|
1 /* |
|
2 * Copyright (c) 2003-2009 Nokia Corporation and/or its subsidiary(-ies). |
|
3 * All rights reserved. |
|
4 * This component and the accompanying materials are made available |
|
5 * under the terms of the License "Eclipse Public License v1.0" |
|
6 * which accompanies this distribution, and is available |
|
7 * at the URL "http://www.eclipse.org/legal/epl-v10.html". |
|
8 * |
|
9 * Initial Contributors: |
|
10 * Nokia Corporation - initial contribution. |
|
11 * |
|
12 * Contributors: |
|
13 * |
|
14 * Description: |
|
15 * |
|
16 */ |
|
17 |
|
18 |
|
19 #include <random.h> |
|
20 #include <bigint.h> |
|
21 #include <e32std.h> |
|
22 #include <euserext.h> |
|
23 #include <securityerr.h> |
|
24 #include "words.h" |
|
25 #include "algorithms.h" |
|
26 #include "windowslider.h" |
|
27 #include "stackinteger.h" |
|
28 #include "mont.h" |
|
29 |
|
30 |
|
31 /** |
|
32 * Creates a new buffer containing the big-endian binary representation of this |
|
33 * integer. |
|
34 * |
|
35 * Note that it does not support the exporting of negative integers. |
|
36 * |
|
37 * @return The new buffer. |
|
38 * |
|
39 * @leave KErrNegativeExportNotSupported If this instance is a negative integer. |
|
40 * |
|
41 */ |
|
42 EXPORT_C HBufC8* TInteger::BufferLC() const |
|
43 { |
|
44 if(IsNegative()) |
|
45 { |
|
46 User::Leave(KErrNegativeExportNotSupported); |
|
47 } |
|
48 TUint bytes = ByteCount(); |
|
49 HBufC8* buf = HBufC8::NewMaxLC(bytes); |
|
50 TUint8* bufPtr = (TUint8*)(buf->Ptr()); |
|
51 TUint8* regPtr = (TUint8*)Ptr(); |
|
52 |
|
53 // we internally store the number little endian, as a string we want it big |
|
54 // endian |
|
55 for(TUint i=0,j=bytes-1; i<bytes; ) |
|
56 { |
|
57 bufPtr[i++] = regPtr[j--]; |
|
58 } |
|
59 return buf; |
|
60 } |
|
61 |
|
62 EXPORT_C HBufC8* TInteger::BufferWithNoTruncationLC() const |
|
63 { |
|
64 if(IsNegative()) |
|
65 { |
|
66 User::Leave(KErrNegativeExportNotSupported); |
|
67 } |
|
68 |
|
69 TUint wordCount = Size(); |
|
70 TUint bytes = (wordCount)*WORD_SIZE; |
|
71 |
|
72 HBufC8* buf = HBufC8::NewMaxLC(bytes); |
|
73 TUint8* bufPtr = (TUint8*)(buf->Ptr()); |
|
74 TUint8* regPtr = (TUint8*)Ptr(); |
|
75 for(TUint i=0,j=bytes-1; i<bytes; ) |
|
76 { |
|
77 bufPtr[i++] = regPtr[j--]; |
|
78 } |
|
79 |
|
80 return buf; |
|
81 } |
|
82 |
|
83 /** |
|
84 * Gets the number of words required to represent this RInteger. |
|
85 * |
|
86 * @return The size of the integer in words. |
|
87 * |
|
88 */ |
|
89 EXPORT_C TUint TInteger::WordCount() const |
|
90 { |
|
91 return CountWords(Ptr(), Size()); |
|
92 } |
|
93 |
|
94 /** |
|
95 * Gets the number of bytes required to represent this RInteger. |
|
96 * |
|
97 * @return The size of the integer in bytes. |
|
98 * |
|
99 */ |
|
100 EXPORT_C TUint TInteger::ByteCount() const |
|
101 { |
|
102 TUint wordCount = WordCount(); |
|
103 if(wordCount) |
|
104 { |
|
105 return (wordCount-1)*WORD_SIZE + BytePrecision((Ptr())[wordCount-1]); |
|
106 } |
|
107 else |
|
108 { |
|
109 return 0; |
|
110 } |
|
111 } |
|
112 |
|
113 /** |
|
114 * Get the number of bits required to represent this RInteger. |
|
115 * |
|
116 * @return The size of the integer in bits. |
|
117 * |
|
118 */ |
|
119 EXPORT_C TUint TInteger::BitCount() const |
|
120 { |
|
121 TUint wordCount = WordCount(); |
|
122 if(wordCount) |
|
123 { |
|
124 return (wordCount-1)*WORD_BITS + BitPrecision(Ptr()[wordCount-1]); |
|
125 } |
|
126 else |
|
127 { |
|
128 return 0; |
|
129 } |
|
130 } |
|
131 |
|
132 |
|
133 //These 3 declarations instantiate a constant 0, 1, 2 for ease of use and |
|
134 //quick construction elsewhere in the code. Note that the functions |
|
135 //returning references to this static data return const references as you can't |
|
136 //modify the ROM ;) |
|
137 //word 0: Size of storage in words |
|
138 //word 1: Pointer to storage |
|
139 //word 2: LSW of storage |
|
140 //word 3: MSW of storage |
|
141 //Note that the flag bits in word 1 (Ptr()) are zero in the case of a positive |
|
142 //stack based integer (SignBit == 0, IsHeapBasedBit == 0) |
|
143 const TUint KBigintZero[4] = {2, (TUint)(KBigintZero+2), 0, 0}; |
|
144 const TUint KBigintOne[4] = {2, (TUint)(KBigintOne+2), 1, 0}; |
|
145 const TUint KBigintTwo[4] = {2, (TUint)(KBigintTwo+2), 2, 0}; |
|
146 |
|
147 /** |
|
148 * Gets the TInteger that represents zero |
