|
1 # 2005 November 30 |
|
2 # |
|
3 # The author disclaims copyright to this source code. In place of |
|
4 # a legal notice, here is a blessing: |
|
5 # |
|
6 # May you do good and not evil. |
|
7 # May you find forgiveness for yourself and forgive others. |
|
8 # May you share freely, never taking more than you give. |
|
9 # |
|
10 #*********************************************************************** |
|
11 # |
|
12 # This file contains test cases focused on the two memory-management APIs, |
|
13 # sqlite3_soft_heap_limit() and sqlite3_release_memory(). |
|
14 # |
|
15 # Prior to version 3.6.2, calling sqlite3_release_memory() or exceeding |
|
16 # the configured soft heap limit could cause sqlite to upgrade database |
|
17 # locks and flush dirty pages to the file system. As of 3.6.2, this is |
|
18 # no longer the case. In version 3.6.2, sqlite3_release_memory() only |
|
19 # reclaims clean pages. This test file has been updated accordingly. |
|
20 # |
|
21 # $Id: malloc5.test,v 1.20 2008/08/27 16:38:57 danielk1977 Exp $ |
|
22 |
|
23 set testdir [file dirname $argv0] |
|
24 source $testdir/tester.tcl |
|
25 source $testdir/malloc_common.tcl |
|
26 db close |
|
27 |
|
28 # Only run these tests if memory debugging is turned on. |
|
29 # |
|
30 if {!$MEMDEBUG} { |
|
31 puts "Skipping malloc5 tests: not compiled with -DSQLITE_MEMDEBUG..." |
|
32 finish_test |
|
33 return |
|
34 } |
|
35 |
|
36 # Skip these tests if OMIT_MEMORY_MANAGEMENT was defined at compile time. |
|
37 ifcapable !memorymanage { |
|
38 finish_test |
|
39 return |
|
40 } |
|
41 |
|
42 sqlite3_soft_heap_limit 0 |
|
43 sqlite3 db test.db |
|
44 |
|
45 do_test malloc5-1.1 { |
|
46 # Simplest possible test. Call sqlite3_release_memory when there is exactly |
|
47 # one unused page in a single pager cache. The page cannot be freed, as |
|
48 # it is dirty. So sqlite3_release_memory() returns 0. |
|
49 # |
|
50 execsql { |
|
51 PRAGMA auto_vacuum=OFF; |
|
52 BEGIN; |
|
53 CREATE TABLE abc(a, b, c); |
|
54 } |
|
55 sqlite3_release_memory |
|
56 } {0} |
|
57 |
|
58 do_test malloc5-1.2 { |
|
59 # Test that the transaction started in the above test is still active. |
|
60 # The lock on the database file should not have been upgraded (this was |
|
61 # not the case before version 3.6.2). |
|
62 # |
|
63 sqlite3 db2 test.db |
|
64 execsql { SELECT * FROM sqlite_master } db2 |
|
65 } {} |
|
66 do_test malloc5-1.3 { |
|
67 # Call [sqlite3_release_memory] when there is exactly one unused page |
|
68 # in the cache belonging to db2. |
|
69 # |
|
70 set ::pgalloc [sqlite3_release_memory] |
|
71 expr $::pgalloc > 0 |
|
72 } {1} |
|
73 |
|
74 do_test malloc5-1.4 { |
|
75 # Commit the transaction and open a new one. Read 1 page into the cache. |
|
76 # Because the page is not dirty, it is eligible for collection even |
|
77 # before the transaction is concluded. |
|
78 # |
|
79 execsql { |
|
80 COMMIT; |
|
81 BEGIN; |
|
82 SELECT * FROM abc; |
|
83 } |
|
84 sqlite3_release_memory |
|
85 } $::pgalloc |
|
86 |
|
87 do_test malloc5-1.5 { |
|
88 # Conclude the transaction opened in the previous [do_test] block. This |
|
89 # causes another page (page 1) to become eligible for recycling. |
|
90 # |
|
91 execsql { COMMIT } |
|
92 sqlite3_release_memory |
|
93 } $::pgalloc |
|
94 |
|
95 do_test malloc5-1.6 { |
|
96 # Manipulate the cache so that it contains two unused pages. One requires |
|
97 # a journal-sync to free, the other does not. |
|
98 db2 close |
|
99 execsql { |
|
100 BEGIN; |
|
101 SELECT * FROM abc; |
|
