diff -r 000000000000 -r 08ec8eefde2f persistentstorage/sql/SQLite/util.c --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/persistentstorage/sql/SQLite/util.c Fri Jan 22 11:06:30 2010 +0200 @@ -0,0 +1,952 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** Utility functions used throughout sqlite. +** +** This file contains functions for allocating memory, comparing +** strings, and stuff like that. +** +** $Id: util.c,v 1.241 2008/07/28 19:34:54 drh Exp $ +*/ +#include "sqliteInt.h" +#include +#include + + +/* +** Return true if the floating point value is Not a Number (NaN). +*/ +int sqlite3IsNaN(double x){ + /* This NaN test sometimes fails if compiled on GCC with -ffast-math. + ** On the other hand, the use of -ffast-math comes with the following + ** warning: + ** + ** This option [-ffast-math] should never be turned on by any + ** -O option since it can result in incorrect output for programs + ** which depend on an exact implementation of IEEE or ISO + ** rules/specifications for math functions. + ** + ** Under MSVC, this NaN test may fail if compiled with a floating- + ** point precision mode other than /fp:precise. From the MSDN + ** documentation: + ** + ** The compiler [with /fp:precise] will properly handle comparisons + ** involving NaN. For example, x != x evaluates to true if x is NaN + ** ... + */ +#ifdef __FAST_MATH__ +# error SQLite will not work correctly with the -ffast-math option of GCC. +#endif + volatile double y = x; + volatile double z = y; + return y!=z; +} + +/* +** Return the length of a string, except do not allow the string length +** to exceed the SQLITE_LIMIT_LENGTH setting. +*/ +int sqlite3Strlen(sqlite3 *db, const char *z){ + const char *z2 = z; + int len; + size_t x; + while( *z2 ){ z2++; } + x = z2 - z; + len = 0x7fffffff & x; + if( len!=x || len > db->aLimit[SQLITE_LIMIT_LENGTH] ){ + return db->aLimit[SQLITE_LIMIT_LENGTH]; + }else{ + return len; + } +} + +/* +** Set the most recent error code and error string for the sqlite +** handle "db". The error code is set to "err_code". +** +** If it is not NULL, string zFormat specifies the format of the +** error string in the style of the printf functions: The following +** format characters are allowed: +** +** %s Insert a string +** %z A string that should be freed after use +** %d Insert an integer +** %T Insert a token +** %S Insert the first element of a SrcList +** +** zFormat and any string tokens that follow it are assumed to be +** encoded in UTF-8. +** +** To clear the most recent error for sqlite handle "db", sqlite3Error +** should be called with err_code set to SQLITE_OK and zFormat set +** to NULL. +*/ +void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){ + if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){ + db->errCode = err_code; + if( zFormat ){ + char *z; + va_list ap; + va_start(ap, zFormat); + z = sqlite3VMPrintf(db, zFormat, ap); + va_end(ap); + sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); + }else{ + sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC); + } + } +} + +/* +** Add an error message to pParse->zErrMsg and increment pParse->nErr. +** The following formatting characters are allowed: +** +** %s Insert a string +** %z A string that should be freed after use +** %d Insert an integer +** %T Insert a token +** %S Insert the first element of a SrcList +** +** This function should be used to report any error that occurs whilst +** compiling an SQL statement (i.e. within sqlite3_prepare()). The +** last thing the sqlite3_prepare() function does is copy the error +** stored by this function into the database handle using sqlite3Error(). +** Function sqlite3Error() should be used during statement execution +** (sqlite3_step() etc.). +*/ +void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ + va_list ap; + sqlite3 *db = pParse->db; + pParse->nErr++; + sqlite3DbFree(db, pParse->zErrMsg); + va_start(ap, zFormat); + pParse->zErrMsg = sqlite3VMPrintf(db, zFormat, ap); + va_end(ap); + if( pParse->rc==SQLITE_OK ){ + pParse->rc = SQLITE_ERROR; + } +} + +/* +** Clear the error message in pParse, if any +*/ +void sqlite3ErrorClear(Parse *pParse){ + sqlite3DbFree(pParse->db, pParse->zErrMsg); + pParse->zErrMsg = 0; + pParse->nErr = 0; +} + +/* +** Convert an SQL-style quoted string into a normal string by removing +** the quote characters. The conversion is done in-place. If the +** input does not begin with a quote character, then this routine +** is a no-op. +** +** 2002-Feb-14: This routine is extended to remove MS-Access style +** brackets from around identifers. For example: "[a-b-c]" becomes +** "a-b-c". +*/ +void sqlite3Dequote(char *z){ + int quote; + int i, j; + if( z==0 ) return; + quote = z[0]; + switch( quote ){ + case '\'': break; + case '"': break; + case '`': break; /* For MySQL compatibility */ + case '[': quote = ']'; break; /* For MS SqlServer compatibility */ + default: return; + } + for(i=1, j=0; z[i]; i++){ + if( z[i]==quote ){ + if( z[i+1]==quote ){ + z[j++] = quote; + i++; + }else{ + z[j++] = 0; + break; + } + }else{ + z[j++] = z[i]; + } + } +} + +/* Convenient short-hand */ +#define UpperToLower sqlite3UpperToLower + +/* +** Some systems have stricmp(). Others have strcasecmp(). Because +** there is no consistency, we will define our own. +*/ +int sqlite3StrICmp(const char *zLeft, const char *zRight){ + register unsigned char *a, *b; + a = (unsigned char *)zLeft; + b = (unsigned char *)zRight; + while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } + return UpperToLower[*a] - UpperToLower[*b]; +} +int sqlite3StrNICmp(const char *zLeft, const char *zRight, int N){ + register unsigned char *a, *b; + a = (unsigned char *)zLeft; + b = (unsigned char *)zRight; + while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } + return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; +} + +/* +** Return TRUE if z is a pure numeric string. Return FALSE if the +** string contains any character which is not part of a number. If +** the string is numeric and contains the '.' character, set *realnum +** to TRUE (otherwise FALSE). +** +** An empty string is considered non-numeric. +*/ +int sqlite3IsNumber(const char *z, int *realnum, u8 enc){ + int incr = (enc==SQLITE_UTF8?1:2); + if( enc==SQLITE_UTF16BE ) z++; + if( *z=='-' || *z=='+' ) z += incr; + if( !isdigit(*(u8*)z) ){ + return 0; + } + z += incr; + if( realnum ) *realnum = 0; + while( isdigit(*(u8*)z) ){ z += incr; } + if( *z=='.' ){ + z += incr; + if( !isdigit(*(u8*)z) ) return 0; + while( isdigit(*(u8*)z) ){ z += incr; } + if( realnum ) *realnum = 1; + } + if( *z=='e' || *z=='E' ){ + z += incr; + if( *z=='+' || *z=='-' ) z += incr; + if( !isdigit(*(u8*)z) ) return 0; + while( isdigit(*(u8*)z) ){ z += incr; } + if( realnum ) *realnum = 1; + } + return *z==0; +} + +/* +** The string z[] is an ascii representation of a real number. +** Convert this string to a double. +** +** This routine assumes that z[] really is a valid number. If it +** is not, the result is