crypto/weakcrypto/source/bigint/primes.cpp
branchRCL_3
changeset 62 a71299154b21
parent 61 641f389e9157
child 63 94225563cd41
--- a/crypto/weakcrypto/source/bigint/primes.cpp	Tue Aug 31 17:00:08 2010 +0300
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,449 +0,0 @@
-/*
-* Copyright (c) 2003-2009 Nokia Corporation and/or its subsidiary(-ies).
-* All rights reserved.
-* This component and the accompanying materials are made available
-* under the terms of the License "Eclipse Public License v1.0"
-* which accompanies this distribution, and is available
-* at the URL "http://www.eclipse.org/legal/epl-v10.html".
-*
-* Initial Contributors:
-* Nokia Corporation - initial contribution.
-*
-* Contributors:
-*
-* Description: 
-*
-*/
-
-
-#include <bigint.h>
-#include <e32std.h>
-#include <securityerr.h>
-#include "words.h"
-#include "primes.h"
-#include "algorithms.h"
-#include "mont.h"
-#include "stackinteger.h"
-
-static inline void EliminateComposites(TUint* aS, TUint aPrime, TUint aJ, 
-	TUint aMaxIndex)
-	{
-	for(; aJ<aMaxIndex; aJ+=aPrime)
-		ArraySetBit(aS, aJ);
-	}
-
-static inline TInt FindLeastSignificantZero(TUint aX)
-	{
-	aX = ~aX;
-	int i = 0;
-	if( aX << 16 == 0 ) aX>>=16, i+=16;
-	if( aX << 24 == 0 ) aX>>=8, i+=8;
-	if( aX << 28 == 0 ) aX>>=4, i+=4;
-	if( aX << 30 == 0 ) aX>>=2, i+=2;
-	if( aX << 31 == 0 ) ++i;
-	return i;
-	}
-
-static inline TInt FindFirstPrimeCandidate(TUint* aS, TUint aBitLength)
-	{
-	assert(aBitLength % WORD_BITS == 0);
-	TUint i=0;
-	//The empty statement at the end of this is stop warnings in all compilers
-	for(; aS[i] == KMaxTUint && i<BitsToWords(aBitLength); i++) {;}
-
-	if(i == BitsToWords(aBitLength))
-		return -1;
-	else
-		{
-		assert( FindLeastSignificantZero((TUint)(aS[i])) >= 0 );
-		assert( FindLeastSignificantZero((TUint)(aS[i])) <= 31 );
-		return i*WORD_BITS + FindLeastSignificantZero((TUint32)(aS[i]));
-		}
-	}
-
-static inline TUint FindSmallestIndex(TUint aPrime, TUint aRemainder)
-	{
-	TUint& j = aRemainder;
-	if(j)
-		{
-		j = aPrime - aRemainder;
-		if( j & 0x1L )
-			{
-			//if j is odd then this + j is even so we actually want 
-			//the next number for which (this + j % p == 0) st this + j is odd
-			//that is: this + j + p == 0 mod p
-			j += aPrime;
-			}
-		//Turn j into an index for a bit array representing odd numbers only
-		j>>=1;
-		}
-	return j;
-	}
-
-static TBool IsSmallPrime(TUint aK) 
-	{
-	//This is just a binary search of our small prime table.
-	TUint l = 0;
-	TUint u = KPrimeTableSize;
-	while( u > l )
-		{
-		TUint m = (l+u)>>1;
-		TUint p = KPrimeTable[m];
-		if(aK < p)
-			u = m;
-		else if (aK > p)
-			l = m + 1;
-		else
-			return ETrue;
-		}
-	return EFalse;
-	}
-
-static inline TUint RabinMillerRounds(TUint aBits) 
-	{
-	//See HAC Table 4.4
-	if(aBits > 1300)
-		return 2;
-	if (aBits > 850)
-		return 3;
-	if (aBits > 650)
-		return 4;
-	if (aBits > 550)
-		return 5;
-	if (aBits > 450)
-		return 6;
-	if (aBits > 400)
-		return 7;
-	if (aBits > 350)
-		return 8;
-	if (aBits > 300)
-		return 9;
-	if (aBits > 250)
-		return 12;
-	if (aBits > 200)
-		return 15;
-	if (aBits > 150)
-		return 18;
-	if (aBits > 100)
-		return 27;
-	//All of the above are optimisations on the worst case.  The worst case
-	//chance of odd composite integers being declared prime by Rabin-Miller is
-	//(1/4)^t where t is the number of rounds.  Thus, t = 40 means that the
-	//chance of declaring a composite integer prime is less than 2^(-80).  See
-	//HAC Fact 4.25 and most of chapter 4 for more details.
