|
1 /* |
|
2 * Copyright (c) 2003-2009 Nokia Corporation and/or its subsidiary(-ies). |
|
3 * All rights reserved. |
|
4 * This component and the accompanying materials are made available |
|
5 * under the terms of the License "Eclipse Public License v1.0" |
|
6 * which accompanies this distribution, and is available |
|
7 * at the URL "http://www.eclipse.org/legal/epl-v10.html". |
|
8 * |
|
9 * Initial Contributors: |
|
10 * Nokia Corporation - initial contribution. |
|
11 * |
|
12 * Contributors: |
|
13 * |
|
14 * Description: |
|
15 * |
|
16 */ |
|
17 |
|
18 |
|
19 #include <bigint.h> |
|
20 #include <e32std.h> |
|
21 #include <euserext.h> |
|
22 #include <securityerr.h> |
|
23 #include "words.h" |
|
24 #include "algorithms.h" |
|
25 #include "windowslider.h" |
|
26 #include "stackinteger.h" |
|
27 #include "mont.h" |
|
28 |
|
29 |
|
30 /** |
|
31 * Creates a new buffer containing the big-endian binary representation of this |
|
32 * integer. |
|
33 * |
|
34 * Note that it does not support the exporting of negative integers. |
|
35 * |
|
36 * @return The new buffer. |
|
37 * |
|
38 * @leave KErrNegativeExportNotSupported If this instance is a negative integer. |
|
39 * |
|
40 */ |
|
41 EXPORT_C HBufC8* TInteger::BufferLC() const |
|
42 { |
|
43 if(IsNegative()) |
|
44 { |
|
45 User::Leave(KErrNegativeExportNotSupported); |
|
46 } |
|
47 TUint bytes = ByteCount(); |
|
48 HBufC8* buf = HBufC8::NewMaxLC(bytes); |
|
49 TUint8* bufPtr = (TUint8*)(buf->Ptr()); |
|
50 TUint8* regPtr = (TUint8*)Ptr(); |
|
51 |
|
52 // we internally store the number little endian, as a string we want it big |
|
53 // endian |
|
54 for(TUint i=0,j=bytes-1; i<bytes; ) |
|
55 { |
|
56 bufPtr[i++] = regPtr[j--]; |
|
57 } |
|
58 return buf; |
|
59 } |
|
60 |
|
61 EXPORT_C HBufC8* TInteger::BufferWithNoTruncationLC() const |
|
62 { |
|
63 if(IsNegative()) |
|
64 { |
|
65 User::Leave(KErrNegativeExportNotSupported); |
|
66 } |
|
67 |
|
68 TUint wordCount = Size(); |
|
69 TUint bytes = (wordCount)*WORD_SIZE; |
|
70 |
|
71 HBufC8* buf = HBufC8::NewMaxLC(bytes); |
|
72 TUint8* bufPtr = (TUint8*)(buf->Ptr()); |
|
73 TUint8* regPtr = (TUint8*)Ptr(); |
|
74 for(TUint i=0,j=bytes-1; i<bytes; ) |
|
75 { |
|
76 bufPtr[i++] = regPtr[j--]; |
|
77 } |
|
78 |
|
79 return buf; |
|
80 } |
|
81 |
|
82 /** |
|
83 * Gets the number of words required to represent this RInteger. |
|
84 * |
|
85 * @return The size of the integer in words. |
|
86 * |
|
87 */ |
|
88 EXPORT_C TUint TInteger::WordCount() const |
|
89 { |
|
90 return CountWords(Ptr(), Size()); |
|
91 } |
|
92 |
|
93 /** |
|
94 * Gets the number of bytes required to represent this RInteger. |
|
95 * |
|
96 * @return The size of the integer in bytes. |
|
97 * |
|
98 */ |
|
99 EXPORT_C TUint TInteger::ByteCount() const |
|
100 { |
|
101 TUint wordCount = WordCount(); |
|
102 if(wordCount) |
|
103 { |
|
104 return (wordCount-1)*WORD_SIZE + BytePrecision((Ptr())[wordCount-1]); |
|
105 } |
|
106 else |
|
107 { |
|
108 return 0; |
|
109 } |
|
110 } |
|
111 |
|
112 /** |
|
113 * Get the number of bits required to represent this RInteger. |
|
114 * |
|
115 * @return The size of the integer in bits. |
|
116 * |
|
117 */ |
|
118 EXPORT_C TUint TInteger::BitCount() const |
|
119 { |
|
120 TUint wordCount = WordCount(); |
|
121 if(wordCount) |
|
122 { |
|
123 return (wordCount-1)*WORD_BITS + BitPrecision(Ptr()[wordCount-1]); |
|
124 } |
|
125 else |
|
126 { |
|
127 return 0; |
|
128 } |
|
129 } |
|
130 |
|
131 |
|
132 //These 3 declarations instantiate a constant 0, 1, 2 for ease of use and |
|
133 //quick construction elsewhere in the code. Note that the functions |
|
134 //returning references to this static data return const references as you can't |
|
135 //modify the ROM ;) |
|
136 //word 0: Size of storage in words |
|
137 //word 1: Pointer to storage |
|
138 //word 2: LSW of storage |
|
139 //word 3: MSW of storage |
|
140 //Note that the flag bits in word 1 (Ptr()) are zero in the case of a positive |
|
141 //stack based integer (SignBit == 0, IsHeapBasedBit == 0) |
|
142 const TUint KBigintZero[4] = {2, (TUint)(KBigintZero+2), 0, 0}; |
|
143 const TUint KBigintOne[4] = {2, (TUint)(KBigintOne+2), 1, 0}; |
|
144 const TUint KBigintTwo[4] = {2, (TUint)(KBigintTwo+2), 2, 0}; |
|
145 |
|
146 /** |
|
