cryptoplugins/cryptospiplugins/source/softwarecrypto/dsakeypairgenimpl.cpp
changeset 19 cd501b96611d
child 41 9b5a3a9fddf8
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/cryptoplugins/cryptospiplugins/source/softwarecrypto/dsakeypairgenimpl.cpp	Fri Nov 06 13:21:00 2009 +0200
@@ -0,0 +1,383 @@
+/*
+* Copyright (c) 2007-2009 Nokia Corporation and/or its subsidiary(-ies).
+* All rights reserved.
+* This component and the accompanying materials are made available
+* under the terms of the License "Eclipse Public License v1.0"
+* which accompanies this distribution, and is available
+* at the URL "http://www.eclipse.org/legal/epl-v10.html".
+*
+* Initial Contributors:
+* Nokia Corporation - initial contribution.
+*
+* Contributors:
+*
+* Description: 
+* DSA Keypair implementation
+* DSA keypair generation implementation
+*
+*/
+
+
+/**
+ @file
+*/
+
+#include "dsakeypairgenimpl.h"
+#include "pluginconfig.h"
+#include "keypair.h"
+#include "common/inlines.h"    // For TClassSwap
+#include "mont.h"
+#include "sha1impl.h"
+#include <random.h>
+
+
+const TUint KShaSize = 20;
+const TUint KMinPrimeLength = 512;
+const TUint KMaxPrimeLength = 1024;
+const TUint KPrimeLengthMultiple = 64;
+
+using namespace SoftwareCrypto;
+
+
+/* CDSAPrimeCertificate */
+
+CDSAPrimeCertificate* CDSAPrimeCertificate::NewL(const TDesC8& aSeed, TUint aCounter)
+	{
+	CDSAPrimeCertificate* self = NewLC(aSeed, aCounter);
+	CleanupStack::Pop();
+	return self;
+	}
+
+CDSAPrimeCertificate* CDSAPrimeCertificate::NewLC(const TDesC8& aSeed, TUint aCounter)
+	{
+	CDSAPrimeCertificate* self = new(ELeave) CDSAPrimeCertificate(aCounter);
+	CleanupStack::PushL(self);
+	self->ConstructL(aSeed);
+	return self;
+	}
+
+const TDesC8& CDSAPrimeCertificate::Seed() const
+	{
+	return *iSeed;
+	}
+
+TUint CDSAPrimeCertificate::Counter() const
+	{
+	return iCounter;
+	}
+
+CDSAPrimeCertificate::~CDSAPrimeCertificate() 
+	{
+	delete const_cast<HBufC8*>(iSeed);
+	}
+
+void CDSAPrimeCertificate::ConstructL(const TDesC8& aSeed)
+	{
+	iSeed = aSeed.AllocL();
+	}
+
+CDSAPrimeCertificate::CDSAPrimeCertificate(TUint aCounter) 
+	: iCounter(aCounter)
+	{
+	}
+
+CDSAPrimeCertificate::CDSAPrimeCertificate() 
+	{
+	}
+
+
+/* CDSAKeyPairGenImpl */
+CDSAKeyPairGenImpl::CDSAKeyPairGenImpl()
+	{
+	}
+
+CDSAKeyPairGenImpl::~CDSAKeyPairGenImpl()
+	{
+	delete iPrimeCertificate;
+	}
+
+CDSAKeyPairGenImpl* CDSAKeyPairGenImpl::NewL()
+	{
+	CDSAKeyPairGenImpl* self = CDSAKeyPairGenImpl::NewLC();
+	CleanupStack::Pop(self);
+	return self;
+	}
+
+CDSAKeyPairGenImpl* CDSAKeyPairGenImpl::NewLC()
+	{
+	CDSAKeyPairGenImpl* self = new(ELeave) CDSAKeyPairGenImpl();
+	CleanupStack::PushL(self);
+	self->ConstructL();
+	return self;
+	}
+
+void CDSAKeyPairGenImpl::ConstructL(void)
+	{
+	CKeyPairGenImpl::ConstructL();
+	}
+
+CExtendedCharacteristics* CDSAKeyPairGenImpl::CreateExtendedCharacteristicsL()
+	{
+	// All Symbian software plug-ins have unlimited concurrency, cannot be reserved
+	// for exclusive use and are not CERTIFIED to be standards compliant.