|
149 * |
|
150 * @return The TInteger representing zero |
|
151 */ |
|
152 EXPORT_C const TInteger& TInteger::Zero(void) |
|
153 { |
|
154 return *reinterpret_cast<const TStackInteger64*>(KBigintZero); |
|
155 } |
|
156 |
|
157 /** |
|
158 * Gets the TInteger that represents one |
|
159 * |
|
160 * @return The TInteger representing one |
|
161 */ |
|
162 EXPORT_C const TInteger& TInteger::One(void) |
|
163 { |
|
164 return *reinterpret_cast<const TStackInteger64*>(KBigintOne); |
|
165 } |
|
166 |
|
167 /** |
|
168 * Gets the TInteger that represents two |
|
169 * |
|
170 * @return The TInteger representing two |
|
171 */ |
|
172 EXPORT_C const TInteger& TInteger::Two(void) |
|
173 { |
|
174 return *reinterpret_cast<const TStackInteger64*>(KBigintTwo); |
|
175 } |
|
176 |
|
177 EXPORT_C RInteger TInteger::PlusL(const TInteger& aOperand) const |
|
178 { |
|
179 RInteger sum; |
|
180 if (NotNegative()) |
|
181 { |
|
182 if (aOperand.NotNegative()) |
|
183 sum = PositiveAddL(*this, aOperand); |
|
184 else |
|
185 sum = PositiveSubtractL(*this, aOperand); |
|
186 } |
|
187 else |
|
188 { |
|
189 if (aOperand.NotNegative()) |
|
190 sum = PositiveSubtractL(aOperand, *this); |
|
191 else |
|
192 { |
|
193 sum = PositiveAddL(*this, aOperand); |
|
194 sum.SetSign(TInteger::ENegative); |
|
195 } |
|
196 } |
|
197 return sum; |
|
198 } |
|
199 |
|
200 EXPORT_C RInteger TInteger::MinusL(const TInteger& aOperand) const |
|
201 { |
|
202 RInteger diff; |
|
203 if (NotNegative()) |
|
204 { |
|
205 if (aOperand.NotNegative()) |
|
206 diff = PositiveSubtractL(*this, aOperand); |
|
207 else |
|
208 diff = PositiveAddL(*this, aOperand); |
|
209 } |
|
210 else |
|
211 { |
|
212 if (aOperand.NotNegative()) |
|
213 { |
|
214 diff = PositiveAddL(*this, aOperand); |
|
215 diff.SetSign(TInteger::ENegative); |
|
216 } |
|
217 else |
|
218 diff = PositiveSubtractL(aOperand, *this); |
|
219 } |
|
220 return diff; |
|
221 } |
|
222 |
|
223 EXPORT_C RInteger TInteger::TimesL(const TInteger& aOperand) const |
|
224 { |
|
225 RInteger product = PositiveMultiplyL(*this, aOperand); |
|
226 |
|
227 if (NotNegative() != aOperand.NotNegative()) |
|
228 { |
|
229 product.Negate(); |
|
230 } |
|
231 return product; |
|
232 } |
|
233 |
|
234 EXPORT_C RInteger TInteger::DividedByL(const TInteger& aOperand) const |
|
235 { |
|
236 RInteger quotient; |
|
237 RInteger remainder; |
|
238 DivideL(remainder, quotient, *this, aOperand); |
|
239 remainder.Close(); |
|
240 return quotient; |
|
241 } |
|
242 |
|
243 EXPORT_C RInteger TInteger::ModuloL(const TInteger& aOperand) const |
|
244 { |
|
245 RInteger remainder; |
|
246 RInteger quotient; |
|
247 DivideL(remainder, quotient, *this, aOperand); |
|
248 quotient.Close(); |
|
249 return remainder; |
|
250 } |
|
251 |
|
252 EXPORT_C TUint TInteger::ModuloL(TUint aOperand) const |
|
253 { |
|
254 if(!aOperand) |
|
255 { |
|
256 User::Leave(KErrDivideByZero); |
|
257 } |
|
258 return Modulo(*this, aOperand); |
|
259 } |
|
260 |
|
261 EXPORT_C RInteger TInteger::ModularMultiplyL(const TInteger& aA, const TInteger& aB, |
|
262 const TInteger& aMod) |
|
263 { |
|
264 RInteger product = aA.TimesL(aB); |
|
265 CleanupStack::PushL(product); |
|
266 RInteger reduced = product.ModuloL(aMod); |
|
267 CleanupStack::PopAndDestroy(&product); |
|
268 return reduced; |
|
269 } |
|
270 |
|
271 EXPORT_C RInteger TInteger::ModularExponentiateL(const TInteger& aBase, |
|
272 const TInteger& aExp, const TInteger& aMod) |
|
273 { |
|
274 CMontgomeryStructure* mont = CMontgomeryStructure::NewLC(aMod); |
|
275 RInteger result = RInteger::NewL(mont->ExponentiateL(aBase, aExp)); |
|
276 CleanupStack::PopAndDestroy(mont); |
|
277 return result; |
|
278 } |
|
279 |
|
280 EXPORT_C RInteger TInteger::GCDL(const TInteger& aOperand) const |
|
281 { |
|
282 //Binary GCD algorithm -- see HAC 14.4.1 |
|
283 //with a slight variation -- our g counts shifts rather than actually |
|
284 //shifting. We then do one shift at the end. |
|
285 assert(NotNegative()); |
|
286 assert(aOperand.NotNegative()); |
|
287 |
|
288 RInteger x = RInteger::NewL(*this); |
|
289 CleanupStack::PushL(x); |
|
290 RInteger y = RInteger::NewL(aOperand); |
|
291 CleanupStack::PushL(y); |
|
292 |
|
293 // 1 Ensure x >= y |
|
294 if( x < y ) |
|
295 { |
|
296 TClassSwap(x, y); |
|
297 } |
|
298 |
|
299 TUint g = 0; |