147 * Gets the TInteger that represents zero |
|
148 * |
|
149 * @return The TInteger representing zero |
|
150 */ |
|
151 EXPORT_C const TInteger& TInteger::Zero(void) |
|
152 { |
|
153 return *reinterpret_cast<const TStackInteger64*>(KBigintZero); |
|
154 } |
|
155 |
|
156 /** |
|
157 * Gets the TInteger that represents one |
|
158 * |
|
159 * @return The TInteger representing one |
|
160 */ |
|
161 EXPORT_C const TInteger& TInteger::One(void) |
|
162 { |
|
163 return *reinterpret_cast<const TStackInteger64*>(KBigintOne); |
|
164 } |
|
165 |
|
166 /** |
|
167 * Gets the TInteger that represents two |
|
168 * |
|
169 * @return The TInteger representing two |
|
170 */ |
|
171 EXPORT_C const TInteger& TInteger::Two(void) |
|
172 { |
|
173 return *reinterpret_cast<const TStackInteger64*>(KBigintTwo); |
|
174 } |
|
175 |
|
176 EXPORT_C RInteger TInteger::PlusL(const TInteger& aOperand) const |
|
177 { |
|
178 RInteger sum; |
|
179 if (NotNegative()) |
|
180 { |
|
181 if (aOperand.NotNegative()) |
|
182 sum = PositiveAddL(*this, aOperand); |
|
183 else |
|
184 sum = PositiveSubtractL(*this, aOperand); |
|
185 } |
|
186 else |
|
187 { |
|
188 if (aOperand.NotNegative()) |
|
189 sum = PositiveSubtractL(aOperand, *this); |
|
190 else |
|
191 { |
|
192 sum = PositiveAddL(*this, aOperand); |
|
193 sum.SetSign(TInteger::ENegative); |
|
194 } |
|
195 } |
|
196 return sum; |
|
197 } |
|
198 |
|
199 EXPORT_C RInteger TInteger::MinusL(const TInteger& aOperand) const |
|
200 { |
|
201 RInteger diff; |
|
202 if (NotNegative()) |
|
203 { |
|
204 if (aOperand.NotNegative()) |
|
205 diff = PositiveSubtractL(*this, aOperand); |
|
206 else |
|
207 diff = PositiveAddL(*this, aOperand); |
|
208 } |
|
209 else |
|
210 { |
|
211 if (aOperand.NotNegative()) |
|
212 { |
|
213 diff = PositiveAddL(*this, aOperand); |
|
214 diff.SetSign(TInteger::ENegative); |
|
215 } |
|
216 else |
|
217 diff = PositiveSubtractL(aOperand, *this); |
|
218 } |
|
219 return diff; |
|
220 } |
|
221 |
|
222 EXPORT_C RInteger TInteger::TimesL(const TInteger& aOperand) const |
|
223 { |
|
224 RInteger product = PositiveMultiplyL(*this, aOperand); |
|
225 |
|
226 if (NotNegative() != aOperand.NotNegative()) |
|
227 { |
|
228 product.Negate(); |
|
229 } |
|
230 return product; |
|
231 } |
|
232 |
|
233 EXPORT_C RInteger TInteger::DividedByL(const TInteger& aOperand) const |
|
234 { |
|
235 RInteger quotient; |
|
236 RInteger remainder; |
|
237 DivideL(remainder, quotient, *this, aOperand); |
|
238 remainder.Close(); |
|
239 return quotient; |
|
240 } |
|
241 |
|
242 EXPORT_C RInteger TInteger::DividedByL(TUint aOperand) const |
|
243 { |
|
244 TUint remainder; |
|
245 RInteger quotient; |
|
246 DivideL(remainder, quotient, *this, aOperand); |
|
247 return quotient; |
|
248 } |
|
249 |
|
250 EXPORT_C RInteger TInteger::ModuloL(const TInteger& aOperand) const |
|
251 { |
|
252 RInteger remainder; |
|
253 RInteger quotient; |
|
254 DivideL(remainder, quotient, *this, aOperand); |
|
255 quotient.Close(); |
|
256 return remainder; |
|
257 } |
|
258 |
|
259 EXPORT_C TUint TInteger::ModuloL(TUint aOperand) const |
|
260 { |
|
261 if(!aOperand) |
|
262 { |
|
263 User::Leave(KErrDivideByZero); |
|
264 } |
|
265 return Modulo(*this, aOperand); |
|
266 } |
|
267 |
|
268 EXPORT_C RInteger TInteger::SquaredL() const |
|
269 { |
|
270 //PositiveMultiplyL optimises for the squaring case already |
|
271 //Any number squared is positive, no need for negative handling in TimesL |
|
272 return PositiveMultiplyL(*this, *this); |
|
273 } |
|
274 |
|
275 EXPORT_C RInteger TInteger::ExponentiateL(const TInteger& aExponent) const |
|
276 { |
|
277 //See HAC 14.85 |
|
278 |
|
279 // 1.1 Precomputation |
|
280 // g1 <- g |
|
281 // g2 <- g^2 |
|
282 RInteger g2 = SquaredL(); |
|
283 CleanupStack::PushL(g2); |
|
284 RInteger g1 = RInteger::NewL(*this); |
|
285 CleanupStack::PushL(g1); |
|
286 TWindowSlider slider(aExponent); |
|
287 |
|
288 // 1.2 |
|
289 // For i from 1 to (2^(k-1) -1) do g2i+1 <- g2i-1 * g2 |
|
290 TUint count = (1 << (slider.WindowSize()-1)) - 1; //2^(k-1) -1 |
|
291 RRArray<RInteger> powerArray(count+1); //+1 because we append g1 |
|
292 User::LeaveIfError(powerArray.Append(g1)); |
|
293 CleanupStack::Pop(); //g1 |
|
294 CleanupClosePushL(powerArray); |
|
295 for(TUint k=1; k <= count; k++) |
