[image: image1.png]
SGL.GT0379.357 CR1392 User Guide
	Status:
	Issued

	Version:
	1.2

Use File > Properties to edit document information

[image: image2.png]
 SGL.GT0379.357 CR1392 User Guide

Issued v1.2

Contents

31
Introduction

1.1
Purpose and Scope
3
2
Overview
3
3
Operation
3
3.1
Overview
3
3.2
Command Line arguments
4
3.2.1
General options
4
3.2.2
Input/output file arguments
4
3.3
Command Line Examples
5
3.3.1
Dumping
5
3.3.2
Creating
5
3.3.3
Augmenting
6
4
Human Readable File Formats
6
4.1
Features common to all file formats
6
4.1.1
Double quoted strings
6
4.1.2
Enumerated types, numbers and capabilities
6
4.1.3
Subject/Issuer Key Identifiers
6
4.2
File format specifics
8
4.2.1
“File Certificate Store”
8
4.2.2
“Native Software Install Certificate Store”
9
4.2.3
“Certificate Clients”
10
5
Library API
10
6
Omissions
11
7
Further Information
12
7.1
References
12
7.2
Glossary
12

Introduction

1.1 Purpose and Scope

This document covers the use of the certapp PC tool.

The tool is designed to support creation, modification, dumping and debugging of

i) SWI certificate store files (swicertstore.dat)

ii) File certificate store files (cacerts.dat)

iii) Certificate clients files (certclients.dat) which is used by the other two store types to map between “application” UIDs and names.

The key store which is used to store client certificate keys is not supported.

The tool runs under both Windows (standalone binary, not in emulator) and Linux.

2 Overview

The “Unified Certificate Store” (Unified Certstore) framework store supports multiple certificate stores, of multiple types, and provides a unified interface to them via the “Unified Certstore API”. Symbian provides an implementation of two types of certificate store: The “Native Software Install Certificate Store” (swicertstore) and the “File Certificate Store” (filecertstore).

The swicertstore is stored in z:\resource\swicertstore.dat.

The filecertstore is stored in the \private\101f72a6 directory in the cacerts.dat and certclients.dat files. The cacerts.dat file stores the certificates (both CA and user/client certificates) and associated metadata, including a list of application UIDs which the certificate is applicable to. The certclients.dat file maps application UIDs to application names.

The 101f72a6 directory also contains the “key store” (keys.dat), which contains the client certificate keys, but this is outside the scope of CR1392 (search for “Using keytool” in the developer library).

Client certificates are handled, but the associated keys are not. In practise this means this tool can not easily be used to add client certificates to a store. It can safely be used to dump and manipulate a store which already contains client certificate(s).

3 Operation

3.1 Overview

The subsystem consists of one tool which supports swicertstore, filecertstore, and certclients data files in both binary form and human readable form.

The tool reads a series of input files, which may be in any of the six supported formats, and merges them into an “in memory” form. It then writes out the “in memory” data into a series of zero or more output files, each of which may be in any of the six supported formats.

The configuration files maybe ASCII or UTF8 format (with, or without a BOM marker). The line termination may be either CR or CR+LF (or a mixture). The text configuration dump will use native line ending (i.e. LF on Linux and CR+LF on Windows). The contents are case-insensitive except inside string quote. A string quote starts and ends with a double quote character and may contain any character. The backslash character is the string quote escape character, the following character will be included in the string even if it is a double quote (this also means you need to use two backslash characters to get one inside the string).

Certificate files must be in one of the following formats (all unencrypted):-

1. X.509 PEM (*.pem)

2. X.509 DER (*.der)

3. WTLS – Only supported if the source format specifies the “subject key identifier”

3.2 Command Line arguments

The basic command line format is as follows:-

certapp general_options input_files –out output_files

All arguments are optional.