undefined. +** +** This routine is used instead of the library atof() function because +** the library atof() might want to use "," as the decimal point instead +** of "." depending on how locale is set. But that would cause problems +** for SQL. So this routine always uses "." regardless of locale. +*/ +int sqlite3AtoF(const char *z, double *pResult){ +#ifndef SQLITE_OMIT_FLOATING_POINT + int sign = 1; + const char *zBegin = z; + LONGDOUBLE_TYPE v1 = 0.0; + int nSignificant = 0; + while( isspace(*(u8*)z) ) z++; + if( *z=='-' ){ + sign = -1; + z++; + }else if( *z=='+' ){ + z++; + } + while( z[0]=='0' ){ + z++; + } + while( isdigit(*(u8*)z) ){ + v1 = v1*10.0 + (*z - '0'); + z++; + nSignificant++; + } + if( *z=='.' ){ + LONGDOUBLE_TYPE divisor = 1.0; + z++; + if( nSignificant==0 ){ + while( z[0]=='0' ){ + divisor *= 10.0; + z++; + } + } + while( isdigit(*(u8*)z) ){ + if( nSignificant<18 ){ + v1 = v1*10.0 + (*z - '0'); + divisor *= 10.0; + nSignificant++; + } + z++; + } + v1 /= divisor; + } + if( *z=='e' || *z=='E' ){ + int esign = 1; + int eval = 0; + LONGDOUBLE_TYPE scale = 1.0; + z++; + if( *z=='-' ){ + esign = -1; + z++; + }else if( *z=='+' ){ + z++; + } + while( isdigit(*(u8*)z) ){ + eval = eval*10 + *z - '0'; + z++; + } + while( eval>=64 ){ scale *= 1.0e+64; eval -= 64; } + while( eval>=16 ){ scale *= 1.0e+16; eval -= 16; } + while( eval>=4 ){ scale *= 1.0e+4; eval -= 4; } + while( eval>=1 ){ scale *= 1.0e+1; eval -= 1; } + if( esign<0 ){ + v1 /= scale; + }else{ + v1 *= scale; + } + } + *pResult = sign<0 ? -v1 : v1; + return z - zBegin; +#else + return sqlite3Atoi64(z, pResult); +#endif /* SQLITE_OMIT_FLOATING_POINT */ +} + +/* +** Compare the 19-character string zNum against the text representation +** value 2^63: 9223372036854775808. Return negative, zero, or positive +** if zNum is less than, equal to, or greater than the string. +** +** Unlike memcmp() this routine is guaranteed to return the difference +** in the values of the last digit if the only difference is in the +** last digit. So, for example, +** +** compare2pow63("9223372036854775800") +** +** will return -8. +*/ +static int compare2pow63(const char *zNum){ + int c; + c = memcmp(zNum,"922337203685477580",18); + if( c==0 ){ + c = zNum[18] - '8'; + } + return c; +} + + +/* +** Return TRUE if zNum is a 64-bit signed integer and write +** the value of the integer into *pNum. If zNum is not an integer +** or is an integer that is too large to be expressed with 64 bits, +** then return false. +** +** When this routine was originally written it dealt with only +** 32-bit numbers. At that time, it was much faster than the +** atoi() library routine in RedHat 7.2. +*/ +int sqlite3Atoi64(const char *zNum, i64 *pNum){ + i64 v = 0; + int neg; + int i, c; + const char *zStart; + while( isspace(*(u8*)zNum) ) zNum++; + if( *zNum=='-' ){ + neg = 1; + zNum++; + }else if( *zNum=='+' ){ + neg = 0; + zNum++; + }else{ + neg = 0; + } + zStart = zNum; + while( zNum[0]=='0' ){ zNum++; } /* Skip over leading zeros. Ticket #2454 */ + for(i=0; (c=zNum[i])>='0' && c<='9'; i++){ + v = v*10 + c - '0'; + } + *pNum = neg ? -v : v; + if( c!