|
1 /* |
|
2 ** 2001 September 22 |
|
3 ** |
|
4 ** The author disclaims copyright to this source code. In place of |
|
5 ** a legal notice, here is a blessing: |
|
6 ** |
|
7 ** May you do good and not evil. |
|
8 ** May you find forgiveness for yourself and forgive others. |
|
9 ** May you share freely, never taking more than you give. |
|
10 ** |
|
11 ************************************************************************* |
|
12 ** This is the implementation of generic hash-tables used in SQLite. |
|
13 ** We've modified it slightly to serve as a standalone hash table |
|
14 ** implementation for the full-text indexing module. |
|
15 */ |
|
16 #include <assert.h> |
|
17 #include <stdlib.h> |
|
18 #include <string.h> |
|
19 |
|
20 /* |
|
21 ** The code in this file is only compiled if: |
|
22 ** |
|
23 ** * The FTS1 module is being built as an extension |
|
24 ** (in which case SQLITE_CORE is not defined), or |
|
25 ** |
|
26 ** * The FTS1 module is being built into the core of |
|
27 ** SQLite (in which case SQLITE_ENABLE_FTS1 is defined). |
|
28 */ |
|
29 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS1) |
|
30 |
|
31 |
|
32 #include "fts1_hash.h" |
|
33 |
|
34 static void *malloc_and_zero(int n){ |
|
35 void *p = malloc(n); |
|
36 if( p ){ |
|
37 memset(p, 0, n); |
|
38 } |
|
39 return p; |
|
40 } |
|
41 |
|
42 /* Turn bulk memory into a hash table object by initializing the |
|
43 ** fields of the Hash structure. |
|
44 ** |
|
45 ** "pNew" is a pointer to the hash table that is to be initialized. |
|
46 ** keyClass is one of the constants |
|
47 ** FTS1_HASH_BINARY or FTS1_HASH_STRING. The value of keyClass |
|
48 ** determines what kind of key the hash table will use. "copyKey" is |
|
49 ** true if the hash table should make its own private copy of keys and |
|
50 ** false if it should just use the supplied pointer. |
|
51 */ |
|
52 void sqlite3Fts1HashInit(fts1Hash *pNew, int keyClass, int copyKey){ |
|
53 assert( pNew!=0 ); |
|
54 assert( keyClass>=FTS1_HASH_STRING && keyClass<=FTS1_HASH_BINARY ); |
|
55 pNew->keyClass = keyClass; |
|
56 pNew->copyKey = copyKey; |
|
57 pNew->first = 0; |
|
58 pNew->count = 0; |
|
59 pNew->htsize = 0; |
|
60 pNew->ht = 0; |
|
61 pNew->xMalloc = malloc_and_zero; |
|
62 pNew->xFree = free; |
|
63 } |
|
64 |
|
65 /* Remove all entries from a hash table. Reclaim all memory. |
|
66 ** Call this routine to delete a hash table or to reset a hash table |
|
67 ** to the empty state. |
|
68 */ |
|
69 void sqlite3Fts1HashClear(fts1Hash *pH){ |
|
70 fts1HashElem *elem; /* For looping over all elements of the table */ |
|
71 |
|
72 assert( pH!=0 ); |
|
73 elem = pH->first; |
|
74 pH->first = 0; |
|
75 if( pH->ht ) pH->xFree(pH->ht); |
|
76 pH->ht = 0; |
|
77 pH->htsize = 0; |
|
78 while( elem ){ |
|
79 fts1HashElem *next_elem = elem->next; |
|
80 if( pH->copyKey && elem->pKey ){ |
|
81 pH->xFree(elem->pKey); |
|
82 } |
|
83 pH->xFree(elem); |
|
84 elem = next_elem; |
|
85 } |
|
86 pH->count = 0; |
|
87 } |
|
88 |
|
89 /* |
|
90 ** Hash and comparison functions when the mode is FTS1_HASH_STRING |
|
91 */ |
|
92 static int strHash(const void *pKey, int nKey){ |
|
93 const char *z = (const char *)pKey; |
|
94 int h = 0; |
|
95 if( nKey<=0 ) nKey = (int) strlen(z); |
|
96 while( nKey > 0 ){ |