3.2.1 General options

Any combination of the following options may be specified:-

· -h Display this usage message

· --progress=filename
Save progress output to specified file

· --errors=filename
Save error output to specified file

· --verbose

Include additional debug comments in output files

· --license

Display license information

· --pemout

Output certificates in PEM format (nb. format is auto-detected when reading)

· --allowduplicates
Disable checks for duplicate certificate labels/UIDs when reading human readable input (testing ONLY))

Any existing file contents are erased (this applies to all files, including log, output and certificate files).

An errors/progress filename of - will write to the standard output.

If the errors/progress filenames are identical, the output will be merged.

3.2.2 Input/output file arguments

The specification for input and output file arguments is identical. All files specified before the –out argument are input files, and those after are output files. Additional input files may be specified on the end of the command line by the use of the –in option, but note that all input files are processed before any output files are generated.

Six file formats are supported:-

· --bswicertstore=filename

Binary swicertstore file.

· --hswicertstore=filename

Human readable swicertstore file.

· --bfilecertstore=filename

Binary filecertstore file.

· --hfilecertstore=filename

Human readable filecertstore file.

· --bcertclients=filename

Binary certclients file.

· --hcertclients=filename

Human readable certclients file.

· --out

Change to specifying output files

· --in

Change to specifying input files

· --chdir=dirname

Change current dir for following input/output files

The swicertstore and filecertstore files may rely on information contained in the certclients files, therefore all certclients files are read before the others.

For each type of input file (swicertstore/filecertstore/certclients), the files will be processed from right to left on the command line (each individual file is processed from beginning to end). This means that entries listed later in the command line will take precedence (i.e. they will be returned first when the resulting certificate store is used).

This means that input files should be specified in the order low to high priority. This matches the directory listing order which is used by the writable swicertstore feature and the cr1393 swicertstore/filecertstore aggregation, both of which aggregates several data files to form a single certificate store, which is different to the “Unified certificate store” which unifies multiple different types of certificate stores.

The --chdir option may be to change to current directory for reading/writing files. If the final component of the specified directory path does not exist, it will be created. This can be used to read input files from one dir, and write all output files to a different dir. Multiple directories may be specified.

Duplicate entries will not be included. For swicertstore/filecertstore duplicates are identified by label. For certclients, duplicates are identified by client name (i.e. multiple names can map to a single UID, but not vice versa).

For example “--bswicerstore=rom_file --bswicertstore=sys_drive_file --hswicertstore=extra_certs” will result in an “in memory” store which returns entries in the order extra_certs first then entries from sys_drive_file and lastly entries from rom_file. If an entry exists in extra_certs with the same label as one in the other two stores, then only that entry will be included. Adding “--out --bswicertstore=swicertstore.dat” would dump the “in memory” to disk in binary format.

If duplicate entries are detected within a single human readable file this will be reported as a fatal error.

3.3 Command Line Examples

3.3.1 Dumping

The following command will dump the filecertstore to human readable form. Note that certclients.dat is provided as an input so the tool can dump the certificate application meta data in text, instead of as a series of UIDs.

certapp --bcertclients=certclients.dat --bfilecertstore=cacerts.dat --out --hcertclients=certclients.txt --hfilecertstore=cacerts.txt

Similarly the following command will dump the swicertstore.

certapp --bcertclients=certclients.dat --bswicertstore=swicertstore.dat --out --hcertclients=certclients.txt --hswicertstore=swicertstore.txt

The following will dump the swicertstore for a device which has a writable swicertstore data file installed.

certapp --bcertclients=certclients.dat --bswicertstore=swicertstore.dat --bswicertstore=writable.dat --out --hcertclients=certclients.txt --hswicertstore=swicertstore.txt

Note that the swicertstore data files should be specified in ascending priority order, therefore the base swicertstore file should be listed first, and the writable swicertstore files or filecertstore variant files last. The tool will automatically process them in the reverse order to give the same result as on device processing does.