|
300 // 2 while x and y even x <- x/2, y <- y/2 |
|
301 while( x.IsEven() && y.IsEven() ) |
|
302 { |
|
303 x >>= 1; |
|
304 y >>= 1; |
|
305 ++g; |
|
306 } |
|
307 // 3 while x != 0 |
|
308 while( x.NotZero() ) |
|
309 { |
|
310 // 3.1 while x even x <- x/2 |
|
311 while( x.IsEven() ) |
|
312 { |
|
313 x >>= 1; |
|
314 } |
|
315 // 3.2 while y even y <- y/2 |
|
316 while( y.IsEven() ) |
|
317 { |
|
318 y >>= 1; |
|
319 } |
|
320 // 3.3 t <- abs(x-y)/2 |
|
321 RInteger t = x.MinusL(y); |
|
322 t >>= 1; |
|
323 t.SetSign(TInteger::EPositive); |
|
324 |
|
325 // 3.4 If x>=y then x <- t else y <- t |
|
326 if( x >= y ) |
|
327 { |
|
328 x.Set(t); |
|
329 } |
|
330 else |
|
331 { |
|
332 y.Set(t); |
|
333 } |
|
334 } |
|
335 |
|
336 // 4 Return (g*y) (equiv to y<<=g as our g was counting shifts not actually |
|
337 //shifting) |
|
338 y <<= g; |
|
339 CleanupStack::Pop(&y); |
|
340 CleanupStack::PopAndDestroy(&x); |
|
341 return y; |
|
342 } |
|
343 |
|
344 EXPORT_C RInteger TInteger::InverseModL(const TInteger& aMod) const |
|
345 { |
|
346 assert(aMod.NotNegative()); |
|
347 |
|
348 RInteger result; |
|
349 if(IsNegative() || *this>=aMod) |
|
350 { |
|
351 RInteger temp = ModuloL(aMod); |
|
352 CleanupClosePushL(temp); |
|
353 result = temp.InverseModL(aMod); |
|
354 CleanupStack::PopAndDestroy(&temp); |
|
355 return result; |
|
356 } |
|
357 |
|
358 if(aMod.IsEven()) |
|
359 { |
|
360 if( !aMod || IsEven() ) |
|
361 { |
|
362 return RInteger::NewL(Zero()); |
|
363 } |
|
364 if( *this == One() ) |
|
365 { |
|
366 return RInteger::NewL(One()); |
|
367 } |
|
368 RInteger u = aMod.InverseModL(*this); |
|
369 CleanupClosePushL(u); |
|
370 if(!u) |
|
371 { |
|
372 result = RInteger::NewL(Zero()); |
|
373 } |
|
374 else |
|
375 { |
|
376 //calculates (aMod*(*this-u)+1)/(*this) |
|
377 result = MinusL(u); |
|
378 CleanupClosePushL(result); |
|
379 result *= aMod; |
|
380 ++result; |
|
381 result /= *this; |
|
382 CleanupStack::Pop(&result); |
|
383 } |
|
384 CleanupStack::PopAndDestroy(&u); |
|
385 return result; |
|
386 } |
|
387 |
|
388 result = RInteger::NewEmptyL(aMod.Size()); |
|
389 CleanupClosePushL(result); |
|
390 RInteger workspace = RInteger::NewEmptyL(aMod.Size() * 4); |
|
391 TUint k = AlmostInverse(result.Ptr(), workspace.Ptr(), Ptr(), Size(), |
|
392 aMod.Ptr(), aMod.Size()); |
|
393 DivideByPower2Mod(result.Ptr(), result.Ptr(), k, aMod.Ptr(), aMod.Size()); |
|
394 workspace.Close(); |
|
395 CleanupStack::Pop(&result); |
|
396 |
|
397 return result; |
|
398 } |
|
399 |
|
400 EXPORT_C TInteger& TInteger::operator+=(const TInteger& aOperand) |
|
401 { |
|
402 this->Set(PlusL(aOperand)); |
|
403 return *this; |
|
404 } |
|
405 |
|
406 EXPORT_C TInteger& TInteger::operator-=(const TInteger& aOperand) |
|
407 { |
|
408 this->Set(MinusL(aOperand)); |
|
409 return *this; |
|
410 } |
|
411 |
|
412 EXPORT_C TInteger& TInteger::operator*=(const TInteger& aOperand) |
|
413 { |
|
414 this->Set(TimesL(aOperand)); |
|
415 return *this; |
|
416 } |
|
417 |
|
418 EXPORT_C TInteger& TInteger::operator/=(const TInteger& aOperand) |
|
419 { |
|
420 this->Set(DividedByL(aOperand)); |
|
421 return *this; |
|
422 } |
|
423 |
|
424 EXPORT_C TInteger& TInteger::operator%=(const TInteger& aOperand) |
|
425 { |
|
426 this->Set(ModuloL(aOperand)); |
|
427 return *this; |
|
428 } |
|
429 |
|
430 EXPORT_C TInteger& TInteger::operator+=(TInt aOperand) |
|
431 { |
|
432 TStackInteger64 operand(aOperand); |
|
433 *this += operand; |
|
434 return *this; |
|
435 } |
|
436 |
|
437 EXPORT_C TInteger& TInteger::operator-=(TInt aOperand) |
|
438 { |
|
439 TStackInteger64 operand(aOperand); |
|
440 *this -= operand; |
|
441 return *this; |
|
442 } |
|
443 |
|
444 EXPORT_C TInteger& TInteger::operator*=(TInt aOperand) |
|
445 { |
|
446 TStackInteger64 operand(aOperand); |
|
447 *this *= operand; |
|
448 return *this; |
|
449 } |
|
450 |
|
451 EXPORT_C TInteger& TInteger::operator--() |
|
452 { |
|
453 if (IsNegative()) |
|
454 { |
|
455 if (Increment(Ptr(), Size())) |
|
456 { |
|
457 CleanGrowL(2*Size()); |
|
458 (Ptr())[Size()/2]=1; |
|
459 } |
|
460 } |
|
461 else |
|
462 { |
|
463 if (Decrement(Ptr(), Size())) |
|
464 { |
|
465 this->CopyL(-1); |
|
466 } |
|
467 } |
|
468 return *this; |
|
469 } |
|
470 |
|
471 EXPORT_C TInteger& TInteger::operator++() |
|
472 { |
|
473 if(NotNegative()) |