|
296 { |
|
297 RInteger g2iplus1 = g2.TimesL(powerArray[k-1]); |
|
298 //This append can't fail as the granularity is set high enough |
|
299 //plus we've already called Append once which will alloc to the |
|
300 //set granularity |
|
301 powerArray.Append(g2iplus1); |
|
302 } |
|
303 |
|
304 // 2 A <- 1, i <- t |
|
305 RInteger A = RInteger::NewL(One()); |
|
306 CleanupStack::PushL(A); |
|
307 TInt i = aExponent.BitCount() - 1; |
|
308 |
|
309 // 3 While i>=0 do: |
|
310 while( i>=0 ) |
|
311 { |
|
312 // 3.1 If ei == 0 then A <- A^2 |
|
313 if(!aExponent.Bit(i)) |
|
314 { |
|
315 A *= A; |
|
316 i--; |
|
317 } |
|
318 // 3.2 Find longest bitstring ei,ei-1,...,el s.t. i-l+1<=k and el==1 |
|
319 // and do: |
|
320 // A <- (A^2^(i-l+1)) * g[the index indicated by the bitstring value] |
|
321 else |
|
322 { |
|
323 slider.FindNextWindow(i); |
|
324 assert(slider.Length() >= 1); |
|
325 for(TUint j=0; j<slider.Length(); j++) |
|
326 { |
|
327 A *= A; |
|
328 } |
|
329 A *= powerArray[slider.Value()>>1]; |
|
330 i -= slider.Length(); |
|
331 } |
|
332 } |
|
333 CleanupStack::Pop(&A); |
|
334 CleanupStack::PopAndDestroy(2, &g2); //powerArray, g2 |
|
335 return A; |
|
336 } |
|
337 |
|
338 EXPORT_C RInteger TInteger::ModularMultiplyL(const TInteger& aA, const TInteger& aB, |
|
339 const TInteger& aMod) |
|
340 { |
|
341 RInteger product = aA.TimesL(aB); |
|
342 CleanupStack::PushL(product); |
|
343 RInteger reduced = product.ModuloL(aMod); |
|
344 CleanupStack::PopAndDestroy(&product); |
|
345 return reduced; |
|
346 } |
|
347 |
|
348 EXPORT_C RInteger TInteger::ModularExponentiateL(const TInteger& aBase, |
|
349 const TInteger& aExp, const TInteger& aMod) |
|
350 { |
|
351 CMontgomeryStructure* mont = CMontgomeryStructure::NewLC(aMod); |
|
352 RInteger result = RInteger::NewL(mont->ExponentiateL(aBase, aExp)); |
|
353 CleanupStack::PopAndDestroy(mont); |
|
354 return result; |
|
355 } |
|
356 |
|
357 EXPORT_C RInteger TInteger::GCDL(const TInteger& aOperand) const |
|
358 { |
|
359 //Binary GCD algorithm -- see HAC 14.4.1 |
|
360 //with a slight variation -- our g counts shifts rather than actually |
|
361 //shifting. We then do one shift at the end. |
|
362 assert(NotNegative()); |
|
363 assert(aOperand.NotNegative()); |
|
364 |
|
365 RInteger x = RInteger::NewL(*this); |
|
366 CleanupStack::PushL(x); |
|
367 RInteger y = RInteger::NewL(aOperand); |
|
368 CleanupStack::PushL(y); |
|
369 |
|
370 // 1 Ensure x >= y |
|
371 if( x < y ) |
|
372 { |
|
373 TClassSwap(x, y); |
|
374 } |
|
375 |
|
376 TUint g = 0; |
|
377 // 2 while x and y even x <- x/2, y <- y/2 |
|
378 while( x.IsEven() && y.IsEven() ) |
|
379 { |
|
380 x >>= 1; |
|
381 y >>= 1; |
|
382 ++g; |
|
383 } |
|
384 // 3 while x != 0 |
|
385 while( x.NotZero() ) |
|
386 { |
|
387 // 3.1 while x even x <- x/2 |
|
388 while( x.IsEven() ) |
|
389 { |
|
390 x >>= 1; |
|
391 } |
|
392 // 3.2 while y even y <- y/2 |
|
393 while( y.IsEven() ) |
|
394 { |
|
395 y >>= 1; |
|
396 } |
|
397 // 3.3 t <- abs(x-y)/2 |
|
398 RInteger t = x.MinusL(y); |
|
399 t >>= 1; |
|
400 t.SetSign(TInteger::EPositive); |
|
401 |
|
402 // 3.4 If x>=y then x <- t else y <- t |
|
403 if( x >= y ) |
|
404 { |
|
405 x.Set(t); |
|
406 } |
|
407 else |
|
408 { |
|
409 y.Set(t); |
|
410 } |
|
411 } |
|
412 |
|
413 // 4 Return (g*y) (equiv to y<<=g as our g was counting shifts not actually |
|
414 //shifting) |
|
415 y <<= g; |
|
416 CleanupStack::Pop(&y); |
|
417 CleanupStack::PopAndDestroy(&x); |
|
418 return y; |
|
419 } |
|
420 |
|
421 EXPORT_C RInteger TInteger::InverseModL(const TInteger& aMod) const |
|
422 { |
|
423 assert(aMod.NotNegative()); |
|
424 |
|
425 RInteger result; |
|
426 if(IsNegative() || *this>=aMod) |
|
427 { |
|
428 RInteger temp = ModuloL(aMod); |
|
429 CleanupClosePushL(temp); |
|
430 result = temp.InverseModL(aMod); |
|
431 CleanupStack::PopAndDestroy(&temp); |
|
432 return result; |
|
433 } |
|
434 |
|
435 if(aMod.IsEven()) |
|
436 { |
|
437 if( !aMod || IsEven() ) |
|
438 { |
|
439 return RInteger::NewL(Zero()); |
|
440 } |
|
441 if( *this == One() ) |
|
442 { |
|
443 return RInteger::NewL(One()); |
|
444 } |
|
445 RInteger u = aMod.InverseModL(*this); |
|
446 CleanupClosePushL(u); |
|
447 if(!u) |
|
448 { |
|
449 result = RInteger::NewL(Zero()); |
|
450 } |
|
451 else |