-	return 40;
-	}
-
-static TBool HasSmallDivisorL(const TInteger& aPossiblePrime)
-	{
-	assert(aPossiblePrime.IsOdd());
-	//Start checking at the first odd prime, whether it is even should have
-	//already been checked
-	for( TUint i=1; i < KPrimeTableSize; i++ )
-		{
-		if( aPossiblePrime.ModuloL(KPrimeTable[i]) == 0 )
-			{
-			return ETrue;
-			}
-		}
-	return EFalse;
-	}
-
-static TBool RabinMillerIterationL(const CMontgomeryStructure& aMont, 
-	const TInteger& aProbablePrime, const TInteger& aBase)
-	{
-	//see HAC 4.24
-	const TInteger& n = aProbablePrime;
-	assert(n > KLastSmallPrimeSquared);
-	assert(n.IsOdd());
-	assert(aBase > TInteger::One());
-
-	RInteger nminus1 = n.MinusL(TInteger::One());
-	CleanupStack::PushL(nminus1);
-	assert(aBase < nminus1);
-
-	// 1) find (s | 2^s*r == n-1) where r is odd
-	// we want the largest power of 2 that divides n-1
-	TUint s=0;
-	for(;;s++)
-		{
-		if(nminus1.Bit(s))
-			{
-			break;
-			}
-		}
-	// (r = (n-1) / 2^s) which is equiv to (n-1 >>= s)
-	RInteger r = RInteger::NewL(nminus1);
-	CleanupStack::PushL(r);
-	r >>= s;
-
-	//At no point do we own y, aMont owns it
-	const TInteger* y = &(aMont.ExponentiateL(aBase, r));
-
-	TBool probablePrime = EFalse;
-	
-	TUint j=1;
-	if( *y == TInteger::One() || *y == nminus1 )
-		{
-		probablePrime = ETrue;
-		}
-	else
-		{
-		for(j=1; j<s; j++)
-			{
-			y = &(aMont.SquareL(*y));
-			if(*y == nminus1)
-				{
-				probablePrime = ETrue;
-				break;
-				}
-			if(*y == TInteger::One())
-				{
-				assert(probablePrime == EFalse);
-				break;
-				}
-			}
-		}
-	CleanupStack::PopAndDestroy(&r);
-	CleanupStack::PopAndDestroy(&nminus1);//y,r,nminus1
-	return probablePrime;
-	}
-
-static TBool RabinMillerTestL(const CMontgomeryStructure& aMont, 
-	const TInteger& aProbablePrime, TUint aRounds) 
-	{
-	const TInteger& n = aProbablePrime;
-	assert(n > KLastSmallPrimeSquared);
-	
-	RInteger nminus2 = n.MinusL(TInteger::Two());
-	CleanupStack::PushL(nminus2);
-
-	for(TUint i=0; i<aRounds; i++)
-		{
-		RInteger base = RInteger::NewRandomL(TInteger::Two(), nminus2);
-		CleanupStack::PushL(base);
-		if(!RabinMillerIterationL(aMont, n, base))
-			{
-			CleanupStack::PopAndDestroy(2, &nminus2);//base, nminus2
-			return EFalse;
-			}
-		CleanupStack::PopAndDestroy(&base);
-		}
-	CleanupStack::PopAndDestroy(&nminus2);
-	return ETrue;
-	}
-
-static TBool IsStrongProbablePrimeL(const TInteger& aPrime) 
-	{
-	CMontgomeryStructure* mont = CMontgomeryStructure::NewLC(aPrime);
-	//This should be using short circuit evaluation
-	TBool probablePrime = RabinMillerIterationL(*mont, aPrime, TInteger::Two())
-		&& RabinMillerTestL(*mont, aPrime,RabinMillerRounds(aPrime.BitCount()));
-	CleanupStack::PopAndDestroy(mont);
-	return probablePrime;
-	}
-
-/* In the _vast_ majority of cases this simply checks that your chosen random
- * number is >= KLastSmallPrimeSquared and return EFalse and lets the normal
- * prime generation routines handle the situation.  In the case where it is
- * smaller, it generates a provable prime and returns ETrue.  The algorithm for
- * finding a provable prime < KLastPrimeSquared is not the most efficient in the
- * world, but two points come to mind
- * 1) The two if statements hardly _ever_ evaluate to ETrue in real life.