|
474 { |
|
475 if(Increment(Ptr(), Size())) |
|
476 { |
|
477 CleanGrowL(2*Size()); |
|
478 (Ptr())[Size()/2]=1; |
|
479 } |
|
480 } |
|
481 else |
|
482 { |
|
483 DecrementNoCarry(Ptr(), Size()); |
|
484 if(WordCount()==0) |
|
485 { |
|
486 this->CopyL(Zero()); |
|
487 } |
|
488 } |
|
489 return *this; |
|
490 } |
|
491 |
|
492 EXPORT_C TInteger& TInteger::operator <<=(TUint aBits) |
|
493 { |
|
494 const TUint wordCount = WordCount(); |
|
495 const TUint shiftWords = aBits / WORD_BITS; |
|
496 const TUint shiftBits = aBits % WORD_BITS; |
|
497 |
|
498 CleanGrowL(wordCount+BitsToWords(aBits)); |
|
499 ShiftWordsLeftByWords(Ptr(), wordCount + shiftWords, shiftWords); |
|
500 ShiftWordsLeftByBits(Ptr()+shiftWords, wordCount + BitsToWords(shiftBits), |
|
501 shiftBits); |
|
502 return *this; |
|
503 } |
|
504 |
|
505 EXPORT_C TInteger& TInteger::operator >>=(TUint aBits) |
|
506 { |
|
507 const TUint wordCount = WordCount(); |
|
508 const TUint shiftWords = aBits / WORD_BITS; |
|
509 const TUint shiftBits = aBits % WORD_BITS; |
|
510 |
|
511 ShiftWordsRightByWords(Ptr(), wordCount, shiftWords); |
|
512 if(wordCount > shiftWords) |
|
513 { |
|
514 ShiftWordsRightByBits(Ptr(), wordCount - shiftWords, shiftBits); |
|
515 } |
|
516 if(IsNegative() && WordCount()==0) // avoid negative 0 |
|
517 { |
|
518 SetSign(EPositive); |
|
519 } |
|
520 return *this; |
|
521 } |
|
522 |
|
523 EXPORT_C TInt TInteger::UnsignedCompare(const TInteger& aThat) const |
|
524 { |
|
525 TUint size = WordCount(); |
|
526 TUint thatSize = aThat.WordCount(); |
|
527 |
|
528 if( size == thatSize ) |
|
529 return Compare(Ptr(), aThat.Ptr(), size); |
|
530 else |
|
531 return size > thatSize ? 1 : -1; |
|
532 } |
|
533 |
|
534 EXPORT_C TInt TInteger::SignedCompare(const TInteger& aThat) const |
|
535 { |
|
536 if (NotNegative()) |
|
537 { |
|
538 if (aThat.NotNegative()) |
|
539 return UnsignedCompare(aThat); |
|
540 else |
|
541 return 1; |
|
542 } |
|
543 else |
|
544 { |
|
545 if (aThat.NotNegative()) |
|
546 return -1; |
|
547 else |
|
548 return -UnsignedCompare(aThat); |
|
549 } |
|
550 } |
|
551 |
|
552 EXPORT_C TBool TInteger::operator!() const |
|
553 { |
|
554 //Ptr()[0] is just a quick way of weeding out non-zero numbers without |
|
555 //doing a full WordCount() == 0. Very good odds that a non-zero number |
|
556 //will have a bit set in the least significant word |
|
557 return IsNegative() ? EFalse : (Ptr()[0]==0 && WordCount()==0); |
|
558 } |
|
559 |
|
560 EXPORT_C TInt TInteger::SignedCompare(TInt aInteger) const |
|
561 { |
|
562 TStackInteger64 temp(aInteger); |
|
563 return SignedCompare(temp); |
|
564 } |
|
565 |
|
566 /* TBool IsPrimeL(void) const |
|
567 * and all primality related functions are implemented in primes.cpp */ |
|
568 |
|
569 EXPORT_C TBool TInteger::Bit(TUint aBitPos) const |
|
570 { |
|
571 if( aBitPos/WORD_BITS >= Size() ) |
|
572 { |
|
573 return 0; |
|
574 } |
|
575 else |
|
576 { |
|
577 return (((Ptr())[aBitPos/WORD_BITS] >> (aBitPos % WORD_BITS)) & 1); |
|
578 } |
|
579 } |
|
580 |
|
581 EXPORT_C void TInteger::SetBit(TUint aBitPos) |
|
582 { |
|
583 if( aBitPos/WORD_BITS < Size() ) |
|
584 { |
|
585 ArraySetBit(Ptr(), aBitPos); |
|
586 } |
|
587 } |
|
588 |
|
589 EXPORT_C void TInteger::Negate() |
|
590 { |
|
591 if(!!(*this)) //don't flip sign if *this==0 |
|
592 { |
|
593 SetSign(TSign((~Sign())&KSignMask)); |
|
594 } |
|
595 } |
|
596 |
|
597 EXPORT_C void TInteger::CopyL(const TInteger& aInteger, TBool aAllowShrink) |
|
598 { |
|
599 if(aAllowShrink) |
|
600 { |
|
601 CleanResizeL(aInteger.Size()); |
|
602 } |
|
603 else |
|
604 { |
|
605 CleanGrowL(aInteger.Size()); |
|
606 } |
|
607 Construct(aInteger); |
|
608 } |
|
609 |
|
610 EXPORT_C void TInteger::CopyL(TInt aInteger, TBool aAllowShrink) |
|
611 { |
|
612 if(aAllowShrink) |
|
613 { |
|
614 CleanResizeL(2); |
|
615 } |
|
616 else |
|
617 { |
|
618 CleanGrowL(2); |
|
619 } |
|
620 Construct(aInteger); |
|
621 } |
|
622 |
|
623 EXPORT_C void TInteger::Set(const RInteger& aInteger) |
|
624 { |
|
625 assert(IsHeapBased()); |
|
626 Mem::FillZ(Ptr(), WordsToBytes(Size())); |
|
627 User::Free(Ptr()); |
|
628 iPtr = aInteger.iPtr; |
|
629 iSize = aInteger.iSize; |
|
630 } |
|
631 |
|
632 RInteger TInteger::PositiveAddL(const TInteger &aA, const TInteger& aB) const |
|
633 { |
|