|
452 { |
|
453 //calculates (aMod*(*this-u)+1)/(*this) |
|
454 result = MinusL(u); |
|
455 CleanupClosePushL(result); |
|
456 result *= aMod; |
|
457 ++result; |
|
458 result /= *this; |
|
459 CleanupStack::Pop(&result); |
|
460 } |
|
461 CleanupStack::PopAndDestroy(&u); |
|
462 return result; |
|
463 } |
|
464 |
|
465 result = RInteger::NewEmptyL(aMod.Size()); |
|
466 CleanupClosePushL(result); |
|
467 RInteger workspace = RInteger::NewEmptyL(aMod.Size() * 4); |
|
468 TUint k = AlmostInverse(result.Ptr(), workspace.Ptr(), Ptr(), Size(), |
|
469 aMod.Ptr(), aMod.Size()); |
|
470 DivideByPower2Mod(result.Ptr(), result.Ptr(), k, aMod.Ptr(), aMod.Size()); |
|
471 workspace.Close(); |
|
472 CleanupStack::Pop(&result); |
|
473 |
|
474 return result; |
|
475 } |
|
476 |
|
477 EXPORT_C TInteger& TInteger::operator+=(const TInteger& aOperand) |
|
478 { |
|
479 this->Set(PlusL(aOperand)); |
|
480 return *this; |
|
481 } |
|
482 |
|
483 EXPORT_C TInteger& TInteger::operator-=(const TInteger& aOperand) |
|
484 { |
|
485 this->Set(MinusL(aOperand)); |
|
486 return *this; |
|
487 } |
|
488 |
|
489 EXPORT_C TInteger& TInteger::operator*=(const TInteger& aOperand) |
|
490 { |
|
491 this->Set(TimesL(aOperand)); |
|
492 return *this; |
|
493 } |
|
494 |
|
495 EXPORT_C TInteger& TInteger::operator/=(const TInteger& aOperand) |
|
496 { |
|
497 this->Set(DividedByL(aOperand)); |
|
498 return *this; |
|
499 } |
|
500 |
|
501 EXPORT_C TInteger& TInteger::operator%=(const TInteger& aOperand) |
|
502 { |
|
503 this->Set(ModuloL(aOperand)); |
|
504 return *this; |
|
505 } |
|
506 |
|
507 EXPORT_C TInteger& TInteger::operator+=(TInt aOperand) |
|
508 { |
|
509 TStackInteger64 operand(aOperand); |
|
510 *this += operand; |
|
511 return *this; |
|
512 } |
|
513 |
|
514 EXPORT_C TInteger& TInteger::operator-=(TInt aOperand) |
|
515 { |
|
516 TStackInteger64 operand(aOperand); |
|
517 *this -= operand; |
|
518 return *this; |
|
519 } |
|
520 |
|
521 EXPORT_C TInteger& TInteger::operator*=(TInt aOperand) |
|
522 { |
|
523 TStackInteger64 operand(aOperand); |
|
524 *this *= operand; |
|
525 return *this; |
|
526 } |
|
527 |
|
528 EXPORT_C TInteger& TInteger::operator/=(TInt aOperand) |
|
529 { |
|
530 TStackInteger64 operand(aOperand); |
|
531 *this /= operand; |
|
532 return *this; |
|
533 } |
|
534 |
|
535 EXPORT_C TInteger& TInteger::operator%=(TInt aOperand) |
|
536 { |
|
537 TStackInteger64 operand(aOperand); |
|
538 assert(operand.NotNegative()); |
|
539 *this %= operand; |
|
540 return *this; |
|
541 } |
|
542 |
|
543 EXPORT_C TInteger& TInteger::operator--() |
|
544 { |
|
545 if (IsNegative()) |
|
546 { |
|
547 if (Increment(Ptr(), Size())) |
|
548 { |
|
549 CleanGrowL(2*Size()); |
|
550 (Ptr())[Size()/2]=1; |
|
551 } |
|
552 } |
|
553 else |
|
554 { |
|
555 if (Decrement(Ptr(), Size())) |
|
556 { |
|
557 this->CopyL(-1); |
|
558 } |
|
559 } |
|
560 return *this; |
|
561 } |
|
562 |
|
563 EXPORT_C TInteger& TInteger::operator++() |
|
564 { |
|
565 if(NotNegative()) |
|
566 { |
|
567 if(Increment(Ptr(), Size())) |
|
568 { |
|
569 CleanGrowL(2*Size()); |
|
570 (Ptr())[Size()/2]=1; |
|
571 } |
|
572 } |
|
573 else |
|
574 { |
|
575 DecrementNoCarry(Ptr(), Size()); |
|
576 if(WordCount()==0) |
|
577 { |
|
578 this->CopyL(Zero()); |
|
579 } |
|
580 } |
|
581 return *this; |
|
582 } |
|
583 |
|
584 EXPORT_C TInteger& TInteger::operator <<=(TUint aBits) |
|
585 { |
|
586 const TUint wordCount = WordCount(); |
|
587 const TUint shiftWords = aBits / WORD_BITS; |
|
588 const TUint shiftBits = aBits % WORD_BITS; |
|
589 |
|
590 CleanGrowL(wordCount+BitsToWords(aBits)); |
|
591 ShiftWordsLeftByWords(Ptr(), wordCount + shiftWords, shiftWords); |
|
592 ShiftWordsLeftByBits(Ptr()+shiftWords, wordCount + BitsToWords(shiftBits), |
|
593 shiftBits); |
|
594 return *this; |
|
595 } |
|
596 |
|
597 EXPORT_C TInteger& TInteger::operator >>=(TUint aBits) |
|
598 { |
|
599 const TUint wordCount = WordCount(); |
|
600 const TUint shiftWords = aBits / WORD_BITS; |
|
601 const TUint shiftBits = aBits % WORD_BITS; |
|
602 |
|
603 ShiftWordsRightByWords(Ptr(), wordCount, shiftWords); |
|
604 if(wordCount > shiftWords) |
|
605 { |
|
606 ShiftWordsRightByBits(Ptr(), wordCount - shiftWords, shiftBits); |
|
607 } |
|
608 if(IsNegative() && WordCount()==0) // avoid negative 0 |