+	return CExtendedCharacteristics::NewL(KMaxTInt, EFalse);
+	}
+
+const CExtendedCharacteristics* CDSAKeyPairGenImpl::GetExtendedCharacteristicsL()
+	{
+	return CDSAKeyPairGenImpl::CreateExtendedCharacteristicsL();
+	}
+
+TUid CDSAKeyPairGenImpl::ImplementationUid() const
+	{
+	return KCryptoPluginDsaKeyPairGenUid;
+	}
+
+void CDSAKeyPairGenImpl::Reset()
+	{
+	// does nothing in this plugin
+	}
+
+TBool CDSAKeyPairGenImpl::ValidPrimeLength(TUint aPrimeBits)
+	{
+	return (aPrimeBits >= KMinPrimeLength &&
+			aPrimeBits <= KMaxPrimeLength &&
+			aPrimeBits % KPrimeLengthMultiple == 0);
+	}
+
+TBool CDSAKeyPairGenImpl::GeneratePrimesL(const TDesC8& aSeed,
+										 TUint& aCounter, 
+										 RInteger& aP, 
+										 TUint aL, 
+										 RInteger& aQ, 
+										 TBool aUseInputCounter)
+	{
+	//This follows the steps in FIPS 186-2 
+	//See DSS Appendix 2.2
+	//Note. Step 1 is performed prior to calling GeneratePrimesL, so that this
+	//routine can be used for both generation and validation.
+	//Step 1.  Choose an arbitrary sequence of at least 160 bits and call it
+	//SEED.  Let g be the length of SEED in bits.
+
+	if(!ValidPrimeLength(aL))
+		{
+		User::Leave(KErrNotSupported);
+		}
+	
+	CSHA1Impl* sha1 = CSHA1Impl::NewL();
+	CleanupStack::PushL(sha1);
+
+	HBufC8* seedBuf = aSeed.AllocLC();
+	TPtr8 seed = seedBuf->Des();
+	TUint gBytes = aSeed.Size();
+	
+	//Note that the DSS's g = BytesToBits(gBytes) ie. the number of random bits
+	//in the seed.  
+	//This function has made the assumption (for ease of computation) that g%8
+	//is 0.  Ie the seed is a whole number of random bytes.
+	TBuf8<KShaSize> U; 
+	TBuf8<KShaSize> temp; 
+	const TUint n = (aL-1)/160;
+	const TUint b = (aL-1)%160;
+	HBufC8* Wbuf = HBufC8::NewMaxLC((n+1) * KShaSize);
+	TUint8* W = const_cast<TUint8*>(Wbuf->Ptr());
+
+	U.Copy(sha1->Final(seed));
+	
+	//Step 2. U = SHA-1[SEED] XOR SHA-1[(SEED+1) mod 2^g]
+	for(TInt i=gBytes - 1, carry=ETrue; i>=0 && carry; i--)
+		{
+		//!++(TUint) adds one to the current word which if it overflows to zero
+		//sets carry to 1 thus letting the loop continue.  It's a poor man's
+		//multi-word addition.  Swift eh?
+		carry = !++(seed[i]);
+		}
+
+	temp.Copy(sha1->Final(seed));
+	XorBuf(const_cast<TUint8*>(U.Ptr()), temp.Ptr(), KShaSize);
+
+	//Step 3. Form q from U by setting the most significant bit (2^159)
+	//and the least significant bit to 1.