102 CREATE TABLE def(d, e, f); |
|
103 } |
|
104 sqlite3_release_memory 500 |
|
105 } $::pgalloc |
|
106 |
|
107 do_test malloc5-1.7 { |
|
108 # Database should not be locked this time. |
|
109 sqlite3 db2 test.db |
|
110 catchsql { SELECT * FROM abc } db2 |
|
111 } {0 {}} |
|
112 do_test malloc5-1.8 { |
|
113 # Try to release another block of memory. This will fail as the only |
|
114 # pages currently in the cache are dirty (page 3) or pinned (page 1). |
|
115 db2 close |
|
116 sqlite3_release_memory 500 |
|
117 } 0 |
|
118 do_test malloc5-1.8 { |
|
119 # Database is still not locked. |
|
120 # |
|
121 sqlite3 db2 test.db |
|
122 catchsql { SELECT * FROM abc } db2 |
|
123 } {0 {}} |
|
124 do_test malloc5-1.9 { |
|
125 execsql { |
|
126 COMMIT; |
|
127 } |
|
128 } {} |
|
129 |
|
130 do_test malloc5-2.1 { |
|
131 # Put some data in tables abc and def. Both tables are still wholly |
|
132 # contained within their root pages. |
|
133 execsql { |
|
134 INSERT INTO abc VALUES(1, 2, 3); |
|
135 INSERT INTO abc VALUES(4, 5, 6); |
|
136 INSERT INTO def VALUES(7, 8, 9); |
|
137 INSERT INTO def VALUES(10,11,12); |
|
138 } |
|
139 } {} |
|
140 do_test malloc5-2.2 { |
|
141 # Load the root-page for table def into the cache. Then query table abc. |
|
142 # Halfway through the query call sqlite3_release_memory(). The goal of this |
|
143 # test is to make sure we don't free pages that are in use (specifically, |
|
144 # the root of table abc). |
|
145 sqlite3_release_memory |
|
146 set nRelease 0 |
|
147 execsql { |
|
148 BEGIN; |
|
149 SELECT * FROM def; |
|
150 } |
|
151 set data [list] |
|
152 db eval {SELECT * FROM abc} { |
|
153 incr nRelease [sqlite3_release_memory] |
|
154 lappend data $a $b $c |
|
155 } |
|
156 execsql { |
|
157 COMMIT; |
|
158 } |
|
159 list $nRelease $data |
|
160 } [list $pgalloc [list 1 2 3 4 5 6]] |
|
161 |
|
162 do_test malloc5-3.1 { |
|
163 # Simple test to show that if two pagers are opened from within this |
|
164 # thread, memory is freed from both when sqlite3_release_memory() is |
|
165 # called. |
|
166 execsql { |
|
167 BEGIN; |
|
168 SELECT * FROM abc; |
|
169 } |
|
170 execsql { |
|
171 SELECT * FROM sqlite_master; |
|
172 BEGIN; |
|
173 SELECT * FROM def; |
|
174 } db2 |
|
175 sqlite3_release_memory |
|
176 } [expr $::pgalloc * 2] |
|
177 do_test malloc5-3.2 { |
|
178 concat \ |
|
179 [execsql {SELECT * FROM abc; COMMIT}] \ |
|
180 [execsql {SELECT * FROM def; COMMIT} db2] |
|
181 } {1 2 3 4 5 6 7 8 9 10 11 12} |
|
182 |
|
183 db2 close |
|
184 puts "Highwater mark: [sqlite3_memory_highwater]" |
|
185 |
|
186 # The following two test cases each execute a transaction in which |
|
187 # 10000 rows are inserted into table abc. The first test case is used |
|
188 # to ensure that more than 1MB of dynamic memory is used to perform |
|
189 # the transaction. |
|
190 # |
|
191 # The second test case sets the "soft-heap-limit" to 100,000 bytes (0.1 MB) |
|
192 # and tests to see that this limit is not exceeded at any point during |
|
193 # transaction execution. |
|
194 # |
|
195 # Before executing malloc5-4.* we save the value of the current soft heap |
|
196 # limit in variable ::soft_limit. The original value is restored after |
|
197 # running the tests. |
|
198 # |
|
199 set ::soft_limit [sqlite3_soft_heap_limit -1] |
|
200 execsql {PRAGMA cache_size=2000} |
|
201 do_test malloc5-4.1 { |
|
202 execsql {BEGIN;} |
|
203 execsql {DELETE FROM abc;} |
|
204 for {set i 0} {$i < 10000} {incr i} { |
|
205 execsql "INSERT INTO abc VALUES($i, $i, '[string repeat X 100]');" |