|
609 { |
|
610 SetSign(EPositive); |
|
611 } |
|
612 return *this; |
|
613 } |
|
614 |
|
615 EXPORT_C TInt TInteger::UnsignedCompare(const TInteger& aThat) const |
|
616 { |
|
617 TUint size = WordCount(); |
|
618 TUint thatSize = aThat.WordCount(); |
|
619 |
|
620 if( size == thatSize ) |
|
621 return Compare(Ptr(), aThat.Ptr(), size); |
|
622 else |
|
623 return size > thatSize ? 1 : -1; |
|
624 } |
|
625 |
|
626 EXPORT_C TInt TInteger::SignedCompare(const TInteger& aThat) const |
|
627 { |
|
628 if (NotNegative()) |
|
629 { |
|
630 if (aThat.NotNegative()) |
|
631 return UnsignedCompare(aThat); |
|
632 else |
|
633 return 1; |
|
634 } |
|
635 else |
|
636 { |
|
637 if (aThat.NotNegative()) |
|
638 return -1; |
|
639 else |
|
640 return -UnsignedCompare(aThat); |
|
641 } |
|
642 } |
|
643 |
|
644 EXPORT_C TBool TInteger::operator!() const |
|
645 { |
|
646 //Ptr()[0] is just a quick way of weeding out non-zero numbers without |
|
647 //doing a full WordCount() == 0. Very good odds that a non-zero number |
|
648 //will have a bit set in the least significant word |
|
649 return IsNegative() ? EFalse : (Ptr()[0]==0 && WordCount()==0); |
|
650 } |
|
651 |
|
652 EXPORT_C TInt TInteger::SignedCompare(TInt aInteger) const |
|
653 { |
|
654 TStackInteger64 temp(aInteger); |
|
655 return SignedCompare(temp); |
|
656 } |
|
657 |
|
658 /* TBool IsPrimeL(void) const |
|
659 * and all primality related functions are implemented in primes.cpp */ |
|
660 |
|
661 EXPORT_C TBool TInteger::Bit(TUint aBitPos) const |
|
662 { |
|
663 if( aBitPos/WORD_BITS >= Size() ) |
|
664 { |
|
665 return 0; |
|
666 } |
|
667 else |
|
668 { |
|
669 return (((Ptr())[aBitPos/WORD_BITS] >> (aBitPos % WORD_BITS)) & 1); |
|
670 } |
|
671 } |
|
672 |
|
673 EXPORT_C void TInteger::SetBit(TUint aBitPos) |
|
674 { |
|
675 if( aBitPos/WORD_BITS < Size() ) |
|
676 { |
|
677 ArraySetBit(Ptr(), aBitPos); |
|
678 } |
|
679 } |
|
680 |
|
681 EXPORT_C void TInteger::Negate() |
|
682 { |
|
683 if(!!(*this)) //don't flip sign if *this==0 |
|
684 { |
|
685 SetSign(TSign((~Sign())&KSignMask)); |
|
686 } |
|
687 } |
|
688 |
|
689 EXPORT_C TInt TInteger::ConvertToLongL(void) const |
|
690 { |
|
691 if(!IsConvertableToLong()) |
|
692 { |
|
693 User::Leave(KErrTotalLossOfPrecision); |
|
694 } |
|
695 return ConvertToLong(); |
|
696 } |
|
697 |
|
698 EXPORT_C void TInteger::CopyL(const TInteger& aInteger, TBool aAllowShrink) |
|
699 { |
|
700 if(aAllowShrink) |
|
701 { |
|
702 CleanResizeL(aInteger.Size()); |
|
703 } |
|
704 else |
|
705 { |
|
706 CleanGrowL(aInteger.Size()); |
|
707 } |
|
708 Construct(aInteger); |
|
709 } |
|
710 |
|
711 EXPORT_C void TInteger::CopyL(TInt aInteger, TBool aAllowShrink) |
|
712 { |
|
713 if(aAllowShrink) |
|
714 { |
|
715 CleanResizeL(2); |
|
716 } |
|
717 else |
|
718 { |
|
719 CleanGrowL(2); |
|
720 } |
|
721 Construct(aInteger); |
|
722 } |
|
723 |
|
724 EXPORT_C void TInteger::Set(const RInteger& aInteger) |
|
725 { |
|
726 assert(IsHeapBased()); |
|
727 Mem::FillZ(Ptr(), WordsToBytes(Size())); |
|
728 User::Free(Ptr()); |
|
729 iPtr = aInteger.iPtr; |
|
730 iSize = aInteger.iSize; |
|
731 } |
|
732 |
|
733 RInteger TInteger::PositiveAddL(const TInteger &aA, const TInteger& aB) const |
|
734 { |
|
735 RInteger sum = RInteger::NewEmptyL(CryptoMax(aA.Size(), aB.Size())); |
|
736 const word aSize = aA.Size(); |
|
737 const word bSize = aB.Size(); |
|
738 const word* const aReg = aA.Ptr(); |
|
739 const word* const bReg = aB.Ptr(); |
|
740 word* const sumReg = sum.Ptr(); |
|
741 |
|
742 word carry; |
|
743 if (aSize == bSize) |
|
744 carry = Add(sumReg, aReg, bReg, aSize); |
|
745 else if (aSize > bSize) |
|
746 { |
|
747 carry = Add(sumReg, aReg, bReg, bSize); |
|
748 CopyWords(sumReg+bSize, aReg+bSize, aSize-bSize); |
|
749 carry = Increment(sumReg+bSize, aSize-bSize, carry); |
|
750 } |
|
751 else |
|
752 { |
|
753 carry = Add(sumReg, aReg, bReg, aSize); |
|
754 CopyWords(sumReg+aSize, bReg+aSize, bSize-aSize); |
|
755 carry = Increment(sumReg+aSize, bSize-aSize, carry); |
|
756 } |
|
757 |
|
758 if (carry) |
|
759 { |
|
760 CleanupStack::PushL(sum); |
|
761 sum.CleanGrowL(2*sum.Size()); |
|
762 CleanupStack::Pop(&sum); |
|
763 sum.Ptr()[sum.Size()/2] = 1; |
|
764 } |
|
765 sum.SetSign(TInteger::EPositive); |
|
766 return sum; |
|
