--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/crypto/weakcrypto/source/pkcs12kdf/pkcs12kdf.cpp Wed Jul 08 11:25:26 2009 +0100
@@ -0,0 +1,273 @@
+/*
+* Copyright (c) 2005-2009 Nokia Corporation and/or its subsidiary(-ies).
+* All rights reserved.
+* This component and the accompanying materials are made available
+* under the terms of the License "Eclipse Public License v1.0"
+* which accompanies this distribution, and is available
+* at the URL "http://www.eclipse.org/legal/epl-v10.html".
+*
+* Initial Contributors:
+* Nokia Corporation - initial contribution.
+*
+* Contributors:
+*
+* Description:
+*
+*/
+
+
+#include <hash.h>
+#include <bigint.h>
+#include "pkcs12kdf.h"
+
+
+EXPORT_C HBufC8* PKCS12KDF::GeneratePasswordLC(const TDesC& aDes)
+/**
+ Convert the supplied string to a byte string, as described
+ in SB.1 of the PKCS 12 v1.0.
+
+ Each character is converted to a big endian two-byte value,
+ and a terminating NULL character is appended to the end.
+
+ @param aDes String to use as password.
+ */
+ {
+ const TInt len = aDes.Length();
+ HBufC8* pwdBytes = HBufC8::NewMaxLC((len + 1) * 2);
+ TPtr8 pbDes = pwdBytes->Des();
+
+ TInt i = 0;
+ while (i < len)
+ {
+ TUint16 ch = aDes[i];
+ pbDes[i * 2] = ch >> 8;
+ pbDes[(i * 2) + 1] = ch;
+ ++i;
+ }
+ pbDes[i * 2] = pbDes[(i * 2) + 1] = 0;
+
+ return pwdBytes;
+ }
+
+static TInt CeilDiv(TInt aNumerator, TInt aDenominator)
+/**
+ Utility function returns ceil(aNumerator / aDenominator).
+
+ @param aNumerator The numerator.
+ @param aDenominator Denominator, which cannot be zero.
+ @return ceil(aNumerator / aDenominator)
+ */
+ {
+ TInt result = aNumerator / aDenominator;
+ if ((aNumerator % aDenominator) > 0)
+ ++result;
+ return result;
+ }
+
+EXPORT_C void PKCS12KDF::DeriveKeyL(
+ TDes8& aKey, TIDByteType aIDType,
+ const TDesC8& aPasswd, const TDesC8& aSalt, const TUint aIterations)
+/**
+ Generate a key for the supplied password and salt.
+ This implementation uses SHA1 as the hashing algorithm.
+
+ @param aKey Descriptor which will hold key. On entry
+ its length must be set to the expected key length.
+ @param aIDType Whether this function is being called to generate
+ an (en|de)cryption key, an initialization vector,
+ or a key for MAC-ing. See SB.3 of spec.
+ @param aPasswd Password string. To comply with PKCS#12 spec,
+ this must have 2-byte big-endian characters with
+ a terminating null character.
+ @param aSalt Used with aPasswd to generate key.
+ @param aIterations Number of times to call the hash function for
+ each block in the key.
+
+ @panic PKCS#12 16 Password is empty (debug only.)
+ @panic PKCS#12 17 Password does not contain an even number of bytes,
+ and so can't use double-byte characters (debug only.)
+ @panic PKCS#12 18 The final two-byte character is not a null terminator,
+ or a null terminator occurs before the end (debug only.)
+ */
+ {
+ __ASSERT_DEBUG(aPasswd.Length() >= 2, Panic(EDKEmptyPswd));
+ __ASSERT_DEBUG((aPasswd.Length() % 2) == 0, Panic(EDKOddPswdByteCount));
+ TInt useCharCount = aPasswd.Length() / 2;
+ TPtrC16 pswd16(reinterpret_cast<const TUint16*>(aPasswd.Ptr()), useCharCount);
+ TInt nullPos = pswd16.Locate(L'\0');
+ __ASSERT_DEBUG(nullPos == (useCharCount - 1), Panic(EDKBadNullTerminator));
+
+ // use the same notation as the standard
+ const TUint8 ID = static_cast<TUint8>(aIDType);
+ const TInt u = 160; // chaining variable length for SHA-1
+ const TInt v = 512; // message input length for SHA-1
+ const TInt n = aKey.Length() * 8; // number of bits required in key
+ const TInt p = aPasswd.Length();
+ const TInt s = aSalt.Length();
+ const TInt r = aIterations;
+
+ // (numbered steps are from the standard)
+ // 1. Construct a string, D (the "diversifier"), by concatenating
+ // v/8 copies of ID.
+ const TInt D_LEN = v / 8;
+ HBufC8* D_ = HBufC8::NewMaxLC(D_LEN);
+ TPtr8 D = D_->Des();
+ D.Fill(ID);
+
+ // 2. Concatenate copies of the salt together to create a string S
+ // of length v * ceil(s/v) bits (the final copy of the salt may be
+ // truncated to create S). Note that if the salt is the empty string,
+ // then so is S.
+ const TInt S_OVER_V_CEIL = CeilDiv(s, v);
+ const TInt S_LEN = (v * S_OVER_V_CEIL) / 8;
+ HBufC8* S_ = HBufC8::NewMaxLC(S_LEN);
+ TPtr8 S = S_->Des();
+ S.Repeat(aSalt);
+
+ // 3. Concatenate copies of the password together to create a string P
+ // of length v * ceil(p/v) bits (the final copy of the password may be
+ // truncated to create P). Note that if the password is the empty string
+ // then so is P.