634 RInteger sum = RInteger::NewEmptyL(CryptoMax(aA.Size(), aB.Size())); |
|
635 const word aSize = aA.Size(); |
|
636 const word bSize = aB.Size(); |
|
637 const word* const aReg = aA.Ptr(); |
|
638 const word* const bReg = aB.Ptr(); |
|
639 word* const sumReg = sum.Ptr(); |
|
640 |
|
641 word carry; |
|
642 if (aSize == bSize) |
|
643 carry = Add(sumReg, aReg, bReg, aSize); |
|
644 else if (aSize > bSize) |
|
645 { |
|
646 carry = Add(sumReg, aReg, bReg, bSize); |
|
647 CopyWords(sumReg+bSize, aReg+bSize, aSize-bSize); |
|
648 carry = Increment(sumReg+bSize, aSize-bSize, carry); |
|
649 } |
|
650 else |
|
651 { |
|
652 carry = Add(sumReg, aReg, bReg, aSize); |
|
653 CopyWords(sumReg+aSize, bReg+aSize, bSize-aSize); |
|
654 carry = Increment(sumReg+aSize, bSize-aSize, carry); |
|
655 } |
|
656 |
|
657 if (carry) |
|
658 { |
|
659 CleanupStack::PushL(sum); |
|
660 sum.CleanGrowL(2*sum.Size()); |
|
661 CleanupStack::Pop(&sum); |
|
662 sum.Ptr()[sum.Size()/2] = 1; |
|
663 } |
|
664 sum.SetSign(TInteger::EPositive); |
|
665 return sum; |
|
666 } |
|
667 |
|
668 RInteger TInteger::PositiveSubtractL(const TInteger &aA, const TInteger& aB) const |
|
669 { |
|
670 RInteger diff = RInteger::NewEmptyL(CryptoMax(aA.Size(), aB.Size())); |
|
671 unsigned aSize = aA.WordCount(); |
|
672 aSize += aSize%2; |
|
673 unsigned bSize = aB.WordCount(); |
|
674 bSize += bSize%2; |
|
675 const word* const aReg = aA.Ptr(); |
|
676 const word* const bReg = aB.Ptr(); |
|
677 word* const diffReg = diff.Ptr(); |
|
678 |
|
679 if (aSize == bSize) |
|
680 { |
|
681 if (Compare(aReg, bReg, aSize) >= 0) |
|
682 { |
|
683 Subtract(diffReg, aReg, bReg, aSize); |
|
684 diff.SetSign(TInteger::EPositive); |
|
685 } |
|
686 else |
|
687 { |
|
688 Subtract(diffReg, bReg, aReg, aSize); |
|
689 diff.SetSign(TInteger::ENegative); |
|
690 } |
|
691 } |
|
692 else if (aSize > bSize) |
|
693 { |
|
694 word borrow = Subtract(diffReg, aReg, bReg, bSize); |
|
695 CopyWords(diffReg+bSize, aReg+bSize, aSize-bSize); |
|
696 borrow = Decrement(diffReg+bSize, aSize-bSize, borrow); |
|
697 assert(!borrow); |
|
698 diff.SetSign(TInteger::EPositive); |
|
699 } |
|
700 else |
|
701 { |
|
702 word borrow = Subtract(diffReg, bReg, aReg, aSize); |
|
703 CopyWords(diffReg+aSize, bReg+aSize, bSize-aSize); |
|
704 borrow = Decrement(diffReg+aSize, bSize-aSize, borrow); |
|
705 assert(!borrow); |
|
706 diff.SetSign(TInteger::ENegative); |
|
707 } |
|
708 return diff; |
|
709 } |
|
710 |
|
711 RInteger TInteger::PositiveMultiplyL(const TInteger &aA, const TInteger &aB) const |
|
712 { |
|
713 unsigned aSize = RoundupSize(aA.WordCount()); |
|
714 unsigned bSize = RoundupSize(aB.WordCount()); |
|
715 |
|
716 RInteger product = RInteger::NewEmptyL(aSize+bSize); |
|
717 CleanupClosePushL(product); |
|
718 |
|
719 RInteger workspace = RInteger::NewEmptyL(aSize + bSize); |
|
720 AsymmetricMultiply(product.Ptr(), workspace.Ptr(), aA.Ptr(), aSize, aB.Ptr(), |
|
721 bSize); |
|
722 workspace.Close(); |
|
723 CleanupStack::Pop(&product); |
|
724 return product; |
|
725 } |
|
726 |
|
727 TUint TInteger::Modulo(const TInteger& aDividend, TUint aDivisor) const |
|
728 { |
|
729 assert(aDivisor); |
|
730 TUint i = aDividend.WordCount(); |
|
731 TUint remainder = 0; |
|
732 while(i--) |
|
733 { |
|
734 remainder = TUint(MAKE_DWORD(aDividend.Ptr()[i], remainder) % aDivisor); |
|
735 } |
|
736 return remainder; |
|
737 } |
|
738 |
|
739 void TInteger::PositiveDivideL(RInteger &aRemainder, RInteger &aQuotient, |
|
740 const TInteger &aDividend, const TInteger &aDivisor) const |
|
741 { |
|
742 unsigned dividendSize = aDividend.WordCount(); |
|
743 unsigned divisorSize = aDivisor.WordCount(); |
|
744 |
|
745 if (!divisorSize) |
|
746 { |
|
747 User::Leave(KErrDivideByZero); |
|
748 } |
|
749 |
|
750 if (aDividend.UnsignedCompare(aDivisor) == -1) |
|
751 { |
|
752 aRemainder.CreateNewL(aDividend.Size()); |
|
753 CleanupStack::PushL(aRemainder); |
|
754 aRemainder.CopyL(aDividend); //set remainder to a |
|
755 aRemainder.SetSign(TInteger::EPositive); |
|
756 aQuotient.CleanNewL(2); //Set quotient to zero |
|
757 CleanupStack::Pop(&aRemainder); |
|
758 return; |
|
759 } |
|
760 |
|
761 dividendSize += dividendSize%2; // round up to next even number |
|
762 divisorSize += divisorSize%2; |
|
763 |
|
764 aRemainder.CleanNewL(divisorSize); |
|
765 CleanupStack::PushL(aRemainder); |