767 } |
|
768 |
|
769 RInteger TInteger::PositiveSubtractL(const TInteger &aA, const TInteger& aB) const |
|
770 { |
|
771 RInteger diff = RInteger::NewEmptyL(CryptoMax(aA.Size(), aB.Size())); |
|
772 unsigned aSize = aA.WordCount(); |
|
773 aSize += aSize%2; |
|
774 unsigned bSize = aB.WordCount(); |
|
775 bSize += bSize%2; |
|
776 const word* const aReg = aA.Ptr(); |
|
777 const word* const bReg = aB.Ptr(); |
|
778 word* const diffReg = diff.Ptr(); |
|
779 |
|
780 if (aSize == bSize) |
|
781 { |
|
782 if (Compare(aReg, bReg, aSize) >= 0) |
|
783 { |
|
784 Subtract(diffReg, aReg, bReg, aSize); |
|
785 diff.SetSign(TInteger::EPositive); |
|
786 } |
|
787 else |
|
788 { |
|
789 Subtract(diffReg, bReg, aReg, aSize); |
|
790 diff.SetSign(TInteger::ENegative); |
|
791 } |
|
792 } |
|
793 else if (aSize > bSize) |
|
794 { |
|
795 word borrow = Subtract(diffReg, aReg, bReg, bSize); |
|
796 CopyWords(diffReg+bSize, aReg+bSize, aSize-bSize); |
|
797 borrow = Decrement(diffReg+bSize, aSize-bSize, borrow); |
|
798 assert(!borrow); |
|
799 diff.SetSign(TInteger::EPositive); |
|
800 } |
|
801 else |
|
802 { |
|
803 word borrow = Subtract(diffReg, bReg, aReg, aSize); |
|
804 CopyWords(diffReg+aSize, bReg+aSize, bSize-aSize); |
|
805 borrow = Decrement(diffReg+aSize, bSize-aSize, borrow); |
|
806 assert(!borrow); |
|
807 diff.SetSign(TInteger::ENegative); |
|
808 } |
|
809 return diff; |
|
810 } |
|
811 |
|
812 RInteger TInteger::PositiveMultiplyL(const TInteger &aA, const TInteger &aB) const |
|
813 { |
|
814 unsigned aSize = RoundupSize(aA.WordCount()); |
|
815 unsigned bSize = RoundupSize(aB.WordCount()); |
|
816 |
|
817 RInteger product = RInteger::NewEmptyL(aSize+bSize); |
|
818 CleanupClosePushL(product); |
|
819 |
|
820 RInteger workspace = RInteger::NewEmptyL(aSize + bSize); |
|
821 AsymmetricMultiply(product.Ptr(), workspace.Ptr(), aA.Ptr(), aSize, aB.Ptr(), |
|
822 bSize); |
|
823 workspace.Close(); |
|
824 CleanupStack::Pop(&product); |
|
825 return product; |
|
826 } |
|
827 |
|
828 TUint TInteger::Modulo(const TInteger& aDividend, TUint aDivisor) const |
|
829 { |
|
830 assert(aDivisor); |
|
831 TUint i = aDividend.WordCount(); |
|
832 TUint remainder = 0; |
|
833 while(i--) |
|
834 { |
|
835 remainder = TUint(MAKE_DWORD(aDividend.Ptr()[i], remainder) % aDivisor); |
|
836 } |
|
837 return remainder; |
|
838 } |
|
839 |
|
840 void TInteger::PositiveDivide(TUint& aRemainder, TInteger& aQuotient, |
|
841 const TInteger& aDividend, TUint aDivisor) const |
|
842 { |
|
843 assert(aDivisor); |
|
844 |
|
845 TUint i = aDividend.WordCount(); |
|
846 assert(aQuotient.Size() >= RoundupSize(i)); |
|
847 assert(aQuotient.Sign() == TInteger::EPositive); |
|
848 aRemainder = 0; |
|
849 while(i--) |
|
850 { |
|
851 aQuotient.Ptr()[i] = |
|
852 TUint(MAKE_DWORD(aDividend.Ptr()[i], aRemainder) / aDivisor); |
|
853 aRemainder = |
|
854 TUint(MAKE_DWORD(aDividend.Ptr()[i], aRemainder) % aDivisor); |
|
855 } |
|
856 } |
|
857 |
|
858 void TInteger::DivideL(TUint& aRemainder, RInteger& aQuotient, |
|
859 const TInteger& aDividend, TUint aDivisor) const |
|
860 { |
|
861 if(!aDivisor) |
|
862 { |
|
863 User::Leave(KErrDivideByZero); |
|
864 } |
|
865 |
|
866 TUint i = aDividend.WordCount(); |
|
867 aQuotient.CleanNewL(RoundupSize(i)); |
|
868 PositiveDivide(aRemainder, aQuotient, aDividend, aDivisor); |
|
869 |
|
870 if(aDividend.NotNegative()) |
|
871 { |
|
872 aQuotient.SetSign(TInteger::EPositive); |
|
873 } |
|
874 else |
|
875 { |
|
876 aQuotient.SetSign(TInteger::ENegative); |
|
877 if(aRemainder) |
|
878 { |
|
879 --aQuotient; |
|
880 aRemainder = aDivisor = aRemainder; |
|
881 } |
|
882 } |
|
883 } |
|
884 |
|
885 void TInteger::PositiveDivideL(RInteger &aRemainder, RInteger &aQuotient, |
|
886 const TInteger &aDividend, const TInteger &aDivisor) const |
|
887 { |
|
888 unsigned dividendSize = aDividend.WordCount(); |
|
889 unsigned divisorSize = aDivisor.WordCount(); |
|
890 |
|
891 if (!divisorSize) |
|
892 { |
|
893 User::Leave(KErrDivideByZero); |
|
894 } |
|
895 |
|
896 if (aDividend.UnsignedCompare(aDivisor) == -1) |
|
897 { |
|
898 aRemainder.CreateNewL(aDividend.Size()); |
|
899 CleanupStack::PushL(aRemainder); |
|
900 aRemainder.CopyL(aDividend); //set remainder to a |
|
901 aRemainder.SetSign(TInteger::EPositive); |
|
