Move the Security package to EPL, and add the implementations of the cryptographic algorithms
/*
* Copyright (c) 2002-2009 Nokia Corporation and/or its subsidiary(-ies).
* All rights reserved.
* This component and the accompanying materials are made available
* under the terms of the License "Eclipse Public License v1.0"
* which accompanies this distribution, and is available
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
*
* Initial Contributors:
* Nokia Corporation - initial contribution.
*
* Contributors:
*
* Description:
*
*/
#include "des.h"
#include "destables.h"
#include "../common/inlines.h"
#include "des.inl"
#include <cryptostrength.h>
const TInt KDESBlockBytes = 8;
const TInt KDESKeyBytes = 8;
// bit 0 is left-most in byte
static const TInt bytebit[] = {0200,0100,040,020,010,04,02,01};
void CDES::Transform(TDes8& aBlock)
{
assert(aBlock.Size() == KDESBlockBytes);
TUint32 l, r;
// Split the block into 2 word-sized big endian portions
GetBlockBigEndian((TUint8*)&aBlock[0], l, r);
IPerm(l,r);
CDES::DoTransform(l, r, iK1);
FPerm(l,r);
// Put the portions back into the block as little endian
PutBlockBigEndian((TUint8*)&aBlock[0], r, l);
}
void CDES::DoTransform(TUint32& l, TUint32& r, const TUint32* aKey)
{
TInt i = 0;
for (; i<8; i++)
{
TUint32 work = rotrFixed(r, 4U) ^ aKey[4*i+0];
l ^= DES_TABLE::sbox[6][(work) & 0x3f]
^ DES_TABLE::sbox[4][(work >> 8) & 0x3f]
^ DES_TABLE::sbox[2][(work >> 16) & 0x3f]
^ DES_TABLE::sbox[0][(work >> 24) & 0x3f];
work = r ^ aKey[4*i+1];
l ^= DES_TABLE::sbox[7][(work) & 0x3f]
^ DES_TABLE::sbox[5][(work >> 8) & 0x3f]
^ DES_TABLE::sbox[3][(work >> 16) & 0x3f]
^ DES_TABLE::sbox[1][(work >> 24) & 0x3f];
work = rotrFixed(l, 4U) ^ aKey[4*i+2];
r ^= DES_TABLE::sbox[6][(work) & 0x3f]
^ DES_TABLE::sbox[4][(work >> 8) & 0x3f]
^ DES_TABLE::sbox[2][(work >> 16) & 0x3f]
^ DES_TABLE::sbox[0][(work >> 24) & 0x3f];
work = l ^ aKey[4*i+3];
r ^= DES_TABLE::sbox[7][(work) & 0x3f]
^ DES_TABLE::sbox[5][(work >> 8) & 0x3f]
^ DES_TABLE::sbox[3][(work >> 16) & 0x3f]
^ DES_TABLE::sbox[1][(work >> 24) & 0x3f];
}
}
TInt CDES::BlockSize() const
{
return KDESBlockBytes;
}
TInt CDES::KeySize() const
{
return KDESKeyBytes;
}
CDES::~CDES()
{
delete iKey;
}
void CDES::ConstructL(const TDesC8& aKey, TBool /*aCheckWeakKey*/)
{
assert(aKey.Size() == KDESKeyBytes);
iKey = aKey.AllocL();
SetKey(aKey, iK1);
}
CDES::CDES()
{
}
typedef TUint8 TKeyDES[KDESKeyBytes];
const TInt KKnownWeakKeysCount = 16;
const TKeyDES weak_keys[KKnownWeakKeysCount] =
{
/* weak keys */
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},
{0xFE,0xFE,0xFE,0xFE,0xFE,0xFE,0xFE,0xFE},
{0x1E,0x1E,0x1E,0x1E,0x0E,0x0E,0x0E,0x0E},
{0xE0,0xE0,0xE0,0xE0,0xF0,0xF0,0xF0,0xF0},
{0x00,0xFE,0x00,0xFE,0x00,0xFE,0x00,0xFE},
{0xFE,0x00,0xFE,0x00,0xFE,0x00,0xFE,0x00},
{0x1E,0xE0,0x1E,0xE0,0x0E,0xF0,0x0E,0xF0},
{0xE0,0x1E,0xE0,0x1E,0xF0,0x0E,0xF0,0x0E},
{0x00,0xE0,0x00,0xE0,0x00,0xF0,0x00,0xF0},
{0xE0,0x00,0xE0,0x00,0xF0,0x00,0xF0,0x00},
{0x1E,0xFE,0x1E,0xFE,0x0E,0xFE,0x0E,0xFE},
{0xFE,0x1E,0xFE,0x1E,0xFE,0x0E,0xFE,0x0E},
{0x00,0x1E,0x00,0x1E,0x00,0x0E,0x00,0x0E},
{0x1E,0x00,0x1E,0x00,0x0E,0x00,0x0E,0x00},
{0xE0,0xFE,0xE0,0xFE,0xF0,0xFE,0xF0,0xFE},
{0xFE,0xE0,0xFE,0xE0,0xFE,0xF0,0xFE,0xF0}
};