=0 || (i==0 && zStart==zNum) || i>19 ){ + /* zNum is empty or contains non-numeric text or is longer + ** than 19 digits (thus guaranting that it is too large) */ + return 0; + }else if( i<19 ){ + /* Less than 19 digits, so we know that it fits in 64 bits */ + return 1; + }else{ + /* 19-digit numbers must be no larger than 9223372036854775807 if positive + ** or 9223372036854775808 if negative. Note that 9223372036854665808 + ** is 2^63. */ + return compare2pow63(zNum)='0' && c<='9'; i++){} + if( i<19 ){ + /* Guaranteed to fit if less than 19 digits */ + return 1; + }else if( i>19 ){ + /* Guaranteed to be too big if greater than 19 digits */ + return 0; + }else{ + /* Compare against 2^63. */ + return compare2pow63(zNum)=0 && c<=9; i++){ + v = v*10 + c; + } + + /* The longest decimal representation of a 32 bit integer is 10 digits: + ** + ** 1234567890 + ** 2^31 -> 2147483648 + */ + if( i>10 ){ + return 0; + } + if( v-neg>2147483647 ){ + return 0; + } + if( neg ){ + v = -v; + } + *pValue = (int)v; + return 1; +} + +/* +** The variable-length integer encoding is as follows: +** +** KEY: +** A = 0xxxxxxx 7 bits of data and one flag bit +** B = 1xxxxxxx 7 bits of data and one flag bit +** C = xxxxxxxx 8 bits of data +** +** 7 bits - A +** 14 bits - BA +** 21 bits - BBA +** 28 bits - BBBA +** 35 bits - BBBBA +** 42 bits - BBBBBA +** 49 bits - BBBBBBA +** 56 bits - BBBBBBBA +** 64 bits - BBBBBBBBC +*/ + +/* +** Write a 64-bit variable-length integer to memory starting at p[0]. +** The length of data write will be between 1 and 9 bytes. The number +** of bytes written is returned. +** +** A variable-length integer consists of the lower 7 bits of each byte +** for all bytes that have the 8th bit set and one byte with the 8th +** bit clear. Except, if we get to the 9th byte, it stores the full +** 8 bits and is the last byte. +*/ +int sqlite3PutVarint(unsigned char *p, u64 v){ + int i, j, n; + u8 buf[10]; + if( v & (((u64)0xff000000)<<32) ){ + p[8] = v; + v >>= 8; + for(i=7; i>=0; i--){ + p[i] = (v & 0x7f) | 0x80; + v >>= 7; + } + return 9; + } + n = 0; + do{ + buf[n++] = (v & 0x7f) | 0x80; + v >>= 7; + }while( v!=0 ); + buf[0] &= 0x7f; + assert( n<=9 ); + for(i=0, j=n-1; j>=0; j--, i++){ + p[i] = buf[j]; + } + return n; +} + +/* +** This routine is a faster version of sqlite3PutVarint() that only +** works for 32-bit positive integers and which is optimized for +** the common case of small integers. A MACRO version, putVarint32, +** is provided which inlines the single-byte case. All code should use +** the MACRO version as this function assumes the single-byte case has +** already been handled. +*/ +int sqlite3PutVarint32(unsigned char *p, u32 v){ +#ifndef putVarint32 + if( (v & ~0x7f)==0 ){ + p[0] = v; + return 1; + } +#endif + if( (v & ~0x3fff)==0 ){ + p[0] = (v>>7) | 0x80; + p[1] = v & 0x7f; + return 2; + } + return sqlite3PutVarint(p, v); +} + +/* +** Read a 64-bit variable-length integer from memory starting at p[0]. +** Return the number of bytes read. The value is stored in *v. +*/ +int sqlite3GetVarint(const unsigned char *p, u64 *v){ + u32 a,b,s; + + a = *p; + /* a: p0 (unmasked) */ + if (!(a&0x80)) + { + *v = a; + return 1; + } + + p++; + b = *p; + /* b: p1 (unmasked) */ + if (!(b&0x80)) + { + a &= 0x7f; + a = a<<7; + a |= b; + *v = a; + return 2; + } + + p++; + a = a<<14; + a |= *p; + /* a: p0<<14 | p2 (unmasked) */ + if (!(a&0x80)) + { + a &= (0x7f<<14)|(0x7f); + b &= 0x7f; + b = b<<7; + a |= b; + *v = a; + return 3; + } + + /* CSE1 from below */ + a &= (0x7f<<14)|(0x7f); + p++; + b = b<<14; + b |= *p; + /* b: p1<<14 | p3 (unmasked) */ + if (!(b&0x80)) + { + b &= (0x7f<<14)|(0x7f); + /* moved CSE1 up */ + /* a &= (0x7f<<14)|(0x7f); */ + a = a<<7; + a |= b; + *v = a; + return 4; + } + + /* a: p0<<14 | p2 (masked) */ + /* b: p1<<14 | p3 (unmasked) */ + /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ + /* moved CSE1 up */ + /* a &= (0x7f<<14)|(0x7f); */ + b &= (0x7f<<14)|(0x7f); + s = a; + /* s: p0<<14 | p2 (masked) */ + + p++; + a = a<<14; + a |= *p; + /* a: p0<<28 | p2<<14 | p4 (unmasked) */ + if (!