902 aQuotient.CleanNewL(2); //Set quotient to zero |
|
903 CleanupStack::Pop(&aRemainder); |
|
904 return; |
|
905 } |
|
906 |
|
907 dividendSize += dividendSize%2; // round up to next even number |
|
908 divisorSize += divisorSize%2; |
|
909 |
|
910 aRemainder.CleanNewL(divisorSize); |
|
911 CleanupStack::PushL(aRemainder); |
|
912 aQuotient.CleanNewL(dividendSize-divisorSize+2); |
|
913 CleanupStack::PushL(aQuotient); |
|
914 |
|
915 RInteger T = RInteger::NewEmptyL(dividendSize+2*divisorSize+4); |
|
916 Divide(aRemainder.Ptr(), aQuotient.Ptr(), T.Ptr(), aDividend.Ptr(), |
|
917 dividendSize, aDivisor.Ptr(), divisorSize); |
|
918 T.Close(); |
|
919 CleanupStack::Pop(2, &aRemainder); //aQuotient, aRemainder |
|
920 } |
|
921 |
|
922 void TInteger::DivideL(RInteger& aRemainder, RInteger& aQuotient, |
|
923 const TInteger& aDividend, const TInteger& aDivisor) const |
|
924 { |
|
925 PositiveDivideL(aRemainder, aQuotient, aDividend, aDivisor); |
|
926 |
|
927 if (aDividend.IsNegative()) |
|
928 { |
|
929 aQuotient.Negate(); |
|
930 if (aRemainder.NotZero()) |
|
931 { |
|
932 --aQuotient; |
|
933 assert(aRemainder.Size() <= aDivisor.Size()); |
|
934 Subtract(aRemainder.Ptr(), aDivisor.Ptr(), aRemainder.Ptr(), |
|
935 aRemainder.Size()); |
|
936 } |
|
937 } |
|
938 |
|
939 if (aDivisor.IsNegative()) |
|
940 aQuotient.Negate(); |
|
941 } |
|
942 |
|
943 TInt TInteger::ConvertToLong(void) const |
|
944 { |
|
945 TUint value = ConvertToUnsignedLong(); |
|
946 return Sign() == EPositive ? value : -(static_cast<TInt>(value)); |
|
947 } |
|
948 |
|
949 TBool TInteger::IsConvertableToLong(void) const |
|
950 { |
|
951 if(WordCount() > 1) |
|
952 { |
|
953 return EFalse; |
|
954 } |
|
955 TUint value = (Ptr())[0]; |
|
956 if(Sign() == EPositive) |
|
957 { |
|
958 return static_cast<TInt>(value) >= 0; |
|
959 } |
|
960 else |
|
961 { |
|
962 return -(static_cast<TInt>(value)) < 0; |
|
963 } |
|
964 } |
|
965 |
|
966 void TInteger::RandomizeL(TUint aBits, TRandomAttribute aAttr) |
|
967 { |
|
968 if(!aBits) |
|
969 { |
|
970 return; |
|
971 } |
|
972 const TUint bytes = BitsToBytes(aBits); |
|
973 const TUint words = BitsToWords(aBits); |
|
974 CleanGrowL(words); |
|
975 TPtr8 buf((TUint8*)(Ptr()), bytes, WordsToBytes(Size())); |
|
976 TUint bitpos = aBits % BYTE_BITS; |
|
977 GenerateRandomBytesL(buf); |
|
978 //mask with 0 all bits above the num requested in the most significant byte |
|
979 if(bitpos) |
|
980 { |
|
981 buf[bytes-1] = TUint8( buf[bytes-1] & ((1L << bitpos) - 1) ); |
|
982 } |
|
983 //set most significant (top) bit |
|
984 if(aAttr == ETopBitSet || aAttr == ETop2BitsSet) |
|
985 { |
|
986 SetBit(aBits-1); //Set bit counts from 0 |
|
987 assert(BitCount() == aBits); |
|
988 assert(Bit(aBits-1)); |
|
989 } |
|
990 //set 2nd bit from top |
|
991 if(aAttr == ETop2BitsSet) |
|
992 { |
|
993 SetBit(aBits-2); //Set bit counts from 0 |
|
994 assert(BitCount() == aBits); |
|
995 assert(Bit(aBits-1)); |
|
996 assert(Bit(aBits-2)); |
|
997 } |
|
998 } |
|
999 |
|
1000 void TInteger::RandomizeL(const TInteger& aMin, const TInteger& aMax) |
|
1001 { |
|
1002 assert(aMax > aMin); |
|
1003 assert(aMin.NotNegative()); |
|
1004 RInteger range = RInteger::NewL(aMax); |
|
1005 CleanupStack::PushL(range); |
|
1006 range -= aMin; |
|
1007 const TUint bits = range.BitCount(); |
|
1008 |
|
1009 //if we find a number < range then aMin+range < aMax |
|
1010 do |
|
1011 { |
|
1012 RandomizeL(bits, EAllBitsRandom); |
|
1013 } |
|
1014 while(*this > range); |
|
1015 |
|
1016 *this += aMin; |
|
1017 CleanupStack::PopAndDestroy(&range); |
|
1018 } |
|
1019 |
|
1020 /* void PrimeRandomizeL(TUint aBits, TRandomAttribute aAttr) |
|
1021 * and all primality related functions are implemented in primes.cpp */ |
|
1022 |
|
1023 void TInteger::CreateNewL(TUint aNewSize) |
|
1024 { |
|
1025 //should only be called on construction |
|
1026 assert(!iPtr); |
|
1027 |
|
1028 TUint newSize = RoundupSize(aNewSize); |
|
1029 SetPtr((TUint*)User::AllocL(WordsToBytes(newSize))); |
|
1030 SetSize(newSize); |
|
1031 SetHeapBased(); |
|
1032 } |
|
1033 |
|
1034 void TInteger::CleanNewL(TUint aNewSize) |
|
1035 { |
|
1036 CreateNewL(aNewSize); |
|
1037 Mem::FillZ(Ptr(), WordsToBytes(Size())); //clear integer storage |
|
1038 } |
|
1039 |
|
1040 void TInteger::CleanGrowL(TUint aNewSize) |