+	U[0] |= 0x80;
+	U[KShaSize-1] |= 1;
+
+	aQ = RInteger::NewL(U);
+	CleanupStack::PushL(aQ);
+
+	//Step 4. Use a robust primality testing algo to test if q is prime
+	//The robust part is the calling codes problem.  This will use whatever
+	//random number generator you set for the thread.  To attempt FIPS 186-2
+	//compliance, set a FIPS 186-2 compliant RNG.
+	if( !aQ.IsPrimeL() )
+		{
+		//Step 5. If not exit and get a new seed
+		CleanupStack::PopAndDestroy(4, sha1);
+		return EFalse;
+		}
+	
+	TUint counterEnd = aUseInputCounter ? aCounter+1 : 4096;
+	
+	//Step 6. Let counter = 0 and offset = 2
+	//Note 1. that the DSS speaks of SEED + offset + k because they always
+	//refer to a constant SEED.  We update our seed as we go so the offset
+	//variable has already been added to seed in the previous iterations.
+	//Note 2. We've already added 1 to our seed, so the first time through this
+	//the offset in DSS speak will be 2.
+	for(TUint counter=0; counter < counterEnd; counter++)
+		{
+		//Step 7. For k=0, ..., n let
+		// Vk = SHA-1[(SEED + offset + k) mod 2^g]
+		//I'm storing the Vk's inside of a big W buffer.
+		for(TUint k=0; k<=n; k++)
+			{
+			for(TInt i=gBytes-1, carry=ETrue; i>=0 && carry; i--)
+				{
+				carry = !++(seed[i]);
+				}
+			if(!aUseInputCounter || counter == aCounter)
+				{
+				TPtr8 Wptr(W+(n-k)*KShaSize, gBytes);
+				Wptr.Copy(sha1->Final(seed));
+				}
+			}
+		if(!aUseInputCounter || counter == aCounter)
+			{
+			//Step 8. Let W be the integer...  and let X = W + 2^(L-1)
+			const_cast<TUint8&>((*Wbuf)[KShaSize - 1 - b/8]) |= 0x80;
+			TPtr8 Wptr(W + KShaSize - 1 - b/8, aL/8, aL/8);
+			RInteger X = RInteger::NewL(Wptr);
+			CleanupStack::PushL(X);
+			//Step 9. Let c = X mod 2q and set p = X - (c-1)
+			RInteger twoQ = aQ.TimesL(TInteger::Two());
+			CleanupStack::PushL(twoQ);
+			RInteger c = X.ModuloL(twoQ);
+			CleanupStack::PushL(c);
+			--c;
+			aP = X.MinusL(c);
+			CleanupStack::PopAndDestroy(3, &X); //twoQ, c, X
+			CleanupStack::PushL(aP);
+			
+			//Step 10 and 11: if p >= 2^(L-1) and p is prime
+			if( aP.Bit(aL-1) && aP.IsPrimeL() )
+				{
+				aCounter = counter;
+				CleanupStack::Pop(2, &aQ);
+				CleanupStack::PopAndDestroy(3, sha1);
+				return ETrue;
+				}
+			CleanupStack::PopAndDestroy(&aP);
+			}
+		}
+	CleanupStack::PopAndDestroy(4, &sha1);
+	return EFalse;
+	}
+
+void CDSAKeyPairGenImpl::GenerateKeyPairL(TInt aKeySize, 
+										const CCryptoParams& aKeyParameters,
+										CKeyPair*& aKeyPair)
+	{
+	//This is the first step of DSA prime generation.  The remaining steps are
+	//performed in CDSAParameters::GeneratePrimesL
+	//Step 1.  Choose an arbitrary sequence of at least 160 bits and call it
+	//SEED.  Let g be the length of SEED in bits.	