+ const TInt P_OVER_V_CEIL = CeilDiv(p, v);
+ const TInt P_LEN = (v * P_OVER_V_CEIL) / 8;
+ HBufC8* P_ = HBufC8::NewMaxLC(P_LEN);
+ TPtr8 P = P_->Des();
+ P.Repeat(aPasswd);
+
+ // 4. Set I=S||P to be the concatenation of S and P.
+ const TInt I_LEN = S_LEN + P_LEN;
+ HBufC8* I_ = HBufC8::NewLC(I_LEN);
+ TPtr8 I = I_->Des();
+ I.Copy(S);
+ I.Append(P);
+
+ // 5. Set c=ceil(n/u).
+ const TInt c = CeilDiv(n, u);
+
+ // ahead 7: allocate result buffer A
+ // (Each Ai has SHA1_HASH bytes.)
+ HBufC8* A_ = HBufC8::NewLC(c * SHA1_HASH);
+ TPtr8 A = A_->Des();
+
+ // 6. For i=1, 2, ..., c, do the following
+
+ // pre-allocate SHA1 object, DI, and B buffers
+ CSHA1* sha1 = CSHA1::NewL();
+ CleanupStack::PushL(sha1);
+
+ const TInt DI_LEN = D_LEN + I_LEN;
+ HBufC8* DI_ = HBufC8::NewLC(DI_LEN);
+ TPtr8 DI = DI_->Des();
+
+ const TInt B_LEN = v / 8;
+ HBufC8* B_ = HBufC8::NewMaxLC(B_LEN);
+ TPtr8 B = B_->Des();
+
+ for (TInt i = 1; i <= c; ++i)
+ {
+ // 6a) Set Ai = H^r(D||I). (i.e. the rth hash of D||I,
+ // H(H(H(...H(D||I))))
+ DI.Copy(D);
+ DI.Append(I);
+
+ sha1->Reset();
+ TBuf8<SHA1_HASH> Ai(sha1->Final(DI));
+
+ for (TInt iterCount = 2; iterCount <= r; ++iterCount)
+ {
+ Ai.Copy(sha1->Final(Ai));
+ }
+
+ // 6b) Concatenate copies of Ai to create a string B of length
+ // v bits (the final copy of Ai may be truncated to create B).
+ B.Repeat(Ai);
+
+ // 6c) Treating I as a concatenation I0, I1, ..., Ik-1 of
+ // v-bit blocks, where k=ceil(s/v)+ceil(p/v), modify I by
+ // setting Ij=(Ij+B+1) mod 2^v for each j.
+
+ const TInt k = S_OVER_V_CEIL + P_OVER_V_CEIL;
+ for (TInt j = 0; j < k; ++j)
+ {
+ TPtr8 section = I.MidTPtr((v/8) * j, v/8);
+ Process6cL(section, B, v);
+ }
+
+ // 7. Concatenate A1, A2, ..., Ac together to form a pseudo-random
+ // bit string, A.
+ A.Append(Ai);
+
+ // stop building A if already have enough bits for key
+ if (A.Length() >= n / 8)
+ break;
+ }
+
+ // Use the first n bits of A as the output of this entire process.
+ aKey.Copy(A.Left(n / 8));
+
+ CleanupStack::PopAndDestroy(8, D_); // B_, DI_, sha1, A_, I_, P_, S_, D_
+ }
+
+void PKCS12KDF::Process6cL(TDes8& Ij, const TDesC8& B, TInt v)
+/**
+ Helper function for DeriveKeyL modifies part of I,
+ as described in step 6c of SB.2.
+
+ @param Ij Section of I (S || P).
+ @param B rth hash of D || I.
+ @param v Number of bits to preserve in result.
+ */
+ {
+ // 6c) Treating I as a concatenation I0, I1, ..., Ik-1 of
+ // v-bit blocks, where k=ceil(s/v)+ceil(p/v), modify I by
+ // setting Ij=(Ij+B+1) mod 2^v for each j.
+
+ RInteger RI_Ij = RInteger::NewL(Ij);
+ TCleanupItem ciIj = RI_Ij;
+ CleanupStack::PushL(ciIj);
+
+ RInteger RI_B = RInteger::NewL(B);
+ TCleanupItem ciB = RI_B;
+ CleanupStack::PushL(ciB);
+
+ // these additions can leave
+ RI_Ij += RI_B;
+ RI_Ij += 1;
+
+ HBufC8* result = RI_Ij.BufferLC();
+
+ Ij.Zero();
+ TInt resultLen = result->Length();
+
+ TInt bytesToPreserve = v / 8;
+ TInt leadingZeroes = bytesToPreserve - resultLen;
+ if (leadingZeroes <= 0)
+ Ij.Copy(result->Right(bytesToPreserve));
+ else
+ {
+ Ij.FillZ(leadingZeroes);
+ Ij.Append(*result);
+ }
+
+ CleanupStack::PopAndDestroy(3, &RI_Ij); // result, ciB, ciIj
+ }
+
+#ifdef _DEBUG
+
+void PKCS12KDF::Panic(PKCS12KDF::TPanic aPanic)
+/**
+ This function is used in debug builds to halt
+ the current thread when a logic error is detected.
+
+ The current thread is panicked with category "PKCS12KDF"
+ and the supplied reason.
+
+ @param aPanic Converted to numeric value and
+ used for the panic reason.
+ */
+ {
+ _LIT(KPanicCat, "PKCS12KDF");
+ User::Panic(KPanicCat, aPanic);
+ }
+
+#endif