|
1041 { |
|
1042 assert(IsHeapBased()); |
|
1043 TUint newSize = RoundupSize(aNewSize); |
|
1044 TUint oldSize = Size(); |
|
1045 if(newSize > oldSize) |
|
1046 { |
|
1047 TUint* oldPtr = Ptr(); |
|
1048 //1) allocate new memory and set ptr and size |
|
1049 SetPtr((TUint*)User::AllocL(WordsToBytes(newSize))); |
|
1050 SetSize(newSize); |
|
1051 //2) copy old mem to new mem |
|
1052 Mem::Copy(Ptr(), oldPtr, WordsToBytes(oldSize)); |
|
1053 //3) zero all old memory |
|
1054 Mem::FillZ(oldPtr, WordsToBytes(oldSize)); |
|
1055 //4) give back old memory |
|
1056 User::Free(oldPtr); |
|
1057 //5) zero new memory from end of copy to end of growth |
|
1058 Mem::FillZ(Ptr() + oldSize, WordsToBytes(newSize-oldSize)); |
|
1059 } |
|
1060 } |
|
1061 |
|
1062 void TInteger::CleanResizeL(TUint aNewSize) |
|
1063 { |
|
1064 assert(IsHeapBased()); |
|
1065 TUint newSize = RoundupSize(aNewSize); |
|
1066 TUint oldSize = Size(); |
|
1067 if(newSize > oldSize) |
|
1068 { |
|
1069 CleanGrowL(aNewSize); |
|
1070 } |
|
1071 else if(newSize < oldSize) |
|
1072 { |
|
1073 TUint* oldPtr = Ptr(); |
|
1074 //1) zero memory above newsize |
|
1075 Mem::FillZ(oldPtr+WordsToBytes(aNewSize),WordsToBytes(oldSize-newSize)); |
|
1076 //2) ReAlloc cell. Since our newsize is less than oldsize, it is |
|
1077 //guarenteed not to move. Thus this is just freeing part of our old |
|
1078 //cell to the heap for other uses. |
|
1079 SetPtr((TUint*)User::ReAllocL(Ptr(), WordsToBytes(newSize))); |
|
1080 SetSize(newSize); |
|
1081 } |
|
1082 } |
|
1083 |
|
1084 TInteger::TInteger() : iSize(0), iPtr(0) |
|
1085 { |
|
1086 } |
|
1087 |
|
1088 void TInteger::Construct(const TDesC8& aValue) |
|
1089 { |
|
1090 assert(Size() >= BytesToWords(aValue.Size())); |
|
1091 if(aValue.Size() > 0) |
|
1092 { |
|
1093 //People write numbers with the most significant digits first (big |
|
1094 //endian) but we store our numbers in little endian. Hence we need to |
|
1095 //reverse the string by bytes. |
|
1096 |
|
1097 TUint bytes = aValue.Size(); |
|
1098 TUint8* i = (TUint8*)Ptr(); |
|
1099 TUint8* j = (TUint8*)aValue.Ptr() + bytes; |
|
1100 |
|
1101 //Swap the endianess of the number itself |
|
1102 // (msb) 01 02 03 04 05 06 (lsb) becomes -> |
|
1103 // (lsb) 06 05 04 03 02 01 (msb) |
|
1104 while( j != (TUint8*)aValue.Ptr() ) |
|
1105 { |
|
1106 *i++ = *--j; |
|
1107 } |
|
1108 Mem::FillZ((TUint8*)Ptr() + bytes, WordsToBytes(Size()) - bytes); |
|
1109 } |
|
1110 else |
|
1111 { |
|
1112 //if size is zero, we zero the whole register |
|
1113 Mem::FillZ((TUint8*)Ptr(), WordsToBytes(Size())); |
|
1114 } |
|
1115 SetSign(EPositive); |
|
1116 } |
|
1117 |
|
1118 void TInteger::Construct(const TInteger& aInteger) |
|
1119 { |
|
1120 assert(Size() >= aInteger.Size()); |
|
1121 CopyWords(Ptr(), aInteger.Ptr(), aInteger.Size()); |
|
1122 if(Size() > aInteger.Size()) |
|
1123 { |
|
1124 Mem::FillZ(Ptr()+aInteger.Size(), WordsToBytes(Size()-aInteger.Size())); |
|
1125 } |
|
1126 SetSign(aInteger.Sign()); |
|
1127 } |
|
1128 |
|
1129 void TInteger::Construct(TInt aInteger) |
|
1130 { |
|
1131 Construct((TUint)aInteger); |
|
1132 if(aInteger < 0) |
|
1133 { |
|
1134 SetSign(ENegative); |
|
1135 Ptr()[0] = -aInteger; |
|
1136 } |
|
1137 } |
|
1138 |
|
1139 void TInteger::Construct(TUint aInteger) |
|
1140 { |
|
1141 assert(Size() >= 2); |
|
1142 SetSign(EPositive); |
|
1143 Ptr()[0] = aInteger; |
|
1144 Mem::FillZ(Ptr()+1, WordsToBytes(Size()-1)); |
|
1145 } |
|
1146 |
|
1147 void TInteger::ConstructStack(TUint aWords, TUint aInteger) |
|
1148 { |
|
1149 SetPtr((TUint*)(this)+2); |
|
1150 //SetStackBased(); //Not strictly needed as stackbased is a 0 at bit 1 |
|
1151 SetSize(aWords); |
|
1152 assert(Size() >= 2); |
|
1153 Ptr()[0] = aInteger; |
|
1154 Mem::FillZ(&(Ptr()[1]), WordsToBytes(Size()-1)); |
|
1155 } |
|
1156 |
|
1157 void TInteger::ConstructStack(TUint aWords, const TInteger& aInteger) |
|
1158 { |
|
1159 SetPtr((TUint*)(this)+2); |
|
1160 //SetStackBased(); //Not strictly needed as stackbased is a 0 at bit 1 |
|
1161 SetSize(aWords); |
|
1162 assert( Size() >= RoundupSize(aInteger.WordCount()) ); |
|
1163 CopyWords(Ptr(), aInteger.Ptr(), aInteger.Size()); |
|
1164 Mem::FillZ(Ptr()+aInteger.Size(), WordsToBytes(Size()-aInteger.Size())); |
|
1165 } |
|
1166 |