|
766 aQuotient.CleanNewL(dividendSize-divisorSize+2); |
|
767 CleanupStack::PushL(aQuotient); |
|
768 |
|
769 RInteger T = RInteger::NewEmptyL(dividendSize+2*divisorSize+4); |
|
770 Divide(aRemainder.Ptr(), aQuotient.Ptr(), T.Ptr(), aDividend.Ptr(), |
|
771 dividendSize, aDivisor.Ptr(), divisorSize); |
|
772 T.Close(); |
|
773 CleanupStack::Pop(2, &aRemainder); //aQuotient, aRemainder |
|
774 } |
|
775 |
|
776 void TInteger::DivideL(RInteger& aRemainder, RInteger& aQuotient, |
|
777 const TInteger& aDividend, const TInteger& aDivisor) const |
|
778 { |
|
779 PositiveDivideL(aRemainder, aQuotient, aDividend, aDivisor); |
|
780 |
|
781 if (aDividend.IsNegative()) |
|
782 { |
|
783 aQuotient.Negate(); |
|
784 if (aRemainder.NotZero()) |
|
785 { |
|
786 --aQuotient; |
|
787 assert(aRemainder.Size() <= aDivisor.Size()); |
|
788 Subtract(aRemainder.Ptr(), aDivisor.Ptr(), aRemainder.Ptr(), |
|
789 aRemainder.Size()); |
|
790 } |
|
791 } |
|
792 |
|
793 if (aDivisor.IsNegative()) |
|
794 aQuotient.Negate(); |
|
795 } |
|
796 |
|
797 void TInteger::RandomizeL(TUint aBits, TRandomAttribute aAttr) |
|
798 { |
|
799 if(!aBits) |
|
800 { |
|
801 return; |
|
802 } |
|
803 const TUint bytes = BitsToBytes(aBits); |
|
804 const TUint words = BitsToWords(aBits); |
|
805 CleanGrowL(words); |
|
806 TPtr8 buf((TUint8*)(Ptr()), bytes, WordsToBytes(Size())); |
|
807 TUint bitpos = aBits % BYTE_BITS; |
|
808 GenerateRandomBytesL(buf); |
|
809 //mask with 0 all bits above the num requested in the most significant byte |
|
810 if(bitpos) |
|
811 { |
|
812 buf[bytes-1] = TUint8( buf[bytes-1] & ((1L << bitpos) - 1) ); |
|
813 } |
|
814 //set most significant (top) bit |
|
815 if(aAttr == ETopBitSet || aAttr == ETop2BitsSet) |
|
816 { |
|
817 SetBit(aBits-1); //Set bit counts from 0 |
|
818 assert(BitCount() == aBits); |
|
819 assert(Bit(aBits-1)); |
|
820 } |
|
821 //set 2nd bit from top |
|
822 if(aAttr == ETop2BitsSet) |
|
823 { |
|
824 SetBit(aBits-2); //Set bit counts from 0 |
|
825 assert(BitCount() == aBits); |
|
826 assert(Bit(aBits-1)); |
|
827 assert(Bit(aBits-2)); |
|
828 } |
|
829 } |
|
830 |
|
831 void TInteger::RandomizeL(const TInteger& aMin, const TInteger& aMax) |
|
832 { |
|
833 assert(aMax > aMin); |
|
834 assert(aMin.NotNegative()); |
|
835 RInteger range = RInteger::NewL(aMax); |
|
836 CleanupStack::PushL(range); |
|
837 range -= aMin; |
|
838 const TUint bits = range.BitCount(); |
|
839 |
|
840 //if we find a number < range then aMin+range < aMax |
|
841 do |
|
842 { |
|
843 RandomizeL(bits, EAllBitsRandom); |
|
844 } |
|
845 while(*this > range); |
|
846 |
|
847 *this += aMin; |
|
848 CleanupStack::PopAndDestroy(&range); |
|
849 } |
|
850 |
|
851 /* void PrimeRandomizeL(TUint aBits, TRandomAttribute aAttr) |
|
852 * and all primality related functions are implemented in primes.cpp */ |
|
853 |
|
854 void TInteger::CreateNewL(TUint aNewSize) |
|
855 { |
|
856 //should only be called on construction |
|
857 assert(!iPtr); |
|
858 |
|
859 TUint newSize = RoundupSize(aNewSize); |
|
860 SetPtr((TUint*)User::AllocL(WordsToBytes(newSize))); |
|
861 SetSize(newSize); |
|
862 SetHeapBased(); |
|
863 } |
|
864 |
|
865 void TInteger::CleanNewL(TUint aNewSize) |
|
866 { |
|
867 CreateNewL(aNewSize); |
|
868 Mem::FillZ(Ptr(), WordsToBytes(Size())); //clear integer storage |
|
869 } |
|
870 |
|
871 void TInteger::CleanGrowL(TUint aNewSize) |
|
872 { |
|
873 assert(IsHeapBased()); |
|
874 TUint newSize = RoundupSize(aNewSize); |
|
875 TUint oldSize = Size(); |
|
876 if(newSize > oldSize) |
|
877 { |
|
878 TUint* oldPtr = Ptr(); |
|
879 //1) allocate new memory and set ptr and size |
|
880 SetPtr((TUint*)User::AllocL(WordsToBytes(newSize))); |
|
881 SetSize(newSize); |
|
882 //2) copy old mem to new mem |
|
883 Mem::Copy(Ptr(), oldPtr, WordsToBytes(oldSize)); |
|
884 //3) zero all old memory |
|
885 Mem::FillZ(oldPtr, WordsToBytes(oldSize)); |
|
886 //4) give back old memory |
|
887 User::Free(oldPtr); |
|
888 //5) zero new memory from end of copy to end of growth |
|
889 Mem::FillZ(Ptr() + oldSize, WordsToBytes(newSize-oldSize)); |
|
890 } |
|
891 } |
|
892 |
|
893 void TInteger::CleanResizeL(TUint aNewSize) |
|
894 { |
|
895 assert(IsHeapBased()); |
|
896 TUint newSize = RoundupSize(aNewSize); |
|
897 TUint oldSize = Size(); |
|
898 if(newSize > oldSize) |
|
899 { |
|
