crypto/weakcryptospi/source/common/inlines.h
changeset 19 cd501b96611d
equal deleted inserted replaced
15:da2ae96f639b 19:cd501b96611d
       
     1 /*
       
     2 * Copyright (c) 2003-2009 Nokia Corporation and/or its subsidiary(-ies).
       
     3 * All rights reserved.
       
     4 * This component and the accompanying materials are made available
       
     5 * under the terms of the License "Eclipse Public License v1.0"
       
     6 * which accompanies this distribution, and is available
       
     7 * at the URL "http://www.eclipse.org/legal/epl-v10.html".
       
     8 *
       
     9 * Initial Contributors:
       
    10 * Nokia Corporation - initial contribution.
       
    11 *
       
    12 * Contributors:
       
    13 *
       
    14 * Description: 
       
    15 *
       
    16 */
       
    17 
       
    18 
       
    19 /**
       
    20  @file 
       
    21  @internalTechnology
       
    22 */
       
    23  
       
    24 #ifndef __INLINES_H__
       
    25 #define __INLINES_H__
       
    26 
       
    27 #include <e32base.h>
       
    28 
       
    29 #define assert(x) __ASSERT_DEBUG((x), User::Panic(_L("crypto.dll"), 1))
       
    30 
       
    31 #if defined(__GCC32__)
       
    32 typedef long long Int64;
       
    33 typedef unsigned long long Uint64;
       
    34 #elif defined(__VC32__)
       
    35 typedef __int64 Int64;
       
    36 typedef unsigned __int64 Uint64;
       
    37 #elif defined(__CW32__)
       
    38 #pragma longlong on
       
    39 typedef long long Int64;
       
    40 typedef unsigned long long Uint64;
       
    41 #endif
       
    42 
       
    43 typedef Uint64 dword;
       
    44 typedef TUint word;
       
    45 typedef TUint32 word32;
       
    46 
       
    47 const TUint WORD_SIZE = sizeof(TUint); 
       
    48 const TUint WORD_BYTES = WORD_SIZE;
       
    49 const TUint BYTE_BITS = 8;
       
    50 const TUint WORD_BITS = WORD_SIZE*BYTE_BITS;
       
    51 
       
    52 //These next two versions of GETBYTE compile to LDR's of words and then shifts
       
    53 //and ands to get it down to a byte.
       
    54 //#define GETBYTE(x, y) (TUint)(((x)>>(8*(y)))&255)
       
    55 //#define GETBYTE(x, y) (TUint)TUint8((x)>>(8*(y)))
       
    56 
       
    57 //This next version gets the best assembler on gcc and armv4 (it uses LDRB
       
    58 //rather than shifts and ands
       
    59 #define GETBYTE(x, y) (((TUint8 *)&(x))[y])
       
    60 
       
    61 #define MAKE_DWORD(lowWord, highWord) ((dword(highWord)<<WORD_BITS) | (lowWord))
       
    62 #define LOW_WORD(x) (TUint32)(x)
       
    63 #define HIGH_WORD(x) (TUint32)((x)>>WORD_BITS)
       
    64 
       
    65 template <class T> inline void TClassSwap(T& a, T& b)
       
    66 	{
       
    67 	T temp(a);
       
    68 	a = b;
       
    69 	b = temp;
       
    70 	}
       
    71 	
       
    72 // Returns log2 of aNum where aNum is a power
       
    73 // of two	
       
    74 inline TUint8 CryptoLog2(TUint8 aNum)
       
    75 	{
       
    76 	switch (aNum)
       
    77 		{		
       
    78 		case 1:
       
    79 			return 0;
       
    80 		case 1 << 1:
       
    81 			return 1;
       
    82 		case 1 << 2:
       
    83 			return 2;
       
    84 		case 1 << 3:
       
    85 			return 3;
       
    86 		case 1 << 4:
       
    87 			return 4;
       
    88 		case 1 << 5:
       
    89 			return 5;
       
    90 		case 1 << 6:
       
    91 			return 6;
       
    92 		case 1 << 7:
       
    93 			return 7;
       
    94 		default:
       
    95 			ASSERT(EFalse);
       
    96 		}
       
    97 	return 0;
       
    98 	}
       
    99 	
       
   100 inline TUint BitsToBytes(TUint bitCount)
       