|
97 h = (h<<3) ^ h ^ *z++; |
|
98 nKey--; |
|
99 } |
|
100 return h & 0x7fffffff; |
|
101 } |
|
102 static int strCompare(const void *pKey1, int n1, const void *pKey2, int n2){ |
|
103 if( n1!=n2 ) return 1; |
|
104 return strncmp((const char*)pKey1,(const char*)pKey2,n1); |
|
105 } |
|
106 |
|
107 /* |
|
108 ** Hash and comparison functions when the mode is FTS1_HASH_BINARY |
|
109 */ |
|
110 static int binHash(const void *pKey, int nKey){ |
|
111 int h = 0; |
|
112 const char *z = (const char *)pKey; |
|
113 while( nKey-- > 0 ){ |
|
114 h = (h<<3) ^ h ^ *(z++); |
|
115 } |
|
116 return h & 0x7fffffff; |
|
117 } |
|
118 static int binCompare(const void *pKey1, int n1, const void *pKey2, int n2){ |
|
119 if( n1!=n2 ) return 1; |
|
120 return memcmp(pKey1,pKey2,n1); |
|
121 } |
|
122 |
|
123 /* |
|
124 ** Return a pointer to the appropriate hash function given the key class. |
|
125 ** |
|
126 ** The C syntax in this function definition may be unfamilar to some |
|
127 ** programmers, so we provide the following additional explanation: |
|
128 ** |
|
129 ** The name of the function is "hashFunction". The function takes a |
|
130 ** single parameter "keyClass". The return value of hashFunction() |
|
131 ** is a pointer to another function. Specifically, the return value |
|
132 ** of hashFunction() is a pointer to a function that takes two parameters |
|
133 ** with types "const void*" and "int" and returns an "int". |
|
134 */ |
|
135 static int (*hashFunction(int keyClass))(const void*,int){ |
|
136 if( keyClass==FTS1_HASH_STRING ){ |
|
137 return &strHash; |
|
138 }else{ |
|
139 assert( keyClass==FTS1_HASH_BINARY ); |
|
140 return &binHash; |
|
141 } |
|
142 } |
|
143 |
|
144 /* |
|
145 ** Return a pointer to the appropriate hash function given the key class. |
|
146 ** |
|
147 ** For help in interpreted the obscure C code in the function definition, |
|
148 ** see the header comment on the previous function. |
|
149 */ |
|
150 static int (*compareFunction(int keyClass))(const void*,int,const void*,int){ |
|
151 if( keyClass==FTS1_HASH_STRING ){ |
|
152 return &strCompare; |
|
153 }else{ |
|
154 assert( keyClass==FTS1_HASH_BINARY ); |
|
155 return &binCompare; |
|
156 } |
|
157 } |
|
158 |
|
159 /* Link an element into the hash table |
|
160 */ |
|
161 static void insertElement( |
|
162 fts1Hash *pH, /* The complete hash table */ |
|
163 struct _fts1ht *pEntry, /* The entry into which pNew is inserted */ |
|
164 fts1HashElem *pNew /* The element to be inserted */ |
|
165 ){ |
|
166 fts1HashElem *pHead; /* First element already in pEntry */ |
|
167 pHead = pEntry->chain; |
|
168 if( pHead ){ |
|
169 pNew->next = pHead; |
|
170 pNew->prev = pHead->prev; |
|
171 if( pHead->prev ){ pHead->prev->next = pNew; } |
|
172 else { pH->first = pNew; } |
|
173 pHead->prev = pNew; |
|
174 }else{ |
|
175 pNew->next = pH->first; |
|
176 if( pH->first ){ pH->first->prev = pNew; } |
|
177 pNew->prev = 0; |
|
178 pH->first = pNew; |
|
179 } |
|
180 pEntry->count++; |
|
181 pEntry->chain = pNew; |
|
182 } |
|
183 |
|
184 |
|
185 /* Resize the hash table so that it cantains "new_size" buckets. |
|
186 ** "new_size" must be a power of 2. The hash table might fail |
|
187 ** to resize if sqliteMalloc() fails. |
|
188 */ |
|