900 CleanGrowL(aNewSize); |
|
901 } |
|
902 else if(newSize < oldSize) |
|
903 { |
|
904 TUint* oldPtr = Ptr(); |
|
905 //1) zero memory above newsize |
|
906 Mem::FillZ(oldPtr+WordsToBytes(aNewSize),WordsToBytes(oldSize-newSize)); |
|
907 //2) ReAlloc cell. Since our newsize is less than oldsize, it is |
|
908 //guarenteed not to move. Thus this is just freeing part of our old |
|
909 //cell to the heap for other uses. |
|
910 SetPtr((TUint*)User::ReAllocL(Ptr(), WordsToBytes(newSize))); |
|
911 SetSize(newSize); |
|
912 } |
|
913 } |
|
914 |
|
915 EXPORT_C TInteger::TInteger() : iSize(0), iPtr(0) |
|
916 { |
|
917 } |
|
918 |
|
919 void TInteger::Construct(const TDesC8& aValue) |
|
920 { |
|
921 assert(Size() >= BytesToWords(aValue.Size())); |
|
922 if(aValue.Size() > 0) |
|
923 { |
|
924 //People write numbers with the most significant digits first (big |
|
925 //endian) but we store our numbers in little endian. Hence we need to |
|
926 //reverse the string by bytes. |
|
927 |
|
928 TUint bytes = aValue.Size(); |
|
929 TUint8* i = (TUint8*)Ptr(); |
|
930 TUint8* j = (TUint8*)aValue.Ptr() + bytes; |
|
931 |
|
932 //Swap the endianess of the number itself |
|
933 // (msb) 01 02 03 04 05 06 (lsb) becomes -> |
|
934 // (lsb) 06 05 04 03 02 01 (msb) |
|
935 while( j != (TUint8*)aValue.Ptr() ) |
|
936 { |
|
937 *i++ = *--j; |
|
938 } |
|
939 Mem::FillZ((TUint8*)Ptr() + bytes, WordsToBytes(Size()) - bytes); |
|
940 } |
|
941 else |
|
942 { |
|
943 //if size is zero, we zero the whole register |
|
944 Mem::FillZ((TUint8*)Ptr(), WordsToBytes(Size())); |
|
945 } |
|
946 SetSign(EPositive); |
|
947 } |
|
948 |
|
949 void TInteger::Construct(const TInteger& aInteger) |
|
950 { |
|
951 assert(Size() >= aInteger.Size()); |
|
952 CopyWords(Ptr(), aInteger.Ptr(), aInteger.Size()); |
|
953 if(Size() > aInteger.Size()) |
|
954 { |
|
955 Mem::FillZ(Ptr()+aInteger.Size(), WordsToBytes(Size()-aInteger.Size())); |
|
956 } |
|
957 SetSign(aInteger.Sign()); |
|
958 } |
|
959 |
|
960 void TInteger::Construct(TInt aInteger) |
|
961 { |
|
962 Construct((TUint)aInteger); |
|
963 if(aInteger < 0) |
|
964 { |
|
965 SetSign(ENegative); |
|
966 Ptr()[0] = -aInteger; |
|
967 } |
|
968 } |
|
969 |
|
970 void TInteger::Construct(TUint aInteger) |
|
971 { |
|
972 assert(Size() >= 2); |
|
973 SetSign(EPositive); |
|
974 Ptr()[0] = aInteger; |
|
975 Mem::FillZ(Ptr()+1, WordsToBytes(Size()-1)); |
|
976 } |
|
977 |
|
978 void TInteger::ConstructStack(TUint aWords, TUint aInteger) |
|
979 { |
|
980 SetPtr((TUint*)(this)+2); |
|
981 //SetStackBased(); //Not strictly needed as stackbased is a 0 at bit 1 |
|
982 SetSize(aWords); |
|
983 assert(Size() >= 2); |
|
984 Ptr()[0] = aInteger; |
|
985 Mem::FillZ(&(Ptr()[1]), WordsToBytes(Size()-1)); |
|
986 } |
|
987 |
|
988 void TInteger::ConstructStack(TUint aWords, const TInteger& aInteger) |
|
989 { |
|
990 SetPtr((TUint*)(this)+2); |
|
991 //SetStackBased(); //Not strictly needed as stackbased is a 0 at bit 1 |
|
992 SetSize(aWords); |
|
993 assert( Size() >= RoundupSize(aInteger.WordCount()) ); |
|
994 CopyWords(Ptr(), aInteger.Ptr(), aInteger.Size()); |
|
995 Mem::FillZ(Ptr()+aInteger.Size(), WordsToBytes(Size()-aInteger.Size())); |
|
996 } |
|
997 |
|
998 // Methods are excluded from coverage due to the problem with BullsEye on ONB. |
|
999 // Manually verified that these methods are functionally covered. |
|
1000 #ifdef _BullseyeCoverage |
|
1001 #pragma suppress_warnings on |
|
1002 #pragma BullseyeCoverage off |
|
1003 #pragma suppress_warnings off |
|
1004 #endif |
|
1005 |
|
1006 EXPORT_C TInteger& TInteger::operator/=(TInt aOperand) |
|
1007 { |
|
1008 TStackInteger64 operand(aOperand); |
|
1009 *this /= operand; |
|
1010 return *this; |
|
1011 } |
|
1012 |
|
1013 EXPORT_C TInteger& TInteger::operator%=(TInt aOperand) |
|
1014 { |
|
1015 TStackInteger64 operand(aOperand); |
|
1016 assert(operand.NotNegative()); |
|
1017 *this %= operand; |
|
1018 return *this; |
|
1019 } |
|
1020 |
|
1021 EXPORT_C TInt TInteger::ConvertToLongL(void) const |
|
1022 { |
|
1023 if(!IsConvertableToLong()) |
|
1024 { |
|
1025 User::Leave(KErrTotalLossOfPrecision); |
|
1026 } |
|
1027 return ConvertToLong(); |
|
1028 } |
|
1029 |
|
1030 TInt TInteger::ConvertToLong(void) const |
|
1031 { |
|
1032 TUint value = ConvertToUnsignedLong(); |
|