void CDES::SetKey(const TDesC8& aKey, TUint32* aKeyBuffer)
{
TInt i=0, j=0, l=0, m=0;
// Form a byte array from aKey, taking endianess into account (little->big)
TUint8 key[8]; // For big endian byte array
Mem::Copy(&key, &aKey[0], 8);
TUint8 buffer[56+56+8];
TUint8* const pc1m = &buffer[0]; /* place to modify pc1 into */
TUint8* const pcr = pc1m + 56; /* place to rotate pc1 into */
TUint8* const ks = pcr + 56;
for (j=0; j<56; j++)
{/* convert pc1 to bits of key */
l = DES_TABLE::pc1[j]-1; /* integer bit location */
m = l & 07; /* find bit */
pc1m[j]=(key[l>>3] & /* find which key byte l is in */
bytebit[m]) /* and which bit of that byte */
? (TUint8)1 : (TUint8)0; /* and store 1-bit result */
}
for (i=0; i<16; i++)
{/* key chunk for each iteration */
Mem::FillZ(ks,8); /* Clear key schedule */
for (j=0; j<56; j++)
/* rotate pc1 the right amount */
pcr[j] = pc1m[(l=j+DES_TABLE::totrot[i])<(j<28? 28 : 56) ? l: l-28];
/* rotate left and right halves independently */
for (j=0; j<48; j++)
{/* select bits individually */
/* check bit that goes to ks[j] */
if (pcr[DES_TABLE::pc2[j]-1])
{/* mask it in if it's there */
l= j % 6;
ks[j/6] |= bytebit[l] >> 2;
}
}
/* Now convert to odd/even interleaved form for use in F */
(*(aKeyBuffer+(2*i))) = ((TUint32)ks[0] << 24)
| ((TUint32)ks[2] << 16)
| ((TUint32)ks[4] << 8)
| ((TUint32)ks[6]);
(*(aKeyBuffer+(2*i+1))) = ((TUint32)ks[1] << 24)
| ((TUint32)ks[3] << 16)
| ((TUint32)ks[5] << 8)
| ((TUint32)ks[7]);
}
}
void CDES::Reset()
{
SetKey(*iKey, iK1);
}
/* CDESEncryptor */
EXPORT_C CDESEncryptor* CDESEncryptor::NewL(const TDesC8& aKey,
TBool aCheckWeakKey)
{
CDESEncryptor* me = CDESEncryptor::NewLC(aKey, aCheckWeakKey);
CleanupStack::Pop(me);
return (me);
}
EXPORT_C CDESEncryptor* CDESEncryptor::NewLC(const TDesC8& aKey,
TBool aCheckWeakKey)
{
CDESEncryptor* me = new (ELeave) CDESEncryptor();
CleanupStack::PushL(me);
me->ConstructL(aKey, aCheckWeakKey);
// DES only used 7 bits out of every key byte
TCrypto::IsSymmetricWeakEnoughL(BytesToBits(aKey.Size()) - aKey.Size());
return (me);
}
CDESEncryptor::CDESEncryptor()
{
}
/* CDESDecryptor */
EXPORT_C CDESDecryptor* CDESDecryptor::NewL(const TDesC8& aKey,
TBool aCheckWeakKey)
{
CDESDecryptor* me = CDESDecryptor::NewLC(aKey, aCheckWeakKey);
CleanupStack::Pop(me);
return (me);
}
EXPORT_C CDESDecryptor* CDESDecryptor::NewLC(const TDesC8& aKey,
TBool aCheckWeakKey)
{
CDESDecryptor* me = new (ELeave) CDESDecryptor();
CleanupStack::PushL(me);
me->ConstructL(aKey, aCheckWeakKey);
// DES only used 7 bits out of every key byte
TCrypto::IsSymmetricWeakEnoughL(BytesToBits(aKey.Size()) - aKey.Size());
return (me);
}
CDESDecryptor::CDESDecryptor()
{
}
void CDESDecryptor::SetKey(const TDesC8& aKey, TUint32* aKeyBuffer)
{
CDES::SetKey(aKey, aKeyBuffer);
ReverseKeySchedule(iK1);
}
EXPORT_C TBool CDES::IsWeakKey(const TDesC8& aKey)
{
TKeyDES key;
TInt index = 0;
//Reset parity bits
for(; index < KDESKeyBytes; index++)
{
key[index] = aKey[index] & 0xFE;
}
TBool weak = EFalse;
//Compare key with potential weak keys without parity
for (index=0; index < KKnownWeakKeysCount; index++)
{
if (Mem::Compare(weak_keys[index], KDESKeyBytes, &key[0], KDESKeyBytes)==0)
{
weak = ETrue;
break;
}
}
return weak;
}