Certificates will be dumped into separate files using filenames based on the output file name and type. For example if the output file is test.txt then x509 certificates will be dumped in files with names like test_certN.der where N is the entry number. If --pemout is specified then the extension will be .pem. If the certificate type is not EX509Certificate, then the extension will be .dat.

3.3.2 Creating

First create the certclients.dat file which maps the application text strings to UIDs. In this context the “application” is something like “SWI Install” or “Server Authentication”. Only one entry is allowed for each UID. Multiple UIDs can map to the same application text string, but this is not recommended.

A typical configuration would be as follows (note that the comment lines are optional):-

StartClientInfo

Entry 1

Uid 0x100042ab

Name "SW Install"

Entry 2

Uid 0x1000a8b6

Name "SW Install OCSP Signing"

Entry 3

Uid 0x101f9b28

Name "MIDlet Installation"

Entry 4

Uid 0x1000183d

Name "Server Authentication"

EndClientInfo

This can then be converted into a binary file by the following command.

certapp --hcertclients=certclients.txt --out --bcertclients=certclients.dat

Now the filecertstore and swicertstore files can be generated. The certclients.txt file is supplied on the command line so their configuration files can use the text form of the applications instead of a list of UIDs.

certapp --hcertclients=certclients.txt --hfilecertstore=cacerts.txt --out --bfilecertstore=cacerts.dat

certapp --hcertclients=certclients.txt --hswicertstore=swicertstore.txt --out --bswicertstore=swicertstore.dat

It is possible to generate a store without supplying a certclients input file, but all applications will have to be specified using the correct UID values instead of text values.

Alternatively all the previous commands could be combined into a single command.

certapp --hcertclients=certclients.txt --hfilecertstore=cacerts.txt --hswicertstore=swicertstore.txt --out --bcertclients=certclients.dat --bfilecertstore=cacerts.dat --bswicertstore=swicertstore.dat

3.3.3 Augmenting

The following command will generate a single binary swicertstore which is equivalent to the writable swicertstore represented by the ROM and sys drive files augmented by the entries in extra_certs.txt.

certapp --bswicertstore=rom_swicertstore.dat --bswicertstore=sys_drive_swicertstore.dat --hswicertstore=extra_certs.txt --out --bswicertstore=new_swicertstore.dat

4 Human Readable File Formats

4.1 Features common to all file formats

Input text files may be 7-bit text or UTF-8. If the file is UTF-8, the file can optionally start with a UTF-8 ByteOrderMarker (this is the marker that windows uses when saving files as UTF-8).

Normally all white-space (space, tab, CR and LF characters) is ignored. Output files will use the line ending convention of the platform the tool is run on. The tool can read either.

4.1.1 Double quoted strings

A series of bytes within double quote characters will be treated as a single token. Within double quotes the byte after a backslash character will be unconditionally included in the token. This means a double quote can be included in the token by using \” and that \\ will be replaced by \. The special handling of the backslash character is only active whilst processing a double quoted token.

The double quote syntax can be used to set any text field value (i.e. certificate label) to any UTF-8 value including quote characters, spaces, UTF-8 escape sequences etc). Note that UTF-8 is defined so that a UTF-8 escape sequence can not contain a backslash character, so the user will only have to escape normal double quote and backslash characters with an additional backslash.

4.1.2 Enumerated types, numbers and capabilities

Any numeric value may be entered in decimal, as a raw number, or in hexadecimal by prefixing the number with 0x.

All enum values may also be specified via a numeric value, though using text values is strongly recommended.

Capability set values may also be specified as numeric bit offsets (starting from 0), though using text values is strongly recommended.

4.1.3 Subject/Issuer Key Identifiers

The issuer of a certificate is normally identified by the issuer field

Normally the issuer certificate for a certificate is found by reading the Issuer field of the certificate and looking for certificates with a Subject field which matches it. In certain situations there may be more than one candidate issuer certificate (i.e. more than one with a matching Subject field).