1033 return Sign() == EPositive ? value : -(static_cast<TInt>(value)); |
|
1034 } |
|
1035 |
|
1036 TBool TInteger::IsConvertableToLong(void) const |
|
1037 { |
|
1038 if(WordCount() > 1) |
|
1039 { |
|
1040 return EFalse; |
|
1041 } |
|
1042 TUint value = (Ptr())[0]; |
|
1043 if(Sign() == EPositive) |
|
1044 { |
|
1045 return static_cast<TInt>(value) >= 0; |
|
1046 } |
|
1047 else |
|
1048 { |
|
1049 return -(static_cast<TInt>(value)) < 0; |
|
1050 } |
|
1051 } |
|
1052 |
|
1053 EXPORT_C RInteger TInteger::SquaredL() const |
|
1054 { |
|
1055 //PositiveMultiplyL optimises for the squaring case already |
|
1056 //Any number squared is positive, no need for negative handling in TimesL |
|
1057 return PositiveMultiplyL(*this, *this); |
|
1058 } |
|
1059 |
|
1060 EXPORT_C RInteger TInteger::DividedByL(TUint aOperand) const |
|
1061 { |
|
1062 TUint remainder; |
|
1063 RInteger quotient; |
|
1064 DivideL(remainder, quotient, *this, aOperand); |
|
1065 return quotient; |
|
1066 } |
|
1067 |
|
1068 EXPORT_C RInteger TInteger::ExponentiateL(const TInteger& aExponent) const |
|
1069 { |
|
1070 //See HAC 14.85 |
|
1071 |
|
1072 // 1.1 Precomputation |
|
1073 // g1 <- g |
|
1074 // g2 <- g^2 |
|
1075 RInteger g2 = SquaredL(); |
|
1076 CleanupStack::PushL(g2); |
|
1077 RInteger g1 = RInteger::NewL(*this); |
|
1078 CleanupStack::PushL(g1); |
|
1079 TWindowSlider slider(aExponent); |
|
1080 |
|
1081 // 1.2 |
|
1082 // For i from 1 to (2^(k-1) -1) do g2i+1 <- g2i-1 * g2 |
|
1083 TUint count = (1 << (slider.WindowSize()-1)) - 1; //2^(k-1) -1 |
|
1084 RRArray<RInteger> powerArray(count+1); //+1 because we append g1 |
|
1085 User::LeaveIfError(powerArray.Append(g1)); |
|
1086 CleanupStack::Pop(); //g1 |
|
1087 CleanupClosePushL(powerArray); |
|
1088 for(TUint k=1; k <= count; k++) |
|
1089 { |
|
1090 RInteger g2iplus1 = g2.TimesL(powerArray[k-1]); |
|
1091 //This append can't fail as the granularity is set high enough |
|
1092 //plus we've already called Append once which will alloc to the |
|
1093 //set granularity |
|
1094 powerArray.Append(g2iplus1); |
|
1095 } |
|
1096 |
|
1097 // 2 A <- 1, i <- t |
|
1098 RInteger A = RInteger::NewL(One()); |
|
1099 CleanupStack::PushL(A); |
|
1100 TInt i = aExponent.BitCount() - 1; |
|
1101 |
|
1102 // 3 While i>=0 do: |
|
1103 while( i>=0 ) |
|
1104 { |
|
1105 // 3.1 If ei == 0 then A <- A^2 |
|
1106 if(!aExponent.Bit(i)) |
|
1107 { |
|
1108 A *= A; |
|
1109 i--; |
|
1110 } |
|
1111 // 3.2 Find longest bitstring ei,ei-1,...,el s.t. i-l+1<=k and el==1 |
|
1112 // and do: |
|
1113 // A <- (A^2^(i-l+1)) * g[the index indicated by the bitstring value] |
|
1114 else |
|
1115 { |
|
1116 slider.FindNextWindow(i); |
|
1117 assert(slider.Length() >= 1); |
|
1118 for(TUint j=0; j<slider.Length(); j++) |
|
1119 { |
|
1120 A *= A; |
|
1121 } |
|
1122 A *= powerArray[slider.Value()>>1]; |
|
1123 i -= slider.Length(); |
|
1124 } |
|
1125 } |
|
1126 CleanupStack::Pop(&A); |
|
1127 CleanupStack::PopAndDestroy(2, &g2); //powerArray, g2 |
|
1128 return A; |
|
1129 } |
|
1130 |
|
1131 void TInteger::DivideL(TUint& aRemainder, RInteger& aQuotient, |
|
1132 const TInteger& aDividend, TUint aDivisor) const |
|
1133 { |
|
1134 if(!aDivisor) |
|
1135 { |
|
1136 User::Leave(KErrDivideByZero); |
|
1137 } |
|
1138 |
|
1139 TUint i = aDividend.WordCount(); |
|
1140 aQuotient.CleanNewL(RoundupSize(i)); |
|
1141 PositiveDivide(aRemainder, aQuotient, aDividend, aDivisor); |
|
1142 |
|
1143 if(aDividend.NotNegative()) |
|
1144 { |
|
1145 aQuotient.SetSign(TInteger::EPositive); |
|
1146 } |
|
1147 else |
|
1148 { |
|
1149 aQuotient.SetSign(TInteger::ENegative); |
|
1150 if(aRemainder) |
|
1151 { |
|
1152 --aQuotient; |
|
1153 aRemainder = aDivisor = aRemainder; |
|
1154 } |
|
1155 } |
|
1156 } |
|
1157 |
|
1158 void TInteger::PositiveDivide(TUint& aRemainder, TInteger& aQuotient, |
|
1159 const TInteger& aDividend, TUint aDivisor) const |
|
1160 { |
|
1161 assert(aDivisor); |
|
1162 |
|
1163 TUint i = aDividend.WordCount(); |
|
1164 assert(aQuotient.Size() >= RoundupSize(i)); |
|
1165 assert(aQuotient.Sign() == TInteger::EPositive); |
|
1166 aRemainder = 0; |
|
1167 while(i--) |
|
1168 { |
|
1169 aQuotient.Ptr()[i] = |
|
1170 TUint(MAKE_DWORD(aDividend.Ptr()[i], aRemainder) / aDivisor); |
|
1171 aRemainder = |
|
1172 TUint(MAKE_DWORD(aDividend.Ptr()[i], aRemainder) % aDivisor); |
|
1173 } |
|
1174 } |