   101 	{
       
   102 	return ((bitCount+7)/(BYTE_BITS));
       
   103 	}
       
   104 
       
   105 inline TUint BytesToWords(TUint byteCount)
       
   106 	{
       
   107 	return ((byteCount+WORD_SIZE-1)/WORD_SIZE);
       
   108 	}
       
   109 
       
   110 inline TUint BitsToWords(TUint bitCount)
       
   111 	{
       
   112 	return ((bitCount+WORD_BITS-1)/(WORD_BITS));
       
   113 	}
       
   114 
       
   115 inline TUint WordsToBits(TUint wordCount)
       
   116 	{
       
   117 	return wordCount * WORD_BITS;
       
   118 	}
       
   119 
       
   120 inline TUint BytesToBits(TUint byteCount)
       
   121 	{	
       
   122 	return byteCount * BYTE_BITS;
       
   123 	}
       
   124 
       
   125 inline TUint WordsToBytes(TUint wordCount)
       
   126 	{
       
   127 	return wordCount * WORD_BYTES;
       
   128 	}
       
   129 
       
   130 inline void XorWords(TUint32* r, const TUint32* a, TUint n)
       
   131 	{
       
   132 	assert(((TUint32)r & 3) == 0); // Catch alignment problems
       
   133 	
       
   134 	for (TUint i=0; i<n; i++)
       
   135 		r[i] ^= a[i];
       
   136 	}
       
   137 
       
   138 inline void XorBuf(TUint8* buf, const TUint8* mask, TUint count)
       
   139 	{
       
   140 	if (((TUint)buf | (TUint)mask | count) % WORD_SIZE == 0) 
       
   141 		{
       
   142 		XorWords((TUint32*)buf, (const TUint32*)mask, count/WORD_SIZE); 
       
   143 		}
       
   144 	else
       
   145 		{
       
   146 		for (TUint i=0; i<count; i++)
       
   147 			buf[i] ^= mask[i];
       
   148 		}
       
   149 	}
       
   150 
       
   151 // ************** rotate functions ***************
       
   152 template <class T> inline T rotlFixed(T x, TUint y)
       
   153 	{
       
   154 	assert(y < sizeof(T)*8);
       
   155 	return ( (T)((x<<y) | (x>>(sizeof(T)*8-y))) );
       
   156 	}
       
   157 
       
   158 template <class T> inline T rotrFixed(T x, TUint y)
       
   159 	{
       
   160 	assert(y < sizeof(T)*8);
       
   161 	return ((T)((x>>y) | (x<<(sizeof(T)*8-y))));
       
   162 	}
       
   163 
       
   164 inline TUint32 byteReverse(TUint32 value)
       
   165 	{
       
   166 	value = ((value & 0xFF00FF00) >> 8) | ((value & 0x00FF00FF) << 8);
       
   167 	return rotlFixed(value, 16U);
       
   168 	}
       
   169 
       
   170 template <class T>
       
   171 void byteReverse(T* out, const T* in, TUint32 byteCount)
       
   172 	{
       
   173 	TUint count = (byteCount+sizeof(T)-1)/sizeof(T);
       
   174 	for (TUint i=0; i<count; i++)
       
   175 		out[i] = byteReverse(in[i]);
       
   176 	}
       
   177 
       
   178 template <class T>
       
   179 inline void GetUserKeyLittleEndian(T *out, TUint32 outlen, const TUint8* in, TUint32 inlen)
       
   180 	{
       
   181 	const TUint U = sizeof(T);
       
   182 	assert(inlen <= outlen*U);
       
   183 	Mem::Copy(out, in, inlen);
       
   184 	Mem::FillZ((TUint8*)out+inlen, outlen*U-inlen);
       
   185 	}
       
   186 
       
   187 template <class T>
       
   188 inline void GetUserKeyBigEndian(T *out, TUint32 outlen, const TUint8* in, TUint32 inlen)
       
   189 	{
       
   190 	const TUint U = sizeof(T);
       
   191 	assert(inlen <= outlen*U);
       
   192 	Mem::Copy(out, in, inlen);
       
   193 	Mem::FillZ((TUint8*)out+inlen, outlen*U-inlen);
       
   194 	byteReverse(out, out, inlen);
       
   195 	}
       
   196 
       
   197 // The following methods have be changed to use byte rather than word accesses,
       
   198 // as if the input pointer is not be word aligned a fault occurs on arm
       
   199 // hardware.  This isn't optimal from a performance point of view, but it is
       
   200 // neccessary because the crypto interfaces (CSymmetricCipher,
       
   201 // CBlockTransformation) allow clients to pass non-aligned data.
       