The standards define ways to optimise the building a certificate chain including considering first certificates whose SubjectKeyId matches the IssuerKeyId of the child certificate. Note that the standards do NOT define a single way of calculating the IssuerKeyId/SubjectKeyId fields and state that a match may be used to sort the list of candidates, but a miss-match should not be used to eliminate candidates.

It is recommended that the SubjectKeyId be set to auto.

It is recommended that the IssuerKeyId is either set to auto or to an empty octet string.

See later sections for a description of what the auto keyword does.

The SubjectKeyId and IssuerKeyId fields may be set to an explicit octet string as follows

SubjectKeyId ’01:02:43’

In the above example the SubjectKeyId is set to an octet string consisting of 0x01, 0x02 and 0x03. The string can be anywhere from 0 to 20 bytes long. The length limit is imposed by the certificate store meta-data structure, but typically the values used are a SHA1 hash of some certificate fields and hence 20 bytes long.

4.1.3.1 Auto SubjectKeyId

If the SubjectKeyId is set to auto, or if the field is omitted, the following processing will be performed.

The SubjectKeyId is stored in the certificate meta-data and can be used when querying the store using a filter.

If the SubjectKeyId is set to auto then the following algorithm is used:-

1) If the store type is NOT swicertstore, the certificate type is not user, and an x509 SubjectKeyId extension is present, which is less than or equal to 20 bytes long, then its value is used.

2) Calculate a SubjectKeyId value based on the certificate’s public key characteristics using a Symbian specific algorithm. This algorithm is different to that used by some certificate authorities when calculating a value to put in a SubjectKeyId Extension, but complies with the standards because they allow any algorithm to be used.

The slightly odd logic is because

i) Symbian used to just use the Symbian algorithm, but the filecertstore (and not the swicertstore) was recently modified (INC112976) to use the value from the certificate SubjectKeyId where possible. This enables client applications to filter on SubjectKeyId matching that found in the certificate extension.

ii) It can not be used for user certificates because for those it must match the Symbian algorithm value to correctly find the matching private key in the keystore.

The full value of the subject key identifier certificate extension, if present, is always available by retrieving the certificate and querying it directly.

4.1.3.2 Auto IssuerKeyId

If the IssuerKeyId is set to auto, or if the field is omitted, the following processing will be performed.

The Certstore does not usually set the IssuerKeyId value in the Certstore certificate meta-data.

The IssuerKeyId is stored in the certificate meta-data and can be used when querying the store using a filter.

If you would like to be able to filter certificates by IssuerKeyId, then set the field to auto, otherwise set it to an empty octet string (i.e. ’’).

The following algorithm is used:-

1) If the store type is NOT swicertstore, and an x509 AuthorityKeyId extension is present, which is less than or equal to 20 bytes long, then its value is used.

2) If a single certificate is found (*) whose Subject (not label) matches the Issuer field of the certificate then the IssuerKeyId will be set to the SubjectKeyId we are using for that certificate

3) Otherwise it will be set to an empty octet string.

(*) When generating IssuerKeyId values for swicertstore certificates, all certificates in the swicertstore will be considered. When generating values for filecertstore, all certificates in both the swicertstore and the filecertstore will be considered.

The full value of the authority key identifier certificate extension, if present, is always available by retrieving the certificate and querying it directly.

4.2 File format specifics

Details of each field are described in the following sections. The swicertstore format is a superset of the filecertstore and therefore does not duplicate descriptions of fields common to both formats.

4.2.1 “File Certificate Store”

The tool supports the filecertstore binary file format. Files of this type are specified via the --bfilecertstore command line option.

The file used at runtime is normally stored in $:\private\101f72a6\certclients.dat where $ is the system drive. It is normally initialised with the contents of the ROM file z:\private\101f72a6\certclients.dat.

The following human readable format is supported. Files of this type are specified via the --hfilecertstore command line option.