(a&0x80)) + { + /* we can skip these cause they were (effectively) done above in calc'ing s */ + /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ + /* b &= (0x7f<<14)|(0x7f); */ + b = b<<7; + a |= b; + s = s>>18; + *v = ((u64)s)<<32 | a; + return 5; + } + + /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ + s = s<<7; + s |= b; + /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ + + p++; + b = b<<14; + b |= *p; + /* b: p1<<28 | p3<<14 | p5 (unmasked) */ + if (!(b&0x80)) + { + /* we can skip this cause it was (effectively) done above in calc'ing s */ + /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ + a &= (0x7f<<14)|(0x7f); + a = a<<7; + a |= b; + s = s>>18; + *v = ((u64)s)<<32 | a; + return 6; + } + + p++; + a = a<<14; + a |= *p; + /* a: p2<<28 | p4<<14 | p6 (unmasked) */ + if (!(a&0x80)) + { + a &= (0x7f<<28)|(0x7f<<14)|(0x7f); + b &= (0x7f<<14)|(0x7f); + b = b<<7; + a |= b; + s = s>>11; + *v = ((u64)s)<<32 | a; + return 7; + } + + /* CSE2 from below */ + a &= (0x7f<<14)|(0x7f); + p++; + b = b<<14; + b |= *p; + /* b: p3<<28 | p5<<14 | p7 (unmasked) */ + if (!(b&0x80)) + { + b &= (0x7f<<28)|(0x7f<<14)|(0x7f); + /* moved CSE2 up */ + /* a &= (0x7f<<14)|(0x7f); */ + a = a<<7; + a |= b; + s = s>>4; + *v = ((u64)s)<<32 | a; + return 8; + } + + p++; + a = a<<15; + a |= *p; + /* a: p4<<29 | p6<<15 | p8 (unmasked) */ + + /* moved CSE2 up */ + /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ + b &= (0x7f<<14)|(0x7f); + b = b<<8; + a |= b; + + s = s<<4; + b = p[-4]; + b &= 0x7f; + b = b>>3; + s |= b; + + *v = ((u64)s)<<32 | a; + + return 9; +} + +/* +** Read a 32-bit variable-length integer from memory starting at p[0]. +** Return the number of bytes read. The value is stored in *v. +** A MACRO version, getVarint32, is provided which inlines the +** single-byte case. All code should use the MACRO version as +** this function assumes the single-byte case has already been handled. +*/ +int sqlite3GetVarint32(const unsigned char *p, u32 *v){ + u32 a,b; + + a = *p; + /* a: p0 (unmasked) */ +#ifndef getVarint32 + if (!(a&0x80)) + { + *v = a; + return 1; + } +#endif + + p++; + b = *p; + /* b: p1 (unmasked) */ + if (!(b&0x80)) + { + a &= 0x7f; + a = a<<7; + *v = a | b; + return 2; + } + + p++; + a = a<<14; + a |= *p; + /* a: p0<<14 | p2 (unmasked) */ + if (!(a&0x80)) + { + a &= (0x7f<<14)|(0x7f); + b &= 0x7f; + b = b<<7; + *v = a | b; + return 3; + } + + p++; + b = b<<14; + b |= *p; + /* b: p1<<14 | p3 (unmasked) */ + if (!(b&0x80)) + { + b &= (0x7f<<14)|(0x7f); + a &= (0x7f<<14)|(0x7f); + a = a<<7; + *v = a | b; + return 4; + } + + p++; + a = a<<14; + a |= *p; + /* a: p0<<28 | p2<<14 | p4 (unmasked) */ + if (!(a&0x80)) + { + a &= (0x7f<<28)|(0x7f<<14)|(0x7f); + b &= (0x7f<<28)|(0x7f<<14)|(0x7f); + b = b<<7; + *v = a | b; + return 5; + } + + /* We can only reach this point when reading a corrupt database + ** file. In that case we are not in any hurry. Use the (relatively + ** slow) general-purpose sqlite3GetVarint() routine to extract the + ** value. */ + { + u64 v64; + int n; + + p -= 4; + n = sqlite3GetVarint(p, &v64); + assert( n>5 && n<=9 ); + *v = (u32)v64; + return n; + } +} + +/* +** Return the number of bytes that will be needed to store the given +** 64-bit integer. +*/ +int sqlite3VarintLen(u64 v){ + int i = 0; + do{ + i++; + v >>= 7; + }while( v!