Move the Security package to EPL, and add the implementations of the cryptographic algorithms
/*
* Copyright (c) 2005-2009 Nokia Corporation and/or its subsidiary(-ies).
* All rights reserved.
* This component and the accompanying materials are made available
* under the terms of the License "Eclipse Public License v1.0"
* which accompanies this distribution, and is available
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
*
* Initial Contributors:
* Nokia Corporation - initial contribution.
*
* Contributors:
*
* Description:
*
*/
#include <hash.h>
#include <bigint.h>
#include "pkcs12kdf.h"
EXPORT_C HBufC8* PKCS12KDF::GeneratePasswordLC(const TDesC& aDes)
/**
Convert the supplied string to a byte string, as described
in SB.1 of the PKCS 12 v1.0.
Each character is converted to a big endian two-byte value,
and a terminating NULL character is appended to the end.
@param aDes String to use as password.
*/
{
const TInt len = aDes.Length();
HBufC8* pwdBytes = HBufC8::NewMaxLC((len + 1) * 2);
TPtr8 pbDes = pwdBytes->Des();
TInt i = 0;
while (i < len)
{
TUint16 ch = aDes[i];
pbDes[i * 2] = ch >> 8;
pbDes[(i * 2) + 1] = ch;
++i;
}
pbDes[i * 2] = pbDes[(i * 2) + 1] = 0;
return pwdBytes;
}
static TInt CeilDiv(TInt aNumerator, TInt aDenominator)
/**
Utility function returns ceil(aNumerator / aDenominator).
@param aNumerator The numerator.
@param aDenominator Denominator, which cannot be zero.
@return ceil(aNumerator / aDenominator)
*/
{
TInt result = aNumerator / aDenominator;
if ((aNumerator % aDenominator) > 0)
++result;
return result;
}
EXPORT_C void PKCS12KDF::DeriveKeyL(
TDes8& aKey, TIDByteType aIDType,
const TDesC8& aPasswd, const TDesC8& aSalt, const TUint aIterations)
/**
Generate a key for the supplied password and salt.
This implementation uses SHA1 as the hashing algorithm.
@param aKey Descriptor which will hold key. On entry
its length must be set to the expected key length.
@param aIDType Whether this function is being called to generate
an (en|de)cryption key, an initialization vector,
or a key for MAC-ing. See SB.3 of spec.
@param aPasswd Password string. To comply with PKCS#12 spec,
this must have 2-byte big-endian characters with
a terminating null character.
@param aSalt Used with aPasswd to generate key.
@param aIterations Number of times to call the hash function for
each block in the key.
@panic PKCS#12 16 Password is empty (debug only.)
@panic PKCS#12 17 Password does not contain an even number of bytes,
and so can't use double-byte characters (debug only.)
@panic PKCS#12 18 The final two-byte character is not a null terminator,
or a null terminator occurs before the end (debug only.)
*/
{
__ASSERT_DEBUG(aPasswd.Length() >= 2, Panic(EDKEmptyPswd));
__ASSERT_DEBUG((aPasswd.Length() % 2) == 0, Panic(EDKOddPswdByteCount));
TInt useCharCount = aPasswd.Length() / 2;
TPtrC16 pswd16(reinterpret_cast<const TUint16*>(aPasswd.Ptr()), useCharCount);
TInt nullPos = pswd16.Locate(L'\0');
__ASSERT_DEBUG(nullPos == (useCharCount - 1), Panic(EDKBadNullTerminator));
// use the same notation as the standard
const TUint8 ID = static_cast<TUint8>(aIDType);
const TInt u = 160; // chaining variable length for SHA-1
const TInt v = 512; // message input length for SHA-1
const TInt n = aKey.Length() * 8; // number of bits required in key
const TInt p = aPasswd.Length();
const TInt s = aSalt.Length();
const TInt r = aIterations;
// (numbered steps are from the standard)
// 1. Construct a string, D (the "diversifier"), by concatenating
// v/8 copies of ID.
const TInt D_LEN = v / 8;
HBufC8* D_ = HBufC8::NewMaxLC(D_LEN);
TPtr8 D = D_->Des();
D.Fill(ID);
// 2. Concatenate copies of the salt together to create a string S
// of length v * ceil(s/v) bits (the final copy of the salt may be
// truncated to create S). Note that if the salt is the empty string,
// then so is S.
const TInt S_OVER_V_CEIL = CeilDiv(s, v);
const TInt S_LEN = (v * S_OVER_V_CEIL) / 8;
HBufC8* S_ = HBufC8::NewMaxLC(S_LEN);
TPtr8 S = S_->Des();
S.Repeat(aSalt);
// 3. Concatenate copies of the password together to create a string P
// of length v * ceil(p/v) bits (the final copy of the password may be
// truncated to create P). Note that if the password is the empty string
// then so is P.