Note that space and line endings are ignored. All text outside of speech marks is case insensitive. The order of all fields must be as shown. All fields are mandatory.

StartCertStoreEntries

StartEntry "Root5CA"

Deletable true

Format EX509Certificate

CertOwnerType ECACertificate

SubjectKeyId auto

IssuerKeyId auto

StartApplicationList

Entry 1

Application "Server Authentication"

EndApplicationList

Trusted true

DataFileName "root5ca.pem"

EndEntry

EndCertStoreEntries

Notes:-

· The StartEntry specifies the certificate label, which is UTF8 and limited to 64 characters.

· If the Deletable field is false then this certificate is protected from deletion.

· The certificate Format. This should usually be set to EX509Certificate.

· The following CertificateOwnerType values are legal – ECACertificate, EUserCertificate and EPeerCertificate.
· The SubjectKeyId and the IssuerKeyId fields are optional. If omitted they will be treated as if set to auto. For X509 certificates it is recommended that the SubjectKeyId and the IssuerKeyId fields be omitted or set to auto. For other certificate types an octet string value must be specified. An octet string is specified in single quotes, for example '65:D5'. The string maybe from 0 to 20 bytes long.

· The application list is used to specify the list of “applications” which are associated with the certificate. In this context and application is a type of use, for example “Server Authentication” or “SW Install”. Applications can be specified by UID or by name (in which case they are looked up in certclients.dat).

· The Trusted field should almost always be set to true. If set to false then this certificate will not act as a trust anchor and its capabilities will not be used.

· The DataFileName specifies the name of the file to read the certificate from. The file extension is not significant. If the Format is not x509 then the contents will be treated as a raw block of data. If the Format is x509 then the file may be either a PEM encoded certificate in a UTF-8 file (with or without a UTF-8 BOM marker), or a binary file containing a DER encoded certificate.

4.2.2 “Native Software Install Certificate Store”

The tool supports the swicertstore binary file format. Files of this type are specified via the --bswicertstore command line option.

Both the ROM store in z:\resource\swicertstore.dat and the writable SWI store data files in $:\resource\swicertstore\dat\ (where $ is the system drive) use the same format.
The following human readable format is supported. Files of this type are specified via the --hswicertstore command line option.

Note that space and line endings are ignored. All text outside of speech marks is case insensitive. The order of all fields must be as shown.

All fields are mandatory and must be in the order specified unless specified otherwise in the notes.

The swicertstore format is largely a superset of the filecertstore and therefore does not duplicate descriptions of fields common to both formats. Note that it does NOT have a Deletable field because all swicertstore certificates are protected from deletion.

StartSwiCertStoreEntries

StartEntry "SymbianA"

Format EX509Certificate

CertOwnerType ECACertificate

SubjectKeyId auto

IssuerKeyId auto

StartApplicationList

Entry 1

Application "SW Install"

Entry 2

Application "SW Install OCSP Signing"

EndApplicationList

Trusted true

DataFileName "cert.der"

CapabilitySet { TCB CommDD PowerMgmt MultimediaDD ReadDeviceData WriteDeviceData DRM TrustedUI ProtServ DiskAdmin NetworkControl AllFiles SwEvent NetworkServices LocalServices ReadUserData WriteUserData Location SurroundingsDD UserEnvironment }

Mandatory false

SystemUpgrade false

EndEntry

EndSwiCertStoreEntries

All fields are mandatory and must be in the order specified unless specified otherwise in the notes.

Notes:-

· Most fields are identical to the filecertstore format except that the Deletable field is included (though will be dumped if --verbose is used).

· The CapabilitySet defines a list of capabilities allowed in applications whose trust anchor is this certificate. The standard capability names are allowed or numeric bit numbers may be specified (starting from 0 meaning TCB).

· The Mandatory field should normally be set to false. Setting it to true will prevent the installation of any packages which are not signed by a certificate which resolves to this certificate.