189 static void rehash(fts1Hash *pH, int new_size){ |
|
190 struct _fts1ht *new_ht; /* The new hash table */ |
|
191 fts1HashElem *elem, *next_elem; /* For looping over existing elements */ |
|
192 int (*xHash)(const void*,int); /* The hash function */ |
|
193 |
|
194 assert( (new_size & (new_size-1))==0 ); |
|
195 new_ht = (struct _fts1ht *)pH->xMalloc( new_size*sizeof(struct _fts1ht) ); |
|
196 if( new_ht==0 ) return; |
|
197 if( pH->ht ) pH->xFree(pH->ht); |
|
198 pH->ht = new_ht; |
|
199 pH->htsize = new_size; |
|
200 xHash = hashFunction(pH->keyClass); |
|
201 for(elem=pH->first, pH->first=0; elem; elem = next_elem){ |
|
202 int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1); |
|
203 next_elem = elem->next; |
|
204 insertElement(pH, &new_ht[h], elem); |
|
205 } |
|
206 } |
|
207 |
|
208 /* This function (for internal use only) locates an element in an |
|
209 ** hash table that matches the given key. The hash for this key has |
|
210 ** already been computed and is passed as the 4th parameter. |
|
211 */ |
|
212 static fts1HashElem *findElementGivenHash( |
|
213 const fts1Hash *pH, /* The pH to be searched */ |
|
214 const void *pKey, /* The key we are searching for */ |
|
215 int nKey, |
|
216 int h /* The hash for this key. */ |
|
217 ){ |
|
218 fts1HashElem *elem; /* Used to loop thru the element list */ |
|
219 int count; /* Number of elements left to test */ |
|
220 int (*xCompare)(const void*,int,const void*,int); /* comparison function */ |
|
221 |
|
222 if( pH->ht ){ |
|
223 struct _fts1ht *pEntry = &pH->ht[h]; |
|
224 elem = pEntry->chain; |
|
225 count = pEntry->count; |
|
226 xCompare = compareFunction(pH->keyClass); |
|
227 while( count-- && elem ){ |
|
228 if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){ |
|
229 return elem; |
|
230 } |
|
231 elem = elem->next; |
|
232 } |
|
233 } |
|
234 return 0; |
|
235 } |
|
236 |
|
237 /* Remove a single entry from the hash table given a pointer to that |
|
238 ** element and a hash on the element's key. |
|
239 */ |
|
240 static void removeElementGivenHash( |
|
241 fts1Hash *pH, /* The pH containing "elem" */ |
|
242 fts1HashElem* elem, /* The element to be removed from the pH */ |
|
243 int h /* Hash value for the element */ |
|
244 ){ |
|
245 struct _fts1ht *pEntry; |
|
246 if( elem->prev ){ |
|
247 elem->prev->next = elem->next; |
|
248 }else{ |
|
249 pH->first = elem->next; |
|
250 } |
|
251 if( elem->next ){ |
|
252 elem->next->prev = elem->prev; |
|
253 } |
|
254 pEntry = &pH->ht[h]; |
|
255 if( pEntry->chain==elem ){ |
|
256 pEntry->chain = elem->next; |
|
257 } |
|
258 pEntry->count--; |
|
259 if( pEntry->count<=0 ){ |
|
260 pEntry->chain = 0; |
|
261 } |
|
262 if( pH->copyKey && elem->pKey ){ |
|
263 pH->xFree(elem->pKey); |
|
264 } |
|
265 pH->xFree( elem ); |
|
266 pH->count--; |
|
267 if( pH->count<=0 ){ |
|
268 assert( pH->first==0 ); |
|
269 assert( pH->count==0 ); |
|
270 fts1HashClear(pH); |
|
271 } |
|
272 } |
|
273 |
|
274 /* Attempt to locate an element of the hash table pH with a key |
|
275 ** that matches pKey,nKey. Return the data for this element if it is |
|
276 ** found, or NULL if there is no match. |
|
277 */ |
|
278 void *sqlite3Fts1HashFind(const fts1Hash *pH, const void *pKey, int nKey){ |
|
279 int h; /* A hash on key */ |
|