- * 2) Even when it is, the distribution of primes < KLastPrimeSquared is pretty
- * dense, so you aren't going to have check many.
- * This function is essentially here for two reasons:
- * 1) Ensures that it is possible to generate primes < KLastPrimeSquared (the
- * test code does this)
- * 2) Ensures that if you request a prime of a large bit size that there is an
- * even probability distribution across all integers < 2^aBits
- */
-TBool TInteger::SmallPrimeRandomizeL(void)
-	{
-	TBool foundPrime = EFalse;
-	//If the random number we've chosen is less than KLastSmallPrime,
-	//testing for primality is easy.
-	if(*this <= KLastSmallPrime)
-		{
-		//If Zero or One, or two, next prime number is two
-		if(IsZero() || *this == One() || *this == Two())
-			{
-			CopyL(TInteger::Two());
-			foundPrime = ETrue;
-			}
-		else
-			{
-			//Make sure any number we bother testing is at least odd
-			SetBit(0);
-			//Binary search the small primes.
-			while(!IsSmallPrime(ConvertToUnsignedLong()))
-				{
-				//If not prime, add two and try the next odd number.
-
-				//will never carry as the minimum size of an RInteger is 2
-				//words.  Much bigger than KLastSmallPrime on 32bit
-				//architectures.
-				IncrementNoCarry(Ptr(), Size(), 2);
-				}
-			assert(IsSmallPrime(ConvertToUnsignedLong()));
-			foundPrime = ETrue;
-			}
-		}
-	else if(*this <= KLastSmallPrimeSquared)
-		{
-		//Make sure any number we bother testing is at least odd
-		SetBit(0);
-
-		while(HasSmallDivisorL(*this) && *this <= KLastSmallPrimeSquared)
-			{
-			//If not prime, add two and try the next odd number.
-
-			//will never carry as the minimum size of an RInteger is 2
-			//words.  Much bigger than KLastSmallPrime on 32bit
-			//architectures.
-			IncrementNoCarry(Ptr(), Size(), 2);
-			}
-		//If we exited while loop because it had no small divisor then it is
-		//prime.  Otherwise, we've exceeded the limit of what we can provably
-		//generate.  Therefore the normal prime gen routines will be run on it
-		//now.
-		if(*this < KLastSmallPrimeSquared)
-			{
-			foundPrime = ETrue;
-			}
-		else
-			{
-			assert(foundPrime == EFalse);
-			}
-		}
-	//This doesn't mean there is no such prime, simply means that the number
-	//wasn't less than KSmallPrimeSquared and needs to be handled by the normal
-	//prime generation routines.
-	return foundPrime;
-	}
-
-void TInteger::PrimeRandomizeL(TUint aBits, TRandomAttribute aAttr)
-	{
-	assert(aBits > 1); 
-	
-	//"this" is "empty" currently.  Consists of Size() words of 0's.  This is just
-	//checking that sign flag is positive as we don't set it later.
-	assert(NotNegative());
-
-	//Flag for the whole function saying if we've found a prime
-	TBool foundProbablePrime = EFalse;
-
-	//Find 2^aBits + 1 -- any prime we find must be less than this.