=0 && i<9 ); + return i; +} + + +/* +** Read or write a four-byte big-endian integer value. +*/ +u32 sqlite3Get4byte(const u8 *p){ + return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; +} +void sqlite3Put4byte(unsigned char *p, u32 v){ + p[0] = v>>24; + p[1] = v>>16; + p[2] = v>>8; + p[3] = v; +} + + + +#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) +/* +** Translate a single byte of Hex into an integer. +** This routinen only works if h really is a valid hexadecimal +** character: 0..9a..fA..F +*/ +static int hexToInt(int h){ + assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); +#ifdef SQLITE_ASCII + h += 9*(1&(h>>6)); +#endif +#ifdef SQLITE_EBCDIC + h += 9*(1&~(h>>4)); +#endif + return h & 0xf; +} +#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ + +#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) +/* +** Convert a BLOB literal of the form "x'hhhhhh'" into its binary +** value. Return a pointer to its binary value. Space to hold the +** binary value has been obtained from malloc and must be freed by +** the calling routine. +*/ +void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ + char *zBlob; + int i; + + zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1); + n--; + if( zBlob ){ + for(i=0; imagic is not a valid open value, take care not +** to modify the db structure at all. It could be that db is a stale +** pointer. In other words, it could be that there has been a prior +** call to sqlite3_close(db) and db has been deallocated. And we do +** not want to write into deallocated memory. +*/ +#ifdef SQLITE_DEBUG +int sqlite3SafetyOn(sqlite3 *db){ + if( db->magic==SQLITE_MAGIC_OPEN ){ + db->magic = SQLITE_MAGIC_BUSY; + assert( sqlite3_mutex_held(db->mutex) ); + return 0; + }else if( db->magic==SQLITE_MAGIC_BUSY ){ + db->magic = SQLITE_MAGIC_ERROR; + db->u1.isInterrupted = 1; + } + return 1; +} +#endif + +/* +** Change the magic from SQLITE_MAGIC_BUSY to SQLITE_MAGIC_OPEN. +** Return an error (non-zero) if the magic was not SQLITE_MAGIC_BUSY +** when this routine is called. +*/ +#ifdef SQLITE_DEBUG +int sqlite3SafetyOff(sqlite3 *db){ + if( db->magic==SQLITE_MAGIC_BUSY ){ + db->magic = SQLITE_MAGIC_OPEN; + assert( sqlite3_mutex_held(db->mutex) ); + return 0; + }else{ + db->magic = SQLITE_MAGIC_ERROR; + db->u1.isInterrupted = 1; + return 1; + } +} +#endif + +/* +** Check to make sure we have a valid db pointer. This test is not +** foolproof but it does provide some measure of protection against +** misuse of the interface such as passing in db pointers that are +** NULL or which have been previously closed. If this routine returns +** 1 it means that the db pointer is valid and 0 if it should not be +** dereferenced for any reason. The calling function should invoke +** SQLITE_MISUSE immediately. +** +** sqlite3SafetyCheckOk() requires that the db pointer be valid for +** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to +** open properly and is not fit for general use but which can be +** used as an argument to sqlite3_errmsg() or sqlite3_close(). +*/ +int sqlite3SafetyCheckOk(sqlite3 *db){ + int magic; + if( db==0 ) return 0; + magic = db->magic; + if( magic!=SQLITE_MAGIC_OPEN && + magic!=SQLITE_MAGIC_BUSY ) return 0; + return 1; +} +int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ + int magic; + if( db==0 ) return 0; + magic = db->magic; + if( magic!=SQLITE_MAGIC_SICK && + magic!=SQLITE_MAGIC_OPEN && + magic!=SQLITE_MAGIC_BUSY ) return 0; + return 1; +}