NameContext *pNC = pWalker->u.pNC;
       
  3021   if( pNC->nDepth==0 ){
       
  3022     pNC->nDepth++;
       
  3023     sqlite3WalkSelect(pWalker, pSelect);
       
  3024     pNC->nDepth--;
       
  3025     return WRC_Prune;
       
  3026   }else{
       
  3027     return WRC_Continue;
       
  3028   }
       
  3029 }
       
  3030 
       
  3031 /*
       
  3032 ** Analyze the given expression looking for aggregate functions and
       
  3033 ** for variables that need to be added to the pParse->aAgg[] array.
       
  3034 ** Make additional entries to the pParse->aAgg[] array as necessary.
       
  3035 **
       
  3036 ** This routine should only be called after the expression has been
       
  3037 ** analyzed by sqlite3ResolveExprNames().
       
  3038 */
       
  3039 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
       
  3040   Walker w;
       
  3041   w.xExprCallback = analyzeAggregate;
       
  3042   w.xSelectCallback = analyzeAggregatesInSelect;
       
  3043   w.u.pNC = pNC;
       
  3044   sqlite3WalkExpr(&w, pExpr);
       
  3045 }
       
  3046 
       
  3047 /*
       
  3048 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
       
  3049 ** expression list.  Return the number of errors.
       
  3050 **
       
  3051 ** If an error is found, the analysis is cut short.
       
  3052 */
       
  3053 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
       
  3054   struct ExprList_item *pItem;
       
  3055   int i;
       
  3056   if( pList ){
       
  3057     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
       
  3058       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
       
  3059     }
       
  3060   }
       
  3061 }
       
  3062 
       
  3063 /*
       
  3064 ** Allocate or deallocate temporary use registers during code generation.
       
  3065 */
       
  3066 int sqlite3GetTempReg(Parse *pParse){
       
  3067   if( pParse->nTempReg==0 ){
       
  3068     return ++pParse->nMem;
       
  3069   }
       
  3070   return pParse->aTempReg[--pParse->nTempReg];
       
  3071 }
       
  3072 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
       
  3073   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
       
  3074     sqlite3ExprWritableRegister(pParse, iReg, iReg);
       
  3075     pParse->aTempReg[pParse->nTempReg++] = iReg;
       
  3076   }
       
  3077 }
       
  3078 
       
  3079 /*
       
  3080 ** Allocate or deallocate a block of nReg consecutive registers
       
  3081 */
       
  3082 int sqlite3GetTempRange(Parse *pParse, int nReg){
       
  3083   int i, n;
       
  3084   i = pParse->iRangeReg;
       
  3085   n = pParse->nRangeReg;
       
  3086   if( nReg<=n && !usedAsColumnCache(pParse, i, i+n-1) ){
       
  3087     pParse->iRangeReg += nReg;
       
  3088     pParse->nRangeReg -= nReg;
       
  3089   }else{
       
  3090     i = pParse->nMem+1;
       
  3091     pParse->nMem += nReg;
       
  3092   }
       
  3093   return i;
       
  3094 }
       
  3095 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
       
  3096   if( nReg>pParse->nRangeReg ){
       
  3097     pParse->nRangeReg = nReg;
       
  3098     pParse->iRangeReg = iReg;
       
  3099   }
       
  3100 }