+	TBuf8<KShaSize> seed(KShaSize);
+	TUint c;
+	RInteger p;
+	RInteger q;
+	
+	do 
+		{
+		GenerateRandomBytesL(seed);
+		}
+	while(!GeneratePrimesL(seed, c, p, aKeySize, q));
+	
+	//Double PushL will not fail as GeneratePrimesL uses the CleanupStack
+	//(at least one push and pop ;)
+	CleanupStack::PushL(p);
+	CleanupStack::PushL(q);
+
+	iPrimeCertificate = CDSAPrimeCertificate::NewL(seed, c);
+	
+	// aKeyParameters isn't const here anymore
+	CCryptoParams& paramRef=const_cast<CCryptoParams&>(aKeyParameters);
+	paramRef.AddL(c, KDsaKeyGenerationCounterUid);
+	paramRef.AddL(seed, KDsaKeyGenerationSeedUid);
+	
+	CMontgomeryStructure* montP = CMontgomeryStructure::NewLC(p);
+	
+	--p;
+
+	// e = (p-1)/q
+	RInteger e = p.DividedByL(q);
+	CleanupStack::PushL(e);
+
+	--p; //now it's p-2 :)
+
+	RInteger h;
+	const TInteger* g = 0;
+	do
+		{
+		// find a random h | 1 < h < p-1
+		h = RInteger::NewRandomL(TInteger::Two(), p);
+		CleanupStack::PushL(h);
+		// g = h^e mod p
+		g = &(montP->ExponentiateL(h, e));
+		CleanupStack::PopAndDestroy(&h); 
+		}
+	while( *g <= TInteger::One() );
+	CleanupStack::PopAndDestroy(&e);
+
+	++p; //reincrement p to original value
+	++p;
+
+
+	RInteger g1 = RInteger::NewL(*g); //take a copy of montP's g
+	CleanupStack::PushL(g1);
+	--q;
+	// select random x | 0 < x < q
+	RInteger x = RInteger::NewRandomL(TInteger::One(), q);
+	CleanupStack::PushL(x);
+	++q;
+
+	//
+	// create the keys parameters
+	CCryptoParams* privateKeyParameters = CCryptoParams::NewLC();
+	privateKeyParameters->AddL(p, KDsaKeyParameterPUid);
+	privateKeyParameters->AddL(q, KDsaKeyParameterQUid);
+	privateKeyParameters->AddL(g1, KDsaKeyParameterGUid);
+	privateKeyParameters->AddL(x, KDsaKeyParameterXUid);
+	TKeyProperty privateKeyProperties = {KDSAKeyPairGeneratorUid, 
+										 KCryptoPluginDsaKeyPairGenUid,
+									     KDsaPrivateKeyUid, 
+									     KNonEmbeddedKeyUid};
+
+	CCryptoParams* publicKeyParameters = CCryptoParams::NewLC();
+	publicKeyParameters->AddL(p, KDsaKeyParameterPUid);
+	publicKeyParameters->AddL(q, KDsaKeyParameterQUid);
+	publicKeyParameters->AddL(g1, KDsaKeyParameterGUid);
+	RInteger y = RInteger::NewL(montP->ExponentiateL(*g, x));
+	CleanupStack::PushL(y);
+	publicKeyParameters->AddL(y, KDsaKeyParameterYUid);
+	TKeyProperty publicKeyProperties = {KDSAKeyPairGeneratorUid,
+										KCryptoPluginDsaKeyPairGenUid, 
+										KDsaPublicKeyUid,
+										KNonEmbeddedKeyUid};
+
+	//
+	// create the private key
+	//
+	CKey* privateKey = CKey::NewL(privateKeyProperties, *privateKeyParameters);
+	CleanupStack::PushL(privateKey);
+
+	//
+	// create the public key
+	//
+	CKey* publicKey = CKey::NewL(publicKeyProperties, *publicKeyParameters);
+	CleanupStack::PushL(publicKey);
+
+	aKeyPair = CKeyPair::NewL(publicKey, privateKey);
+
+	//publicKey, publicKeyParameters, y, privateKey, privateKeyParameters, x, g1, montP, q, p
+	CleanupStack::Pop(2, privateKey);
+	CleanupStack::PopAndDestroy(8, &p);	
+	}