   202 
       
   203 // Fetch 4 words from user's buffer into "a", "b", "c", "d" in LITTLE-endian order
       
   204 inline void GetBlockLittleEndian(const TUint8* block, TUint16 &a, TUint16 &b, TUint16 &c, TUint16 &d)
       
   205 	{
       
   206 	a = (TUint16)(block[0] | block[1] << 8);
       
   207 	b = (TUint16)(block[2] | block[3] << 8);
       
   208 	c = (TUint16)(block[4] | block[5] << 8);
       
   209 	d = (TUint16)(block[6] | block[7] << 8);
       
   210 	}
       
   211 
       
   212 // Put 4 words back into user's buffer in LITTLE-endian order
       
   213 inline void PutBlockLittleEndian(TUint8* block, TUint16 a, TUint16 b, TUint16 c, TUint16 d)
       
   214 	{
       
   215 	block[0] = (TUint8)(a & 0xff);
       
   216 	block[1] = (TUint8)(a >> 8);
       
   217 	block[2] = (TUint8)(b & 0xff);
       
   218 	block[3] = (TUint8)(b >> 8);
       
   219 	block[4] = (TUint8)(c & 0xff);
       
   220 	block[5] = (TUint8)(c >> 8);
       
   221 	block[6] = (TUint8)(d & 0xff);
       
   222 	block[7] = (TUint8)(d >> 8);
       
   223 	}
       
   224 
       
   225 // Fetch 1 word from user's buffer in BIG-endian order
       
   226 inline void GetWordBigEndian(const TUint8* block, TUint32 &a)
       
   227 	{
       
   228 	a = block[0] << 24 | block[1] << 16 | block[2] << 8 | block[3];
       
   229 	}
       
   230 
       
   231 // Put 1 word back into user's buffer in BIG-endian order
       
   232 inline void PutWordBigEndian(TUint8* block, TUint32 a)
       
   233 	{
       
   234 	block[0] = (TUint8)(a >> 24);
       
   235 	block[1] = (TUint8)((a >> 16) & 0xff);
       
   236 	block[2] = (TUint8)((a >> 8) & 0xff);
       
   237 	block[3] = (TUint8)(a & 0xff);
       
   238 	}
       
   239 
       
   240 // Fetch 2 words from user's buffer into "a", "b" in BIG-endian order
       
   241 inline void GetBlockBigEndian(const TUint8* block, TUint32 &a, TUint32& b)
       
   242 	{
       
   243 	GetWordBigEndian(block, a);
       
   244 	GetWordBigEndian(block + 4, b);
       
   245 	}
       
   246 
       
   247 // Put 2 words back into user's buffer in BIG-endian order
       
   248 inline void PutBlockBigEndian(TUint8* block, TUint32 a, TUint32 b)
       
   249 	{
       
   250 	PutWordBigEndian(block, a);
       
   251 	PutWordBigEndian(block + 4, b);
       
   252 	}
       
   253 
       
   254 // Fetch 4 words from user's buffer into "a", "b", "c", "d" in BIG-endian order
       
   255 inline void GetBlockBigEndian(const TUint8* block, TUint32& a, TUint32& b, TUint32& c, TUint32& d)
       
   256 	{
       
   257 	GetWordBigEndian(block, a);
       
   258 	GetWordBigEndian(block + 4, b);
       
   259 	GetWordBigEndian(block + 8, c);
       
   260 	GetWordBigEndian(block + 12, d);
       
   261 	}
       
   262 
       
   263 // Put 4 words back into user's buffer in BIG-endian order
       
   264 inline void PutBlockBigEndian(TUint8* block, TUint32 a, TUint32 b, TUint32 c, TUint32 d)
       
   265 	{
       
   266 	PutWordBigEndian(block, a);
       
   267 	PutWordBigEndian(block + 4, b);
       
   268 	PutWordBigEndian(block + 8, c);
       
   269 	PutWordBigEndian(block + 12, d);
       
   270 	}
       
   271 
       
   272 #endif // __INLINES_H__