280 fts1HashElem *elem; /* The element that matches key */ |
|
281 int (*xHash)(const void*,int); /* The hash function */ |
|
282 |
|
283 if( pH==0 || pH->ht==0 ) return 0; |
|
284 xHash = hashFunction(pH->keyClass); |
|
285 assert( xHash!=0 ); |
|
286 h = (*xHash)(pKey,nKey); |
|
287 assert( (pH->htsize & (pH->htsize-1))==0 ); |
|
288 elem = findElementGivenHash(pH,pKey,nKey, h & (pH->htsize-1)); |
|
289 return elem ? elem->data : 0; |
|
290 } |
|
291 |
|
292 /* Insert an element into the hash table pH. The key is pKey,nKey |
|
293 ** and the data is "data". |
|
294 ** |
|
295 ** If no element exists with a matching key, then a new |
|
296 ** element is created. A copy of the key is made if the copyKey |
|
297 ** flag is set. NULL is returned. |
|
298 ** |
|
299 ** If another element already exists with the same key, then the |
|
300 ** new data replaces the old data and the old data is returned. |
|
301 ** The key is not copied in this instance. If a malloc fails, then |
|
302 ** the new data is returned and the hash table is unchanged. |
|
303 ** |
|
304 ** If the "data" parameter to this function is NULL, then the |
|
305 ** element corresponding to "key" is removed from the hash table. |
|
306 */ |
|
307 void *sqlite3Fts1HashInsert( |
|
308 fts1Hash *pH, /* The hash table to insert into */ |
|
309 const void *pKey, /* The key */ |
|
310 int nKey, /* Number of bytes in the key */ |
|
311 void *data /* The data */ |
|
312 ){ |
|
313 int hraw; /* Raw hash value of the key */ |
|
314 int h; /* the hash of the key modulo hash table size */ |
|
315 fts1HashElem *elem; /* Used to loop thru the element list */ |
|
316 fts1HashElem *new_elem; /* New element added to the pH */ |
|
317 int (*xHash)(const void*,int); /* The hash function */ |
|
318 |
|
319 assert( pH!=0 ); |
|
320 xHash = hashFunction(pH->keyClass); |
|
321 assert( xHash!=0 ); |
|
322 hraw = (*xHash)(pKey, nKey); |
|
323 assert( (pH->htsize & (pH->htsize-1))==0 ); |
|
324 h = hraw & (pH->htsize-1); |
|
325 elem = findElementGivenHash(pH,pKey,nKey,h); |
|
326 if( elem ){ |
|
327 void *old_data = elem->data; |
|
328 if( data==0 ){ |
|
329 removeElementGivenHash(pH,elem,h); |
|
330 }else{ |
|
331 elem->data = data; |
|
332 } |
|
333 return old_data; |
|
334 } |
|
335 if( data==0 ) return 0; |
|
336 new_elem = (fts1HashElem*)pH->xMalloc( sizeof(fts1HashElem) ); |
|
337 if( new_elem==0 ) return data; |
|
338 if( pH->copyKey && pKey!=0 ){ |
|
339 new_elem->pKey = pH->xMalloc( nKey ); |
|
340 if( new_elem->pKey==0 ){ |
|
341 pH->xFree(new_elem); |
|
342 return data; |
|
343 } |
|
344 memcpy((void*)new_elem->pKey, pKey, nKey); |
|
345 }else{ |
|
346 new_elem->pKey = (void*)pKey; |
|
347 } |
|
348 new_elem->nKey = nKey; |
|
349 pH->count++; |
|
350 if( pH->htsize==0 ){ |
|
351 rehash(pH,8); |
|
352 if( pH->htsize==0 ){ |
|
353 pH->count = 0; |
|
354 pH->xFree(new_elem); |
|
355 return data; |
|
356 } |
|
357 } |
|
358 if( pH->count > pH->htsize ){ |
|
359 rehash(pH,pH->htsize*2); |
|
360 } |
|
361 assert( pH->htsize>0 ); |
|
362 assert( (pH->htsize & (pH->htsize-1))==0 ); |
|
363 h = hraw & (pH->htsize-1); |
|
364 insertElement(pH, &pH->ht[h], new_elem); |
|
365 new_elem->data = data; |
|
366 return 0; |
|
367 } |
|
368 |
|
369 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS1) */ |