|
206 } |
|
207 execsql {COMMIT;} |
|
208 sqlite3_release_memory |
|
209 sqlite3_memory_highwater 1 |
|
210 execsql {SELECT * FROM abc} |
|
211 set nMaxBytes [sqlite3_memory_highwater 1] |
|
212 puts -nonewline " (Highwater mark: $nMaxBytes) " |
|
213 expr $nMaxBytes > 1000000 |
|
214 } {1} |
|
215 do_test malloc5-4.2 { |
|
216 sqlite3_release_memory |
|
217 sqlite3_soft_heap_limit 100000 |
|
218 sqlite3_memory_highwater 1 |
|
219 execsql {SELECT * FROM abc} |
|
220 set nMaxBytes [sqlite3_memory_highwater 1] |
|
221 puts -nonewline " (Highwater mark: $nMaxBytes) " |
|
222 expr $nMaxBytes <= 100000 |
|
223 } {1} |
|
224 do_test malloc5-4.3 { |
|
225 # Check that the content of table abc is at least roughly as expected. |
|
226 execsql { |
|
227 SELECT count(*), sum(a), sum(b) FROM abc; |
|
228 } |
|
229 } [list 10000 [expr int(10000.0 * 4999.5)] [expr int(10000.0 * 4999.5)]] |
|
230 |
|
231 # Restore the soft heap limit. |
|
232 sqlite3_soft_heap_limit $::soft_limit |
|
233 |
|
234 # Test that there are no problems calling sqlite3_release_memory when |
|
235 # there are open in-memory databases. |
|
236 # |
|
237 # At one point these tests would cause a seg-fault. |
|
238 # |
|
239 do_test malloc5-5.1 { |
|
240 db close |
|
241 sqlite3 db :memory: |
|
242 execsql { |
|
243 BEGIN; |
|
244 CREATE TABLE abc(a, b, c); |
|
245 INSERT INTO abc VALUES('abcdefghi', 1234567890, NULL); |
|
246 INSERT INTO abc SELECT * FROM abc; |
|
247 INSERT INTO abc SELECT * FROM abc; |
|
248 INSERT INTO abc SELECT * FROM abc; |
|
249 INSERT INTO abc SELECT * FROM abc; |
|
250 INSERT INTO abc SELECT * FROM abc; |
|
251 INSERT INTO abc SELECT * FROM abc; |
|
252 INSERT INTO abc SELECT * FROM abc; |
|
253 } |
|
254 sqlite3_release_memory |
|
255 } 0 |
|
256 do_test malloc5-5.2 { |
|
257 sqlite3_soft_heap_limit 5000 |
|
258 execsql { |
|
259 COMMIT; |
|
260 PRAGMA temp_store = memory; |
|
261 SELECT * FROM abc ORDER BY a; |
|
262 } |
|
263 expr 1 |
|
264 } {1} |
|
265 sqlite3_soft_heap_limit $::soft_limit |
|
266 |
|
267 #------------------------------------------------------------------------- |
|
268 # The following test cases (malloc5-6.*) test the new global LRU list |
|
269 # used to determine the pages to recycle when sqlite3_release_memory is |
|
270 # called and there is more than one pager open. |
|
271 # |
|
272 proc nPage {db} { |
|
273 set bt [btree_from_db $db] |
|
274 array set stats [btree_pager_stats $bt] |
|
275 set stats(page) |
|
276 } |
|
277 db close |
|
278 file delete -force test.db test.db-journal test2.db test2.db-journal |
|
279 |
|
280 # This block of test-cases (malloc5-6.1.*) prepares two database files |
|
281 # for the subsequent tests. |
|
282 do_test malloc5-6.1.1 { |
|
283 sqlite3 db test.db |
|
284 execsql { |
|
285 PRAGMA page_size=1024; |
|
286 PRAGMA default_cache_size=10; |
|
287 } |
|
288 execsql { |
|
289 PRAGMA temp_store = memory; |
|
290 BEGIN; |
|
291 CREATE TABLE abc(a PRIMARY KEY, b, c); |
|
292 INSERT INTO abc VALUES(randstr(50,50), randstr(75,75), randstr(100,100)); |
|
293 INSERT INTO abc |
|
294 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; |
|
295 INSERT INTO abc |
|
296 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; |
|
297 INSERT INTO abc |
|
298 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; |
|
299 INSERT INTO abc |
|
300 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; |
|
301 INSERT INTO abc |
|
302 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; |
|
303 INSERT INTO abc |
|