· The SystemUpgrade field should normally be set to false. If set to true then any application signed by a certificate which resolves to this certificate will be treated as a System Upgrade and a lot of security checks will be disabled for that application.

The SystemUpgrade field must ONLY be set to true when the resulting certificate store is being deployed to a device which supports PREQ1912 (CR1371/CR1271). If deployed to a device without this support, it will cause the certificate to be interpreted as a Mandatory, which will prevent all normal applications from installing.

4.2.3 “Certificate Clients”

The tool supports the certclient binary file format. Files of this type are specified via the --bcertclients command line option.

The file used at runtime is normally stored in $:\private\101f72a6\certclients.dat where $ is the system drive. It is normally initialised with the contents of the ROM file z:\private\101f72a6\certclients.dat.

The following human readable format is supported. Files of this type are specified via the –hcertclients command line option.

Note that space and line endings are ignored. All text outside of speech marks is case insensitive. The order of all fields must be as shown.

All fields are mandatory and must be in the order specified unless specified otherwise in the notes.

The comments are optional.

StartClientInfo

Entry 1

Uid 0x100042ab

Name "SW Install"

Entry 2

Uid 0x1000a8b6

Name "SW Install OCSP Signing"

Entry 3

Uid 0x101f9b28

Name "MIDlet Installation"

Entry 4

Uid 0x1000183d

Name "Server Authentication"

EndClientInfo

Only one entry is allowed for each UID. Multiple UIDs can map to the same application text string, but this is not recommended.

5 Library API

int RunCertApp(const char *aProgress, const char *aErrors,

 int argc, char **argv);

This API will run certapp as separate process and returns the result. This approach is taken so that the caller is protected from any possible certapp failure. Even if certapp crashes, RunCertApp will return without crashing the caller.

Certapp guarantees to return a non-zero status if it fails, which means you don't need to parse its output to deduce if it worked or not.

The certapp executable must be in the current search path.

The caller will be blocked whilst certapp runs.

There are two logging arguments, aProgress and aErrors. These may be set to either a filename to write the output to or to “-“ which means standard output. If both logging arguments are identical, then the output will be merged to a single location.

Progress and warning messages are written to aProgress.

Fatal errors will be logged to aErrors, and RunCertApp will return a non-zero number.

Any existing file contents are erased (this applies to all files, including progress/error logs, output and certificate files).

The argc argument should be set to the count of the argv arguments.

The argv argument should be set to an array of const char * ptrs to the remaining arguments.

The argv arguments maybe any of the arguments accepted by the certapp executable, run "certapp -h" for further information.

6 Omissions

The encrypted PEM certificates are not supported.

The Tool does not handle the creation or dumping of the key store.

Including user certificates in a filecertstore requires the manual specification of the issuer and subject key hash values for the user certificates (they are not automatically calculated from the certificate field values). Note that a dump of a filecertstore will include these values so the store can be re-created. Normally user certificates should be added at runtime and linked to a matching private key in the key store (e.g. via the keytool).

7 Further Information

7.1 References

	No.
	Document Reference
	Version
	Description

	[R1]
	SGL.GT0379.236_CR1392_Functional_Spec.doc
	
	CR1392 Functional Specification

	[R2]
	SGL.GT0379.262_CR1392_Design.doc
	
	CR1392 Design Document

7.2 Glossary

	Term
	Definition

	BOM
	Byte Order Marker

	DER
	X509 certificateASN1 DER

	PEM
	Base64 encoded DER certificate, surrounded by ASCII headers

	X.509
	

	WTLS
	Wireless Transport Layer Security

Copyright © Symbian Software Ltd. 2008. All rights reserved. This document may not be reproduced in any form, in whole or in part, by any means whatsoever, without the written permission of the copyright holder.

Copyright © Symbian Software Ltd. 2008.

Page 12 of 12
All rights reserved.

[image: image3.png]_1139388038

_1139388040