const TInt P_OVER_V_CEIL = CeilDiv(p, v);
const TInt P_LEN = (v * P_OVER_V_CEIL) / 8;
HBufC8* P_ = HBufC8::NewMaxLC(P_LEN);
TPtr8 P = P_->Des();
P.Repeat(aPasswd);
// 4. Set I=S||P to be the concatenation of S and P.
const TInt I_LEN = S_LEN + P_LEN;
HBufC8* I_ = HBufC8::NewLC(I_LEN);
TPtr8 I = I_->Des();
I.Copy(S);
I.Append(P);
// 5. Set c=ceil(n/u).
const TInt c = CeilDiv(n, u);
// ahead 7: allocate result buffer A
// (Each Ai has SHA1_HASH bytes.)
HBufC8* A_ = HBufC8::NewLC(c * SHA1_HASH);
TPtr8 A = A_->Des();
// 6. For i=1, 2, ..., c, do the following
// pre-allocate SHA1 object, DI, and B buffers
CSHA1* sha1 = CSHA1::NewL();
CleanupStack::PushL(sha1);
const TInt DI_LEN = D_LEN + I_LEN;
HBufC8* DI_ = HBufC8::NewLC(DI_LEN);
TPtr8 DI = DI_->Des();
const TInt B_LEN = v / 8;
HBufC8* B_ = HBufC8::NewMaxLC(B_LEN);
TPtr8 B = B_->Des();
for (TInt i = 1; i <= c; ++i)
{
// 6a) Set Ai = H^r(D||I). (i.e. the rth hash of D||I,
// H(H(H(...H(D||I))))
DI.Copy(D);
DI.Append(I);
sha1->Reset();
TBuf8<SHA1_HASH> Ai(sha1->Final(DI));
for (TInt iterCount = 2; iterCount <= r; ++iterCount)
{
Ai.Copy(sha1->Final(Ai));
}
// 6b) Concatenate copies of Ai to create a string B of length
// v bits (the final copy of Ai may be truncated to create B).
B.Repeat(Ai);
// 6c) Treating I as a concatenation I0, I1, ..., Ik-1 of
// v-bit blocks, where k=ceil(s/v)+ceil(p/v), modify I by
// setting Ij=(Ij+B+1) mod 2^v for each j.
const TInt k = S_OVER_V_CEIL + P_OVER_V_CEIL;
for (TInt j = 0; j < k; ++j)
{
TPtr8 section = I.MidTPtr((v/8) * j, v/8);
Process6cL(section, B, v);
}
// 7. Concatenate A1, A2, ..., Ac together to form a pseudo-random
// bit string, A.
A.Append(Ai);
// stop building A if already have enough bits for key
if (A.Length() >= n / 8)
break;
}
// Use the first n bits of A as the output of this entire process.
aKey.Copy(A.Left(n / 8));
CleanupStack::PopAndDestroy(8, D_); // B_, DI_, sha1, A_, I_, P_, S_, D_
}
void PKCS12KDF::Process6cL(TDes8& Ij, const TDesC8& B, TInt v)
/**
Helper function for DeriveKeyL modifies part of I,
as described in step 6c of SB.2.
@param Ij Section of I (S || P).
@param B rth hash of D || I.
@param v Number of bits to preserve in result.
*/
{
// 6c) Treating I as a concatenation I0, I1, ..., Ik-1 of
// v-bit blocks, where k=ceil(s/v)+ceil(p/v), modify I by
// setting Ij=(Ij+B+1) mod 2^v for each j.
RInteger RI_Ij = RInteger::NewL(Ij);
TCleanupItem ciIj = RI_Ij;
CleanupStack::PushL(ciIj);
RInteger RI_B = RInteger::NewL(B);
TCleanupItem ciB = RI_B;
CleanupStack::PushL(ciB);
// these additions can leave
RI_Ij += RI_B;
RI_Ij += 1;
HBufC8* result = RI_Ij.BufferLC();
Ij.Zero();
TInt resultLen = result->Length();
TInt bytesToPreserve = v / 8;
TInt leadingZeroes = bytesToPreserve - resultLen;
if (leadingZeroes <= 0)
Ij.Copy(result->Right(bytesToPreserve));
else
{
Ij.FillZ(leadingZeroes);
Ij.Append(*result);
}
CleanupStack::PopAndDestroy(3, &RI_Ij); // result, ciB, ciIj
}
#ifdef _DEBUG
void PKCS12KDF::Panic(PKCS12KDF::TPanic aPanic)
/**
This function is used in debug builds to halt
the current thread when a logic error is detected.
The current thread is panicked with category "PKCS12KDF"
and the supplied reason.
@param aPanic Converted to numeric value and
used for the panic reason.
*/
{
_LIT(KPanicCat, "PKCS12KDF");
User::Panic(KPanicCat, aPanic);
}
#endif