304 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; |
|
305 COMMIT; |
|
306 } |
|
307 copy_file test.db test2.db |
|
308 sqlite3 db2 test2.db |
|
309 list \ |
|
310 [expr ([file size test.db]/1024)>20] [expr ([file size test2.db]/1024)>20] |
|
311 } {1 1} |
|
312 do_test malloc5-6.1.2 { |
|
313 list [execsql {PRAGMA cache_size}] [execsql {PRAGMA cache_size} db2] |
|
314 } {10 10} |
|
315 |
|
316 do_test malloc5-6.2.1 { |
|
317 breakpoint |
|
318 execsql {SELECT * FROM abc} db2 |
|
319 execsql {SELECT * FROM abc} db |
|
320 expr [nPage db] + [nPage db2] |
|
321 } {20} |
|
322 |
|
323 do_test malloc5-6.2.2 { |
|
324 # If we now try to reclaim some memory, it should come from the db2 cache. |
|
325 sqlite3_release_memory 3000 |
|
326 expr [nPage db] + [nPage db2] |
|
327 } {17} |
|
328 do_test malloc5-6.2.3 { |
|
329 # Access the db2 cache again, so that all the db2 pages have been used |
|
330 # more recently than all the db pages. Then try to reclaim 3000 bytes. |
|
331 # This time, 3 pages should be pulled from the db cache. |
|
332 execsql { SELECT * FROM abc } db2 |
|
333 sqlite3_release_memory 3000 |
|
334 expr [nPage db] + [nPage db2] |
|
335 } {17} |
|
336 |
|
337 do_test malloc5-6.3.1 { |
|
338 # Now open a transaction and update 2 pages in the db2 cache. Then |
|
339 # do a SELECT on the db cache so that all the db pages are more recently |
|
340 # used than the db2 pages. When we try to free memory, SQLite should |
|
341 # free the non-dirty db2 pages, then the db pages, then finally use |
|
342 # sync() to free up the dirty db2 pages. The only page that cannot be |
|
343 # freed is page1 of db2. Because there is an open transaction, the |
|
344 # btree layer holds a reference to page 1 in the db2 cache. |
|
345 execsql { |
|
346 BEGIN; |
|
347 UPDATE abc SET c = randstr(100,100) |
|
348 WHERE rowid = 1 OR rowid = (SELECT max(rowid) FROM abc); |
|
349 } db2 |
|
350 execsql { SELECT * FROM abc } db |
|
351 expr [nPage db] + [nPage db2] |
|
352 } {20} |
|
353 do_test malloc5-6.3.2 { |
|
354 # Try to release 7700 bytes. This should release all the |
|
355 # non-dirty pages held by db2. |
|
356 sqlite3_release_memory [expr 7*1100] |
|
357 list [nPage db] [nPage db2] |
|
358 } {10 3} |
|
359 do_test malloc5-6.3.3 { |
|
360 # Try to release another 1000 bytes. This should come fromt the db |
|
361 # cache, since all three pages held by db2 are either in-use or diry. |
|
362 sqlite3_release_memory 1000 |
|
363 list [nPage db] [nPage db2] |
|
364 } {9 3} |
|
365 do_test malloc5-6.3.4 { |
|
366 # Now release 9900 more (about 9 pages worth). This should expunge |
|
367 # the rest of the db cache. But the db2 cache remains intact, because |
|
368 # SQLite tries to avoid calling sync(). |
|
369 sqlite3_release_memory 9900 |
|
370 list [nPage db] [nPage db2] |
|
371 } {0 3} |
|
372 do_test malloc5-6.3.5 { |
|
373 # But if we are really insistent, SQLite will consent to call sync() |
|
374 # if there is no other option. UPDATE: As of 3.6.2, SQLite will not |
|
375 # call sync() in this scenario. So no further memory can be reclaimed. |
|
376 sqlite3_release_memory 1000 |
|
377 list [nPage db] [nPage db2] |
|
378 } {0 3} |
|
379 do_test malloc5-6.3.6 { |
|
380 # The referenced page (page 1 of the db2 cache) will not be freed no |
|
381 # matter how much memory we ask for: |
|
382 sqlite3_release_memory 31459 |
|
383 list [nPage db] [nPage db2] |
|
384 } {0 3} |
|
385 |
|
386 db2 close |
|
387 |
|
388 sqlite3_soft_heap_limit $::soft_limit |
|
389 finish_test |
|
390 catch {db close} |