-	RInteger max = RInteger::NewEmptyL(BitsToWords(aBits)+1);
-	CleanupStack::PushL(max);
-	max.SetBit(aBits);
-	assert(max.BitCount()-1 == aBits);
-
-	// aBits 	| approx number of odd numbers you must try to have a 50% 
-	//			chance of finding a prime
-	//---------------------------------------------------------
-	// 512		| 122		
-	// 1024		| 245
-	// 2048		| 1023
-	//Therefore if we are generating larger than 1024 bit numbers we'll use a
-	//bigger bit array to have a better chance of avoiding re-generating it.
-	TUint sLength = aBits > 1024 ? 1024 : 512;
-	RInteger S = RInteger::NewEmptyL(BitsToWords(sLength));
-	CleanupStack::PushL(S);
-
-	while(!foundProbablePrime)
-		{
-		//Randomly choose aBits
-		RandomizeL(aBits, aAttr);
-
-		//If the random number chosen is less than KSmallPrimeSquared, we have a
-		//special set of routines.
-		if(SmallPrimeRandomizeL())
-			{
-			foundProbablePrime = ETrue;
-			}
-		else
-			{
-			//if it was <= KLastSmallPrimeSquared then it would have been
-			//handled by SmallPrimeRandomizeL()
-			assert(*this > KLastSmallPrimeSquared);
-
-			//Make sure any number we bother testing is at least odd
-			SetBit(0);
-
-			//Ensure that this + 2*sLength < max
-			RInteger temp = max.MinusL(*this);
-			CleanupStack::PushL(temp);
-			++temp;
-			temp >>=1;
-			if(temp < sLength)
-				{
-				//if this + 2*sLength >= max then we use a smaller sLength to
-				//ensure we don't find a number that is outside of our bounds
-				//(and bigger than our allocated memory for this)
-
-				//temp must be less than KMaxTUint as sLength is a TUint 
-				sLength = temp.ConvertToUnsignedLong();	
-				}
-			CleanupStack::PopAndDestroy(&temp);
-
-			//Start at 1 as no point in checking against 2 (all odd numbers)
-			for(TUint i=1; i<KPrimeTableSize; i++)
-				{
-				//no need to call ModuloL as we know KPrimeTable[i] is not 0
-				TUint remainder = Modulo(*this, KPrimeTable[i]);
-				TUint index = FindSmallestIndex(KPrimeTable[i], remainder);
-				EliminateComposites(S.Ptr(), KPrimeTable[i], index, sLength);
-				}
-			TInt j = FindFirstPrimeCandidate(S.Ptr(), sLength);
-			TInt prev = 0;
-			for(; j>=0; j=FindFirstPrimeCandidate(S.Ptr(), sLength))
-				{
-				ArraySetBit(S.Ptr(), j);
-
-				//should never carry as we earlier made sure that 2*j + this < max
-				//where max is 1 bit more than we asked for.
-				IncrementNoCarry(Ptr(), Size(), 2*(j-prev));
-
-				assert(*this < max);
-				assert(!HasSmallDivisorL(*this));
-
-				prev = j;
-
-				if( IsStrongProbablePrimeL(*this) )
-					{
-					foundProbablePrime = ETrue;
-					break;
-					}
-				}
-			//This clears the memory
-			S.CopyL(0, EFalse);
-			}
-		}
-	CleanupStack::PopAndDestroy(2, &max);
-	}
-
-TBool TInteger::IsPrimeL(void) const
-	{
-	if( NotPositive() )
-		{
-		return EFalse;
-		}
-	else if( IsEven() )
-		{
-		return *this == Two();
-		}
-	else if( *this <= KLastSmallPrime )
-		{
-		assert(KLastSmallPrime < KMaxTUint);
-		return IsSmallPrime(this->ConvertToUnsignedLong());
-		}
-	else if( *this <= KLastSmallPrimeSquared )
-		{
-		return !HasSmallDivisorL(*this);
-		}
-	else 
-		{
-		return !HasSmallDivisorL(*this) && IsStrongProbablePrimeL(*this);
-		}
-	}